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Abstract

Iris recognition is believed to offer excellent recognition

rates for iris images acquired under controlled conditions.

However, recognition rates degrade considerably when im-

ages exhibit impairments such as off-axis gaze, partial oc-

clusions, specular reflections and out-of-focus and motion-

induced blur. In this paper, we use the recently-available

face and ocular challenge set (FOCS) to investigate the

comparative recognition performance gains of using oc-

ular images (i.e., iris regions as well as the surrounding

peri-ocular regions) instead of just the iris regions. A new

method for ocular recognition is presented and it is shown

that use of ocular regions leads to better recognition rates

than iris recognition on FOCS dataset. Another advantage

of using ocular images for recognition is that it avoids the

need for segmenting the iris images from their surrounding

regions.

1. Introduction

Among the many biometric modalities, iris is of sig-

nificant interest because of the excellent recognition rates

shown when iris images are acquired in controlled condi-

tions, e.g., when subjects are able to place their eyes close to

the camera. But in some situations, subjects may be at a dis-

tance (e.g., 5 to 10 m) from the camera, may not be looking

directly at the camera and may be moving. In such cases,

the resulting iris images exhibit impairments such as blur

induced by motion and defocus, specular reflections, par-

tial occlusions due to eyelids and eye lashes and non-frontal
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gaze. The performance of conventional iris recognition al-

gorithms degrades in the presence of such impairments for

two main reasons: segmenting the iris from its surrounding

regions (pupil and sclera) becomes harder and the nonlin-

ear deformations and occlusions between the probe and the

gallery images make it difficult to match the two images

even after segmentation.

One way to improve the recognition performance in the

presence of above impairments is to use ocular images, i.e.,

to use iris regions as well as the surrounding regions such

as eyebrows, skin texture, etc. Inclusion of the additional

regions may help by providing more clues about an individ-

ual’s identity and some regions may be in better focus than

other regions providing more usable information. Another

advantage of using ocular regions is that we may be able to

avoid the step for segmenting the iris from its surrounding

regions, which is often an error-prone and computationally

demanding task. So, the goal of this paper is a compara-

tive evaluation of iris recognition and ocular image recog-

nition methods on a common database of challenging ocu-

lar images. We use the recently-available face and ocular

challenge set (FOCS) [1] containing 9581 images from 136

subjects as the common dataset to evaluate the algorithms.

For both iris recognition and ocular recognition meth-

ods, it is important to center the probe and gallery images

before they are matched. Toward this goal, we have devel-

oped a new correlation filter-based eye detector, which is

applied to all images in the FOCS dataset to center them.

For iris recognition, we adapt the Chan-Vese segmentation

method to extract iris regions and derive a binary code for

each iris image using an optimized Gabor wavelet set. The

usual Hamming distance-based comparison is used to de-

termine whether the probe and gallery images are from the

same class or not. For ocular recognition, there is no need

for segmentation and a Bayesian graphical model is de-

signed to obtain match scores that take into account the oc-

clusions and nonlinear deformations between the probe and

the gallery images. First, the images are divided into a num-

ber of non-overlapping patches and patch-based correlation
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outputs are used to estimate the similarity of the patches as

well as the nonlinear deformation between the probe and the

gallery ocular images. The information provided by patch-

based correlation outputs is input to a Bayesian graphical

model which is trained using loopy belief propagation al-

gorithm. The trained Bayesian graphical model is used to

obtain a similarity score that reflects the estimated levels

of occlusion and nonlinear deformations. We show that

the recognition rates for ocular recognition method on the

FOCS data set are noticeably better than the recognition

rates for iris recognition indicating that the use of periocular

regions is beneficial for recognition, particularly for chal-

lenging images.

The rest of this paper is organized as follows. Section

2 provides a brief summary of the FOCS data and Sec-

tion 3 introduces the new eye detector and reviews the pre-

processing applied to the images. Iris segmentation, nor-

malization and binary code extraction and matching are dis-

cussed in Section 4. The new ocular matching algorithm

based on Bayesian graphical models is discussed in Section

5 and recognition results on FOCS dataset are compared in

Section 6. Finally, Section 7 provides a summary.

