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Abstract

Alignment of 3D objects from 2D images is one of the

most important and well studied problems in computer vi-

sion. A typical object alignment system consists of a land-

mark appearance model which is used to obtain an initial

shape and a shape model which refines this initial shape

by correcting the initialization errors. Since errors in land-

mark initialization from the appearance model propagate

through the shape model, it is critical to have a robust

landmark appearance model. While there has been much

progress in designing sophisticated and robust shape mod-

els, there has been relatively less progress in designing ro-

bust landmark detection models. In this paper we present an

efficient and robust landmark detection model which is de-

signed specifically to minimize localization errors thereby

leading to state-of-the-art object alignment performance.

We demonstrate the efficacy and speed of the proposed ap-

proach on the challenging task of multi-view car alignment.

1. Introduction

Fitting a shape or a template to a given image is one of

the most important and well studied problems in computer

vision where the object shape is typically defined by a set

of landmarks. The ability to accurately align shape models

of deformable objects is critical for a variety of applications

like object detection and recognition, object tracking, 3D

scene modeling etc. A typical approach for shape fitting in-

volves a local landmark appearance model which generates

a likelihood map for that landmark and a deformable shape

model which fits a shape to the landmark likelihood maps.

There has been much progress in designing parametrized

deformable shape models over the past two decades. In their

seminal paper Cootes et al. introduced one of the most suc-

cessful alignment models, Active Shape Models [5], where

the object shape, as represented by a set of landmark points,

is modeled by a Gaussian point distribution. As an exten-

sion Zhou et.al., [23] proposed a Bayesian Tangent Shape

Model (BTSM) where both the object pose and the shape

Figure 1. A comparison between two different appearance mod-

els used with the same shape model for the task of car alignment.

Top Row: car alignment with a random forest based landmark ap-

pearance model. Bottom Row: car alignment with the proposed

landmark detector.

deformation are estimated iteratively using the EM algo-

rithm. In [13] Li et. al. introduced a robust version of

BTSM to handle outliers and gross landmark detection er-

rors. Other notable shape matching models include Active

Appearance Models [3], Pictorial Structures [10] and Con-

strained Local Models [6][19].

The goal of the appearance model is to provide an ini-

tial shape for the alignment algorithm. Due to background

clutter and substantial variations in color and pose, cap-

turing the local appearance can be quite challenging. Dis-

criminative feature representations in conjunction with dis-

criminative classifiers can provide robustness against these

challenges. Many different feature representations have

been used in the literature for the purpose of landmark de-

tection. Notable examples include Gabor wavelets [12],

Haar wavelets [25][4] and Histogram of Oriented Gradi-

ents (HOG) [7][24][13] features. The choice of the feature

representation used to represent the landmarks critically af-

fects the performance of the landmark detector. We use

HOG features to represent the local appearance of the land-

marks since they have been known to perform well on a va-

riety of detection tasks [18][9]. Additionally many discrim-

inative appearance models like Support Vector Machines

(SVMs) [24][21], RankBoost [22], FisherBoost [20], Ran-

dom Forests (RFs) [13][4] have been proposed in the lit-

erature to detect landmarks in images. However, most of
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these methods are generic discriminative models i.e., none

of them are specifically designed for the task of landmark

localization. Correlation filters (CFs) are another class of

template based linear classifiers which are designed to min-

imize localization errors in addition to discriminating be-

tween the target object and the background and as such

are well suited to the task of landmark detection. While

many different correlation filter designs exist [14][2] they

have been traditionally designed to be used with scalar fea-

ture representations only. In this paper, we present a vector

feature based extension to the scalar feature based uncon-

strained correlation filters [15][1]. The proposed vector cor-

relation filter (VCF) with HOG features can accommodate

significant within-class variations while being discrimina-

tive against background clutter. We demonstrate that VCFs

are fast and accurate landmark detectors and can provide ro-

bust object alignment when used in conjunction with point

based shape models (see Fig. 1 for a comparison between

a VCF and RF based landmark detector for the same shape

model). We also show that VCFs outperform other popular

landmark detectors based on SVMs and RFs leading to state

of the art object alignment accuracy.

