
and outlier detection are often accomplished by thresholding
individual metric values.

Unfortunately, the increased number of incoming moni-
toring streams due to the scale of modern systems makes
diagnosis with these tools di�cult. For example, simply
overlaying monitoring data from many machines produces
an unintelligible view (for example, at top in Fig. 1), yet
similar views are common in the tools used in practice [24,
25, 36]. Another significant obstacle to human-intelligible
monitoring is the burstiness of many of these streams: not
only is the raw data visually noisy, it also poses di�culties
for many timeseries analyses, such as modeling techniques
that assume a smooth time evolution of data [17]. For exam-
ple, alerts based on thresholds can produce false positives.

Despite the wide variety of anomaly detection and sum-
marization approaches that have been proposed (we survey a
few in Sec. 2), there exists a need for approaches that handle
real-world data sources, focus on bursty data, and integrate
the analysis process. To meet those goals, RainMon is an
end-to-end system for mining anomalies and trends from
bursty streams, compressing monitoring data, and forecast-
ing trends. We have integrated RainMon with multiple real
data streams produced by complex real systems to produce
insight into datacenter behavior. It has isolated problems
with machines and tasks like the ones shown in Fig. 1 in
the Hadoop framework and unearthed network glitches. It
can compress data more e↵ectively than a non-integrated
approach and can estimate future state. These applications
are not disjoint, but rather the result of judicious combina-
tion of a few techniques from the literature into a knowledge
discovery tool.

Contributions: We make three primary contributions.
First, we describe a novel multi-stage analysis technique
catered towards bursty timeseries monitoring streams from
datacenters and networks. Second, we show its utility through
a series of case studies on real-world monitoring streams.
Third, we describe our end-to-end system that incorporates
storage, modeling, and visualization.

2. RELATED WORK
A variety of data mining techniques have been applied to

timeseries monitoring, many existing monitoring tools pro-
vide data infrastructure, and some consider e↵ective visual-
ization of the output [8]. Here we focus on RainMon’s re-
lation to the wide body of related work on stream anomaly
detection and forecasting as applied to system monitoring.
More background on the techniques we use is provided in
Sec. 3; broader surveys of anomaly detection [7] and time-
series forecasting [6] are available.

Multiple data mining approaches have been proposed for
summarizing relatively smooth portions of timeseries mon-
itoring data. Patnaik et al. have developed an approach to
cooling a datacenter based on finding frequent “motifs” [28].
The Intemon tool explores the use of dimensionality reduc-
tion to monitoring timeseries [12], and a case study considers
applying the system to finding anomalies in environmental
monitoring data. We use the same core algorithm (SPIRIT
[27, 35]) as a technique for mining correlations and trends,
and expand its applicability to cope with the bursty aspect
of systems data. The symbolic SAX representation is also
promising for anomaly detection and visualization [21].

Considerable work on automated detection of anomalies
and bursts in timeseries data has resulted in a variety of tech-

niques, such as wavelet decomposition [37], changepoint de-
tection [10, 26], incremental nearest-neighbor computation
[4], and others. PCA and ICA have been applied to monitor-
ing data for a variety of features (e.g., by [16]). Other forms
of matrix decomposition have also been applied to network
monitoring data to find anomalies, though evaluations of-
ten focus on small or synthetic datasets [11]. Many other
automated approaches (e.g., [5, 14]) complement this work:
rather than defining what constitutes a violation of a trend,
we focus on modeling and presenting the data.

Forecasting of timeseries monitoring data has often been
examined independently of the mining techniques above.
For example, ThermoCast [18] uses a specialized model for
predicting timeseries temperature data in a datacenter. Some
techniques like DynaMMo [19] and PLiF [20] learn linear
dynamical systems for multiple time sequences for the pur-
poses of both forecasting and summarization, and the latter
is evaluated in part on network monitoring data (though for
the purposes of clustering). Linear Gaussian models like the
Kalman filter used here are surveyed in [31].

3. APPROACH
We address our three goals described in Sec. 1 in the fol-

lowing manner. First, in order to achieve e�cient compres-
sion of monitoring data and facilitate the generation of its
intelligible summaries, we decompose the raw data into spike
data and streams that are amenable to these two objectives.
Then, actual creation of summaries is performed using in-
cremental PCA, which produces a lower-dimensional repre-
sentation of the original data. Finally, we predict future sys-
tem state by modeling the variables in the lower-dimensional
representation. This process is illustrated in Fig. 2. Also,
the core steps of the problem are formally defined as follows:

Problem Statement: Given N labeled timeseries streams,
we have at each of T time ticks a vector of observations
y
t

= [y
t,1, . . . , yt,N]. Each reported value y

t,i

2 R�0. We
seek to find M < N streams s

t

= s
t,1 . . . st,M at each time

tick that form a summary of the data, and other model
parameters that can be displayed to indicate outliers and
anomalies. Additionally, we seek to forecast s

T+f

for some
f > 0 — that is, predict future system trends.

Raw Streams

Decompose

Smooth
+

Threshold

Normalize
+

Transform

Smooth Streams

Summarize

update energy
and PCs

update PC
estimate

Spikes

Stream
Model

Predict

parameter
maximization

parameter
expectation

Hidden Variables

Figure 2: Multi-stage RainMon data flow. Raw
streams are decomposed and then modeled.

In the following sections, we describe each step in detail.
In each of these sections, we refer to the input of each stage
as y

t

and its output as x
t

. Note that the decomposition
and summarization stages of the analysis are streaming al-
gorithms; that is, they can produce x

t+1 given y
t+1 and the

model parameters estimated from y1 . . . yt. This aspect is
important in a monitoring setting, since data arrives in an
incremental fashion as systems produce it; streaming analy-
ses allow for e�ciency through incremental updates.