2. FOCS Dataset

The ocular challenge data in FOCS data set consist of

still images of a single eye region. These regions were ex-

tracted from near infrared (NIR) video sequences collected

from the Iris on the Move system [9] from moving sub-

jects in an unconstrained environment. The database has

9588 images of 136 subjects with between 2 and 236 im-

ages per subject. The database is characterized by impair-

ments such as variations in illumination, out-of-focus blur,

sensor noise, specular reflections, partially occluded iris and

off-angle iris. Further the iris region is very small (about 50

pixels wide) within an image of resolution 750 × 600. Fig.

1 shows examples of some good and poor quality images in

FOCS dataset.

3. Pre-processing

In this section, we describe the pre-processing applied to

the images. Due to the drastic variations in the illumina-

tion observed in the database, we first perform illumination

normalization via simple adaptive histogram equalization.

Unlike iris images where the eye covers most of the im-

age, the eyes are only a small part of the ocular images.

Estimating the center of the eye (center of the pupil to be

precise) is very important for aligning the images to be com-

pared. We use a template-based eye detector, more specifi-

cally we used a correlation filter-based eye detector. A cor-

relation filter (CF) is a spatial-frequency array (equivalently,

a template in the image domain) that is specifically designed

from a set of training patterns that are representative of a

particular class. This template is compared to a query im-

age by computing the cross-correlation between the tem-

plate and the query as function of relative shift. For compu-

tational efficiency the cross-correlation is computed in the

frequency domain. Since the images and their 2D Fourier

Transforms (FTs) are discrete-indexed, FT here refers to the

2D discrete Fourier transform (DFT) which is implemented

using efficient fast Fourier transform (FFT) algorithm. The

correlation filters are usually designed to give a sharp peak

at the center of the correlation output plane c(x, y) for a

centered authentic query pattern and no such peak for an

impostor.

While many different forms of correlation filters exist

[15], we use unconstrained correlation filters for eye center

detection because they are the simplest to design and they

yield performance comparable to the other CF types. The

general optimization formulation for unconstrained CF de-

signs is,

max
f

f
†
mm

†
f

f†Tf
(1)

where † denotes conjugate transpose, m ∈ R
N is the aver-

age of all vectorized 2D FTs of the training images, f ∈ R
N

is the vectorized 2D correlation filter and T ∈ R
NxN is a

diagonal matrix. The numerator of the objective function

is essentially the square of the mean peak value. Differ-

ent forms of T lead to different CFs, e.g., using an identity

matrix for T leads to a denominator that is the output noise

variance when the input noise is white. The above optimiza-

tion problem has a closed form solution for the filter,

f = T
−1

m (2)

We consider one particular form of T namely T =
1
N1

∑N1

i=1 X
†
i
Xi where Xi is an N × N diagonal matrix

whose entries are the vector versions of the 2D FT of the

i-th training image. The resulting filter is called the Uncon-

strained Minimum Average Correlation Energy (UMACE)

filter. This choice of T leads to sharp correlation peaks [8].

We have trained a UMACE filter for eye center detection in

ocular images using about 1000 manually labeled images.

For about 95% of the 9588 images in the FOCS database,

the eye center detector found a point inside the pupil (Fig. 2

shows examples of some eye center detections on the FOCS

data). While we are not reporting those details here due

to lack of space, this eye detector out-performed state-of-

the-art eye detector [2] on FERET [10] data set where the

ground truth about eye centers was available.

4. Iris Recognition

Binary encoding [4][5] is one of the most popular and

best performing algorithm for iris recognition under con-

trolled conditions. However, recognition rates degrade con-

siderably when images exhibit the kind of impairments seen



Figure 1. The top row shows images with good quality ocular regions and the bottom row shows some poor quality images (poor illumina-

tion, out-of-focus, closed eyes).

Figure 2. The red dot shows the eye center detected by UMACE. The top row shows example of successful eye center detections while the

bottom row shows some failure cases.

in the FOCS database. In this section, we describe the bi-

nary code-based iris matching on the FOCS data set.