2. Proposed Approach

Traditionally the focus of most research on object align-

ment models has been on improving the shape models.

Many shape models have been proposed to account for and

be robust to ever larger errors made by the appearance mod-

els. However, large gains in object alignment performance

can also be had from designing more robust appearance

models which also results in the shape models having to

contend with lower noise levels, thereby improving their

performance. We now describe the proposed landmark ap-

pearance model and the shape model that we use for the task

of object alignment.

2.1. Appearance Model

The primary task of the appearance model is to serve

as an initialization for the landmark search and as such re-

quires very good localization performance. Although RFs

and SVMs are widely used to design discriminative appear-

ance models, they are not explicitly designed for localiza-

tion and hence are unable to provide high localization accu-

racy. Correlation filters (CFs) are another class of classifiers

which are generally designed for high localization perfor-

mance and are hence better suited to the task of landmark

detection. We briefly describe CFs for scalar features before

we introduce their vector formulation.

2.1.1 Correlation Filters

A CF is a spatial-frequency array (equivalently, a template

in the image domain) that is specifically designed from a

set of training patterns that are representative of a particular

pattern class. This template is compared to a query image

by obtaining the cross-correlation as a function of the rela-

tive shift between the template and the query. For compu-

tational efficiency this is computed in the spatial frequency

domain (u,v), i.e.,

C(u, v) = I(u, v)F ∗(u, v) (1)

where I(u, v) is the 2D Fourier transform (FT) of the query

pattern and F (u, v) is the CF (i.e., 2D FT of the template)

and C(u, v) is the 2D FT of the correlation output c(x, y)
with superscript ∗ denoting the complex conjugate. Since

the images and their FTs are discrete-indexed, FT here

refers to the discrete Fourier transform (DFT) which is im-

plemented via the Fast Fourier Transform algorithm (FFT).

The CFs are usually designed to give a sharp peak at the

center of the correlation output plane c(x, y) for a centered

authentic query pattern and no such peak for an impostor.

The main idea behind correlation filters is to control the

shape of the cross-correlation output between the image and

the filter by minimizing the average Mean Square Error

(MSE) between the cross-correlation output and the ideal

desired correlation output for an authentic (or impostor) in-

put image. By explicitly controlling the shape of the entire

correlation output, unlike traditional classifiers which only

control the output value at the target location, CFs achieve

more accurate target localization. For N training images

the CF design problem is posed as an optimization problem

(for notational ease expressions are given for 1-D signals),

min
f

1

N

N
∑

i=1

‖xi ⊗ f − gi‖
2
2 + λ ‖f‖

2
2 (2)

where ⊗ denotes the convolution operation, xi denotes the

i−th image, f is the CF template and gi is the desired corre-

lation output for the i−th image and λ is the regularization

parameter. This optimization problem can be solved effi-

ciently in the frequency domain where the objective func-

tion has the following closed form expression,

min
f̂

1

N

N
∑

i=1

f̂†X̂
†
i
X̂if̂ −

2

N

N
∑

i=1

f̂
†
i
X̂

†
i
ĝi + λf̂†f̂ (3)

where x̂ denotes the Fourier transform of x and X̂ denotes

the diagonal matrix whose diagonal entries are the elements

of x̂ and † denotes conjugate transpose. Solving the above

optimization problem results in the following closed form

expression for the CF,

f̂ =

[

λI+
1

N

N
∑

i=1

X̂
†
i
X̂i

]−1 [

1

N

N
∑

i=1

X̂
†
i
ĝi

]

(4)

where I is the identity matrix of appropriate dimensions.
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Figure 2. Vector Correlation Filter: The outputs of each feature

channel are aggregated to compute the final correlation output

which would have a sharp peak at the target location.