4.1. Iris Segmentation

The performance of iris recognition systems is greatly

dependent on the ability to isolate the iris from the other

parts of the eye such as eyelids and eyelashes. Commonly

used iris segmentation techniques [6] use some variant of

edge detection methods and since the blurring due to mo-

tion and defocus smudges the edge information to the point

of there not being a discernible edge, iris segmentation be-

comes a challenging task. To alleviate this problem, we

use a region-based active contour segmentation based on

the seminal work of Chan and Vese [3]. Our technique seg-

ments the iris based on the distribution of pixel intensities

or features extracted from the eye image from a region both

inside and outside the contour rather than looking for sharp

edges, making it more robust to blurring and illumination

variations than an edge-based active contour. Our segmen-

tation involves two steps, pupil segmentation followed by

iris segmentation. We use the output of the eye center de-

tector to initialize a contour for pupil segmentation. Once



the pupil is segmented, we initialize a contour just outside

the pupil, to segment the iris.

4.2. Normalization

Once the iris boundaries have been found, we map the

iris pattern into the polar domain as is popularly done. This

has two effects.

1. Normalizes different irises to the same size thus allow-

ing for better matching.

2. Any rotation of the iris manifests as a cyclic shift

(along the angular-axis) in the polar domain which can

be handled easily via circular shifts of the binary iris

code.

4.3. Feature Extraction and Matching

Gabor filters with carefully selected parameters have

been shown to be the most discriminative bandpass filters

for iris image feature extraction among a variety of wavelet

candidates [14]. A Gabor filter is a modulated Gaussian en-

velope and is given by

g(ρ, φ) = exp

[

−
1

2

(

ρ2

σ2
ρ

+
φ2

σ2
φ

)

− jρ(ω sin θ)− jφ(ω cos θ)

]

(3)

in the polar domain (ρ, φ) where the filter is applied to the

iris pattern. Here θ denotes the wavelet orientation, σρ and

σφ denote the wavelet widths in radial and angular direc-

tions, respectively and ω denotes the modulation frequency

of the wavelet. By varying these parameters, the filters can

be tuned to extract features at different scales, rotations, fre-

quencies and translations. We use a set of these differently

localized Gabor filters as our feature extraction filter bank.

The filter bank used in our experiments has 2 scales and 4

orientations for a total of 8 channels and features are ex-

tracted at every point of the unwrapped iris. More details

on the parameters of the Gabor filters used and how they

were chosen can be found in [14].

The phases of the complex Gabor wavelet projections are

quantized to 2 bits by mapping the phase to one of the four

quadrants in the complex plane. All the bits obtained this

way constitute a binary code. A pair of iris images are

compared by matching their respective binary codes. The

matching is done by computing the Normalized Hamming

Distance between the two binary codes. There are also cor-

responding masks to identify which bits in the binary code

to use for matching. The mask bits are set to either 1 or 0

depending on whether the corresponding code bits are used

or not used (e.g., due to eyelid occlusions) for matching.

When matching two binary codes A and B with respective

masks mA and mB the dissimilarity d is defined as,

Figure 3. An example of a true class deformation when correlating

an authentic class query image. The red boxes are centered on

the highest peak in each region to display the shifts that occur,

while the corresponding correlation plane and zoomed patch are

displayed below.

d =
||(A⊕B) ∩mA ∩mB ||

||mA ∩mB ||
(4)

where ⊕ denotes an XOR operation and || || denotes the

weight (i.e.,the number of nonzero elements) of the binary

code. Any rotation of the eye is compensated for by match-

ing the binary codes at different circular shifts along the an-

gular axis and taking the minimum Normalized Hamming

Distance value.

5. Probabilistic Matching

We adapt the technique originally proposed by Thornton

et al. [13] for iris recognition, to ocular recognition. The

overall process produces a similarity score between a tem-

plate and query image that takes into account the relative

deformation between the two. The input image is first seg-

mented into non-overlapping patches which are cross corre-

lated with the template using the fusion Optimal Trade-off

Synthetic Discriminant Function (OTSDF) correlation fil-

ter, which is based on the standard OTSDF filter proposed

by Refregier [11]. When comparing a patch from the tem-

plate with a patch from the query image using the fusion

OTSDF the result will produce either a sharp correlation

peak at the center of the location of the best match or noise

with peaks close to zero. Deformation occurs when the cor-

relation peak is shifted from the center of the image region



as seen in Figure 3. To effectively learn and distinguish a

true deformation from just random ‘movements’, approxi-

mation is performed by building a Bayesian graph through

maximum a posterior probability (MAP) estimation.

Adapting this technique to ocular images presents its

own challenges as the original framework incorporates oc-

clusion along with deformation as hidden states to the ob-

served variable. In iris images, occlusion comes from eye-

lids, eyelashes, sclera, or parts of the pupil from poor seg-

mentation, while occlusion in ocular images is much more

subjective and undefined. For now we only address occlu-

sion as the lost portion of the image from centering based

on the output of the eye detector.

5.1. Fusion OTSDF Correlation Filter

When segmenting the ocular region into non-

overlapping patches, it is difficult to design a robust

CF to distinguish, for example, part of an eyebrow of

one user from part of an eyebrow of another user. By

designing several CFs per region there is an increased

chance of obtaining higher similarity values for authentic

class images. The fusion OTSDF filter is a powerful multi-

channel CF that uses many degrees of freedom to jointly

satisfy design criteria leading to robust discrimination for

detecting similarities between members of the same pattern

class. In contrast to the individual OTSDF filter design, the

fusion CF design takes advantage of the joint properties of

different feature channels to produce the optimal output

plane. Each channel produces a similarity metric based on

a relative transformation of the observed pattern and the

inner sum represents a spatial cross-correlation between

the channels giving an increased chance that the similarity

metric will produce high peaks for true class images.

Setting up the fusion OTSDF filter is much like setting

up an individual OTSDF filter, with some minor adjust-

ments to account for the additional channels. Ultimately

the goal of a CF is to obtain a pre-specified result when

correlating an image with a pre-designed filter (note that

unless specified otherwise, all operations are in the Fourier

domain):

xi
+h = ui (5)

where h is the filter, x+
i is the conjugate transpose of the

FT of the image i, and ui is the pre-specified filter response

to the vectorized 2D Fourier transform of image i (usually

ui = 1 ∀i ∈ true-class and ui = 0 ∀i ∈ false-class images).

By lexicographically arranging N training images of k fea-

ture channels into column vectors and concatenating them

into a large training matrix X, the entire system of linear

constraints becomes:

x(i) =







x1

...

xk






h =







h1
...

hk






X =









x
(1)
1 · · · x1

(N)

...
. . .

...

x
(1)
k · · · xk

(N)









(6)

X+h = u (7)

To to produce sharp peaks in the correlation plane and

to give the filter a robustness to additive white noise, the

CF needs to be designed to minimize average correlation

energy (ACE) and output noise variance (ONV). It has been

shown [7] that the ACE and ONV criteria respectively, must

be minimized subject to the peak constraints resulting in the

following form:

L = h+Qh (8)

in which Q represents the energy between the feature chan-

nels when minimizing ACE (L = Eavg , where Eavg is

the average energy in the correlation plane), or the co-

variance of the noise (n) when minimizing ONV (L =
var (h+n)). Refregier [11] showed that when minimizing

for two quadratic criteria (h+Dh and h+Ph), the set of op-

timal solutions may be derived from minimizing a single

weighted combination of the two criteria:

T = τP + (1− τ)D (9)

D =









1
N

∑

i X
(i)∗
1 X

(i)
1 · · · 1

N

∑

i X
(i)∗
1 X

(i)
k

...
. . .

...
1
N

∑

i X
(i)∗
k X

(i)
1 · · · 1

N

∑

i X
(i)∗
k X

(i)
k









(10)

where T is a weighted sum of the cross-power spectrum

matrix (energy between the feature channels), D, and the

covariance matrix for the noise, P . The parameter, τ , offers

a trade-off between ACE or ONV. In contrast to traditional

CF designs, fusion CF designs jointly optimize the perfor-

mance of multiple channels.