2.1.2 Vector Correlation Filter

Traditional correlation filters have been often designed us-

ing scalar features (most commonly pixel values) and can-

not be directly used with vector features like HOG. We pro-

pose an extension of the unconstrained correlation filters de-

scribed in Eq. 2 to vector valued features (like HOG with

K = 36 feature channels). The VCF, consists of one cor-

relation filter per feature channel which are all jointly op-

timized to minimize the localization loss defined as the l2-

norm of the difference between the correlation output and

the desired ideal correlation output. Since each feature (cor-

responding to each branch, see Fig. 2 for a pictorial descrip-

tion of VCFs) leads to a peak (at least for the correct object)

at the same location the final output can be obtained by co-

herently adding all the branch outputs. Therefore the filter

design problem can be formulated as,

min
f1,f2,...,fK

1

N

N
∑

i=1

∥

∥

∥

∥

∥

K
∑

k=1

xk

i
⊗ fk − gi

∥

∥

∥

∥

∥

2

2

+ λ

K
∑

k=1

∥

∥fk
∥

∥

2

2
(5)

We now pose this minimization problem equivalently in the

frequency domain (using Parseval’s Theorem [17]) to derive

a closed form expression which in turn lends itself to an

efficient solution.

min
f̂1 ,̂f2,...,̂fK

1

N

N
∑

i=1

∥

∥

∥

∥

∥

K
∑
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∥

∥
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2

2
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K
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∥
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f̂k
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∥

∥

2

2
(6)

The optimization problem in Eq. 6 can be reduced to the

following unconstrained quadratic minimization problem,

min
f̂

f̂†Ŝf̂ − 2f̂†r̂ (7)

where Ŝ = D̂ + λI, with I being an identity matrix of ap-

propriate dimensions, and

D̂ =







1
N

∑

i X̂
1†
i
X̂1

i
· · · 1

N
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ĝi






f̂ =







f̂1

...

f̂k


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
(9)

where D is the cross-power spectrum matrix (interaction

energy between the feature channels). The parameter, λ,

offers a trade-off between the localization loss and the l2-

regularization. The VCF is a powerful detector that uses

many degrees of freedom to satisfy the design criteria for

detecting similarities between members of the same pat-

tern class. In contrast to traditional CF designs and SVMs,

which treat each feature channel as being independent of

each other, the VCF design jointly optimizes the perfor-

mance of multiple channels to produce the desired output

plane by taking advantage of the joint properties of the dif-

ferent feature channels via interactions between the multi-

ple feature channels. Solving for f̂ in Eq. 7 results in the

following closed form expression for the VCF,

f̂ =
[

λI+ D̂
]−1







1
N

∑N

i=1 X̂
1†
i
ĝi

...
1
N

∑N

i=1 X̂
k†
i
ĝi






(10)

Note that unlike in Eq. 4 where the matrix to be inverted

is a diagonal matrix, the matrix to be inverted in Eq. 10 is

a non-diagonal matrix with a block matrix structure where

each block is a diagonal matrix. Naively inverting the ma-

trix in Eq. 10 is computationally intensive, however by tak-

ing advantage of the unique nature of the matrix, it can be

inverted quite efficiently by a block-wise matrix inversion.

During test time the filter is applied by convolving each fea-

ture channel filter with its corresponding feature channel

and finally summing up all the feature channel outputs. For

computational efficiency the convolutions are performed in

the frequency domain.