After minimizing h+Th subject to X+h = u, a closed

form solution for the k-channel CF can be found as (a gen-

eral form of the solution is derived in [7]):

h = T−1X
(

X+T−1X
)−1

u (11)

To apply the filter h to a image, it is necessary to reshape

the vector to a 2-D image equal in size to the training image,

i.e., h → h (m,n). The test image can be much larger than

the training image and may contain multiple targets of inter-

est. When correlating h (m,n) with a query image y (m,n)
the result is the correlation plane g (m,n):



Figure 4. Fusion OTSDF correlation filter

g(m,n) =
∑

k

∑

l

y(m+ k, n+ l)h(k, l) (12)

= y(m,n)⊗ h(m,n) (13)

where ⊗ is the correlation operator.

5.2. MAP Estimation

The overall goal of this process is to authenticate a true

class image I by a template T and reject a false class image.

CFs can provide a reliable approach to obtaining a similar-

ity measure between a template and query image. However,

in the presence of deformations, the matching performance

of CFs deteriorates. After independently correlating non-

overlapping regions of each image, a good measure of sim-

ilarity needs to account for any deformations present. One

method of doing this, is to use MAP estimation to find the

most likely parameter vector d, which describes the defor-

mations, for some (possibly nonlinear) image transforma-

tion between I and T , assuming I is a true class image.

Maximizing the posterior probability distribution on the la-

tent deformation variables results in the following:

d̂ = arg max
d

p (d|T , I , true match) (14)

= arg max
d

p (I |T ,d) p (d|T ) (15)

= arg max
d

p (I |T ,d) p (d) (16)

Ignoring the normalization constant in Bayes rule and

assuming that the deformation d and template T are statis-

tically independent shows that the image undergoing a spe-

cific deformation can be matched to the template. As it is

not necessary to learn all possible deformations, the model

can be restricted to the values described by the parameter

vector d. This restricts the prior distribution to these spe-

cific parameters which is defined on a space with low di-

mensionality and is modeled as a multivariate normal dis-

tribution. Specifically, d is defined so that no deformation

occurs at the zero vector, which is assumed to be the mean

of the distribution, leaving only the covariance to be esti-

mated.

To determine the deformation parametrization, a coarse

vector field model is used, in which the input image I is di-

vided into a set of small regions with corresponding trans-

lation vectors {(∆xi,∆yi)} and the deformation parameter

vector d = (4x1,∆y1, · · · ,4xN ,∆yN )
t
. We can think

of the prior term being specific to the pattern-type, and

thus Σ−1

d
can be estimated directly from matching pairs of

the pattern-type. Testing has shown that there are signifi-

cant correlations between neighboring regions of the vector

field and that there is little to no correlation between non-

neighboring regions.[13]

Since the generative probability is defined over a large

dimensionality (number of pixels in I), estimation can be-

come a daunting task. Thus, the fusion OTSDF output

S (I ,T ;d) is used as a similarity measure between the im-

age I and the template T at relative deformation d, set-

ting p (I |T ,d) = p (S (I ,T ;d)). Rewriting the expression

shows this as a minimization problem where the final match

score can be computed by taking the similarity function val-

ues at the specific estimated deformation.

d̂ = arg max
d

{

p (S (I ,T ;d)) · exp

(

−

1

2
d
t
Σ

−1

d
d

)}

(17)

= arg min
d

{

−ln (p (S (I ,T ;d))) +

(

1

2
d
t
Σ

−1

d
d

)}

(18)

Essentially a Bayesian graphical model is formed as

Markov random field (MRF) for the deformation variables

as they have spatial significance to neighboring regions.

Creating a 2D lattice MRF where each deformation variable

represents an image region, a potential function Ψd (di,dj)
can be formed to give some measure of likelihood over the

joint values of two separate regions. Being non-negative

and approximately Gaussian centered at zero local defor-

mation, we want Ψd (di,dj) to emphasize vector pairs that

are more probable.