2.2. Shape Model

Most approaches model the statistical distribution of the

shape parameters so that the observed shape from local

landmark detectors can be regularized by a prior model dur-

ing image fitting. The proposed appearance model can be

used in conjunction with any of these shape models. For

our purposes we use the robust shape model introduced in

[13] by Li et.al. due to its ability to handle gross landmark

detection errors caused either by partial occlusions or clut-

ter in the background. This model works on the premise

that while the object shape is described by multiple land-

mark points, the actual shape lies in a low-dimensional sub-

space. Therefore, a small minimal subset of uncorrupted

landmarks are sufficient to estimate and hallucinate the full

shape (via a Bayesian Partial Shape Inference (BPSI) algo-

rithm, see [13] for details). They adopt a hypothesis and

test approach by performing a combinatorial search over



the space of possibly occluded landmarks. This explicit

search results in a very robust shape alignment model which

performs well under all conditions. The original algorithm

however ignores the landmark confidence from the appear-

ance model and generates many random partial shapes via

Random Sample Consensus (RANSAC) [11] resulting in

the evaluation of a very large number of hypotheses for a

given probability of sampling a “good” subset. However, by

generating the subsets to include landmarks with high con-

fidence, fewer hypotheses can be evaluated to find a “good”

subset with high probability. Therefore we propose a mod-

ification where we generate all
(

n
k

)

subsets of size k out of

the top n confident landmarks instead of choosing random

subsets of size k. Through the rest of this paper we refer

to the original model as “RANSAC BPSI” and the modi-

fied model as “Greedy BPSI”. The final object shape is de-

termined by evaluating these hypotheses and choosing the

hypothesis with the minimum error between hallucinated

shape and the observed shape. The resulting estimate can be

further refined by including more inliers and re-estimating

the object shape. Mathematically the full BPSI model is

defined as,










S = Φb+ µ+ ε

Yp = Mp(sRS + t+ η)

Yh = Mh(sRS + t)

where µ is the mean shape, Φ is an eigen-vector matrix,

ε and η account for noise, S is the latent canonical object

shape, Θ ={s,R,t} are the pose parameters, Mp is the mask

to extract the partial shape, Mh is the mask complementary

to Mp, Yp is the partial shape and Yh is the complement of

Yp. Inference is done using an EM-algorithm to estimate the

model parameters Π ={b,Θ} iteratively. In the E-step the

posterior of S is computed give the partial observation Yp

and Π(n−1) and in the M-step the model parameters Π(n)

are optimized to maximize the expectation of the data log-

likelihood log p(Yp, S|Π
(n)) over the missing data posterior

p(S|Yp,Π
(n−1)).

3. Experiments

To evaluate the efficacy of the proposed approach, we

consider the task of multi-view car alignment from a single

image. This is a challenging task since most car parts are

only weakly discriminative for detection and the appearance

of the cars can change dramatically as the viewing angle

changes. Further cars in natural street scenes vary widely in

shape and are often present in highly cluttered backgrounds,

with severe occlusion, self or otherwise, in many instances.

3.1. Database

We evaluate the proposed approach on cars from the

MIT Street Dataset [16] which contains over 3500 street

scene images created for the task of object recognition

and scene understanding. This dataset has annotated land-

marks (available at www.cs.cmu.edu/˜vboddeti/

alignment.html) for 3,433 cars spanning a wide vari-

ety of types, sizes, backgrounds and lighting conditions in-

cluding partial occlusions. All the shapes are normalized to

roughly a size of 250×130 by Generalized Procrustes Anal-

ysis [8]. The car shape is represented by 8, 14, 10, 14 and 8

landmarks (see Fig. 3) respectively. The labeled data was

further manually classified into five different views: 932

frontal view, 1400 half-frontal view, 803 profile view, 1230

half-back view and 1162 back view images. Due to space

constraints we report results only on the half-frontal, pro-

file and half back view. We randomly selected 400 images

from each view for training and use the rest of the images

for testing. Patches from occluded landmarks are excluded

while training the appearance model and for evaluation the

occluded landmark is placed at the most likely location in

the image.

3.2. Training

For each landmark, we extract a 96 × 96 image patch

as the positive sample and negative samples of the same

size are extracted uniformly around each landmark. Each

of these local patches are further represented by the His-

togram of Oriented Gradients (HOG) descriptor. The HOG

descriptors are computed over dense and overlapping grids

of spatial blocks, with image gradient features extracted at

9 orientations and a spatial bin size of 4 × 4. The RF (us-

ing the author’s implementation from [13]), Linear SVM

and VCF are designed using these HOG representations of

the patches. To design the VCF, we set the desired cor-

relation output g for the positive samples to a positively

scaled Gaussian at the patch center and to a negatively

scaled Gaussian for the negative samples i.e., gi(x, y) =

ti exp
(

−
(x−µx)

2+(y−µy)
2

2σ2

)

where ti = 1 for a positive

patch and ti = −0.1 for a negative patch and (µx, µy) is

the location of the landmark in the patch.

3.3. Evaluation

Quantitatively we evaluate the performance of each car

alignment algorithm by computing the root mean square er-

ror (RMSE) of the detected landmarks with respect to man-

ually labeled ground truth landmark locations. More specif-

ically we report the landmark-wise average RMSE over

four different subsets, 1) average over all images , 2) av-

erage over images with no occluded landmarks, 3) average

over the unoccluded landmarks in partially occluded images

and 4) average over the occluded landmarks in partially oc-

cluded images. Fig. 7 shows qualitative alignment results

on some challenging images.

www.cs.cmu.edu/~vboddeti/alignment.html
www.cs.cmu.edu/~vboddeti/alignment.html
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Figure 3. Ground truth landmarks with labeled landmark indices for different viewpoints.
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Figure 4. RMSE for each pose averaged over 1) all images, 2) images with no occlusions, 3) unoccluded landmarks of partially occluded

images, 4) occluded landmarks of partially occluded images. We compare between three different appearance models, Vector Correlation

Filter, Random Forests and Linear SVM, all with the RANSAC BPSI shape model.

3.3.1 Comparing Appearance Models

We compare three different discriminative appearance mod-

els for detecting landmarks namely, RFs, Linear SVMs

and the proposed landmark detector, VCF. Fig. 4 shows

the landmark wise average error for three different poses.

Our alignment results with the VCF are a significant im-

provement over the previous state-of-the-art results [13]

(RFs based appearance model that we compare against) on

this dataset. We observe that the VCF consistently results

in lower RMSE over the other appearance models espe-

cially over the unoccluded landmarks where the appearance

model directly influences the final result. Since the land-

mark detection performance over the unoccluded landmarks

also indirectly influences the hallucinated landmark loca-

tions of the occluded landmarks, we observe a lower RMSE

even for occluded landmarks on account of the detector’s

better performance on the unoccluded landmarks in the par-

tially occluded car images. To further investigate the error

distribution we plot the individually sorted errors for each

pose in Fig. 5 with the x-axis representing the alignment

difficulty for each detector. Notice that for a given error tol-

erance the VCF aligns more images compared to RFs and

SVMs. Comparing the performance of VCF and RF on a

per image basis, VCF results in lower RMSE (cumulative
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Figure 5. Comparison of the sorted RMSE for each pose for different appearance models along with example alignment results with the

VCF appearance model corresponding to small, medium and large landmark RMSE.

RMSE over all the landmarks in the image) for 649 images

in comparison to RF and 804 images in comparison to SVM

out of 1000 images in view 2.

3.3.2 Comparing Shape Models

Here we compare different shape models for detecting land-

marks namely, RANSAC BPSI and its modification Greedy

BPSI. We omit a comparison to other shape models like

ASM and BTSM due to space constraints and we observe

that RANSAC BPSI outperforms both ASM and BTSM

which is consistent with the observations made in [13].

Further to evaluate the robustness of RANSAC BPSI and

Greedy BPSI to occlusions, we evaluate BPSI assuming

that the landmark occlusion masks are known. We refer

to this as “Oracle BPSI” through the rest of the paper. Fig.