Ψd

(

di,dj

)

= exp

[

−

1

2

(

α
∥

∥di

∥

∥

2
+ α

∥

∥

∥
dj

∥

∥

∥

2
+ β

∥

∥

∥
di − dj

∥

∥

∥

2
)]

(19)

The α parameter specifies the penalty on the absolute

magnitudes of the deformation vectors and the β parameter

specifies the penalty on the relative difference between the

magnitudes of the deformation vectors. Learning α and β

can be done by using generalized expectation-maximization

(EM) algorithm as directly learning the true deformation

fields is too difficult, a gradient ascent approach can con-

verge on a solution iteratively. Heuristics show the tun-

ing parameters for the prior converge to approximately

(α, β) ≈ (0.05, 0.09) regardless of initialization [12]. Thus

the prior can be defined as:

p (d) =
1

Zd

∏

(i,j)∈ε

Ψd (di,dj) (20)

=
1

Zd

exp

(

−
1

2
d
t
Σ

−1

d
d

)

(21)



where ε contains all index pairs of nodes which are con-

nected by edges in the MRF, and Zd is the normalization

constant, making the prior a proper distribution.

5.3. Score Calculation

The developed model is designed to assign a higher

match score to discernible correlation peaks in similar pat-

terns, and give a lower match score to uncorrelated query

images exhibiting seemingly random ‘movements’. How-

ever, the objective involves estimating the posterior distri-

bution of deformation given the observed image, which can

become computationally expensive given the number of val-

ues the deformation vector can take. Thus, a variant of

Pearl’s message passing algorithm is implemented to esti-

mate the marginal posterior distributions at each patch, or

node in the Bayesian model. Assuming a sparse, acyclic

graphical model, loopy belief propagation (LBP) is an iter-

ative solution to estimating the marginal posterior distribu-

tion at each node.

LBP operates on a set of ‘beliefs’ about the deformation

in the model based on‘messages’ passed between nodes on

which there is a direct statistical dependence. These beliefs

are a product of the incoming messages from neighboring

nodes giving the current estimate of the marginal posteriors

at each node by maximizing the likelihood of the deforma-

tion values given the observed evidence from the correlation

plane at a specific local region. The algorithm continues un-

til the beliefs converge or a maximum number of iterations

occur (currently set at four). The resulting beliefs are used

to estimate the expected match score.

M̄ =
∑

dk

Sk (dk )P (dk | O) (22)

The final score is the summation of the similarity mea-

sures, Sk (dk ), from correlation multiplied by the marginal

posterior distribution of deformation given the observed im-

age, P (dk | O), for each image region.

6. Score Fusion

Due to the challenging nature of the database under

consideration, we consider a score level fusion of the two

techniques under comparison namely, binary iris code and

probabilistic matching. In this paper we consider a simple

weighted linear combination of the match scores, with the

weight being the same for all the match pairs.

7. Experimental Results

We tested the two methods, binary iris code and the prob-

abilistic matching (PM) on the FOCS dataset that was de-

scribed earlier, first pre-processing the images by centering

(a) ROC Curves (best viewed in color)

(b) CMC Curves (best viewed in color)

Figure 5. (a) ROC curves for the different experiments (PML refers

to probabilistic matching using left graph and PMR refers to prob-

abilistic matching using right graph) and (b) Cumulative Match

Characteristic curves.

them with the eye detector and applying histogram equal-

ization.

For the binary code, we computed the full similarity ma-

trix for all the image pairs in the FOCS database achieving

an Equal Error Rate (EER) of 30.8%. When we limited

the comparison to left iris images versus left iris images we

observed an EER of 35.2% and a Rank-1 ID accuracy of

87.9% and for right versus right we observed an EER of

33.1% and a Rank-1 ID accuracy of 88.7%. The full FAR-

FRR trade-off in the form of an ROC curve is shown in Fig.

5 along with the Cumulative Match Characteristic (CMC)

curve.

For the probabilistic matching algorithm we normalized

the size of the images to 128x128 pixels, and divide each

image into 36 non-overlapping patches (6x6 configuration).

Then the images were randomly separated such that half of



the database, equally distributed between left and right oc-

ular images, were used for training and the remaining for

testing in which no distinction between the left and right

ocular regions is made during matching. A correlation fil-

ter is built for each image using the fusion OTSDF filter

with τ = 10−5 and every test image compared against

every filter to create a 4791x4791 score matrix. With the

trained graph, as we’ll call it, we were able to obtain EER

of 40.11% and 53.2% Rank-1 ID accuracy.