6 shows the landmark-wise average error for three differ-

ent poses. We make the following observations, 1) know-

ing that a landmark is occluded helps as is evident from the

RMSE of occluded landmarks on vehicles with partial oc-

clusions (compare “Oracle BPSI” and “RANSAC BPSI”),

2) in addition to treating occluded landmarks as occluded,

it is also beneficial to ignore any low confidence landmarks

and treat them as occluded landmarks. This is evident

from the RMSE of the unoccluded landmarks and the unoc-

cluded landmarks on partially occluded cars (compare “Or-

acle BPSI” and “RANSAC BPSI” or “Greedy BPSI”), 3)

Greedy BPSI outperforms RANSAC BPSI on the occluded

landmarks of partially occluded vehicles. This is because

Greedy BPSI is more likely to omit the occluded landmarks

for estimating the shape due to lower confidence from the

appearance model while RANSAC BPSI, which selects the

landmarks randomly, is more likely to include occluded

landmarks in the hypothesized subset. Moreover, RANSAC

BPSI and Greedy BPSI perform equally well on images

with unoccluded landmarks. Comparing the performance of

RANSAC BPSI and Greedy BPSI on a per image basis for

1000 images in view 2, Greedy BPSI results in lower RMSE

(cumulative RMSE over all the landmarks in the image) for

520 images (i.e., lower RMSE on 40 images) in comparison

to RANSAC BPSI and 530 images (i.e., lower RMSE on

60 images) in comparison to Oracle BPSI, 4) finally, analy-

sis of the alignment results reveals that the model performs

well on sedan like vehicle and most of the errors are on ve-

hicles like jeeps, trucks and vans due to an overwhelming

majority of cars in the dataset being sedans. Due to the con-

siderable difference in the shape of these vehicles a mixture

model with different shape models for different car types

(e.g., pickup trucks, vans, sedans, jeeps etc.) can help fur-

ther improve alignment performance.

4. Computational Complexity

Table 1. Execution Time (in ms) Per Image on Single Core

Pose RF VCF/SVM RANSAC BPSI Greedy BPSI

2 4000 200 700 90

3 3000 150 600 70

4 4000 200 700 90

Table 1 shows the timing results for the appearance and

shape model individually for a C++ based implementation

on a 2.7GHz laptop with 4GB RAM. Assuming that the

VCFs are stored in the frequency domain, given a new im-

age, the computational complexity for a MxN image with

K channels, L landmarks and C templates per landmark is

given by, T = K∗TFFT+L∗C∗TFFT+O(K∗L∗C∗MN)
where TFFT = O(MN ∗ log2MN). By making use of

the fact that images are real and that the output of the ap-

pearance model is real, one can decrease memory usage and

computations by a factor of 2. Further Greedy BPSI eval-

uates 56 hypothesis (n = 8 and k = 5) while RANSAC

BPSI evaluates about 450 hypothesis (for a desired proba-

bility of success p = 0.99), resulting in a 8x speedup of the

shape model without any loss in alignment accuracy. We

note that linear SVMs have the exact computational com-
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Figure 6. RMSE for each pose averaged over 1) all images, 2) images with no occlusions, 3) unoccluded landmarks of partially occluded

images, 4) occluded landmarks of partially occluded images. We compare between three different shape models, RANSAC BPSI, BPSI

with occlusion oracle and Greedy BPSI, all with the VCF appearance model.

plexity as VCF, while RFs are slower since every window

needs to be scanned explicitly.

5. Conclusion

High accuracy object shape alignment, requires a high

accuracy landmark detector as well as a robust shape model.

While much work has been done on designing robust shape

models, there has been lesser progress on designing robust

landmark detection models. In this paper we proposed a

robust and fast landmark detector which is specifically de-

signed to minimize localization errors. On the challenging

task of multi-view car alignment we observed a significant

improvement in the alignment accuracy.
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