Breaking down the problem we consider the scenario

where a separate graph is built for the left and right ocu-

lar regions dividing the images into a 6x6 patch configu-

ration. We use half of the left and right ocular images to

learn the parameters of the two graphs respectively. Testing

the respective graphs on all the left and right ocular images

yielded an EER of 31.28% with a Rank-1 ID accuracy of

86.8% and an EER of 29.74% with a Rank-1 ID accuracy

of 84.0% respectively. For this configuration, the score level

fusion yields an EER of 29.72% and 28.07% for the left and

right ocular images respectively, suggesting that score level

fusion does help improve verification performance. These

results also suggest that knowing whether a query image is

of the left ocular region or right ocular region can benefit

the accuracy of the system significantly.

Finally, we consider another scenario where the ocular

images are divided into a 4x4 configuration, i.e., each patch

is now of a larger size, with everything else being the same.

The PM algorithm now yields an EER of 26.81% with a

Rank-1 ID accuracy of 92.8% and an EER of 23.83% with

a Rank-1 ID accuracy of 94.2% for the left and right oc-

ular images respectively. However, the score level fusion

for this configuration does not help improve the verifica-

tion performance yielding an EER of 26.80% and 23.81%

for the left and right ocular images respectively, suggesting

that the simple score level fusion considered in this paper is

not always helpful.

8. Summary

In this paper, we compared two biometric recognition

methods on the recently made-available FOCS data set of

challenging single eye images. In the first method based on

iris recognition, we used an eye detector to center the im-

ages, applied adaptive histogram equalization to deal with

illumination variations, segmented the iris using an adap-

tation of the Chan-Vese segmentation algorithm and used

carefully selected Gabor wavelets to obtain a binary code to

represent each image. In the second approach based on ocu-

lar recognition, same eye detector was used to center the im-

ages, no segmentation was needed and patch-based fusion

correlation filter outputs were input to a Bayesian graphical

model that was trained to produce match scores that take

into account any nonlinear deformations between the two

images. Equal error rates were 30.8% for binary code iris

recognition and 26.81% for left ocular regions and 23.83%

for right ocular regions, indicating that use of ocular regions

may be beneficial when dealing with challenging ocular im-

ages. We also observed that the proposed ocular recognition

method benefits from the knowledge of whether it is a left

eye or right eye whereas the binary iris code recognition

method appears to not benefit.

References

[1] Face and ocular challenge series (focs) http://www.

nist.gov/itl/iad/ig/focs.cfm. 1

[2] D. Bolme, B. Draper, and J. Beveridge. Average of synthetic

exact filters. 2009. 2

[3] T. Chan and L. Vese. Active contours without edges. Image

Processing, IEEE Transactions on, 10(2):266–277, 2001. 3

[4] J. Daugman. High confidence visual recognition of persons

by a test of statistical independence. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 15(11):1148–

1161, 1993. 2

[5] J. Daugman. How iris recognition works. Circuits and Sys-

tems for Video Technology, IEEE Transactions on, 14(1):21–

30, 2004. 2

[6] J. Daugman. New methods in iris recognition. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

37(5):1167–1175, 2007. 3

[7] A. Mahalanobis, B. V. K. Vijaya Kumar, and D. Casasent.

Minimum average correlation energy filters. Applied Optics,

26(17):3633–3640, 1987. 5

[8] A. Mahalanobis, B. V. K. Vijaya Kumar, S. Song, S. Sims,

and J. Epperson. Unconstrained correlation filters. Applied

Optics, 33(17):3751–3759, 1994. 2

[9] J. Matey, O. Naroditsky, K. Hanna, R. Kolczynski, D. LoIa-

cono, S. Mangru, M. Tinker, T. Zappia, and W. Zhao. Iris

on the move: Acquisition of images for iris recognition in

less constrained environments. Proceedings of the IEEE,

94(11):1936–1947, 2006. 2

[10] P. Phillips, H. Wechsler, J. Huang, and P. Rauss. The feret

database and evaluation procedure for face-recognition algo-

rithms. Image and Vision Computing, 16(5):295–306, 1998.

2
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