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Abstract—Support vector machine (SVM) classifiers are pop-
ular in many computer vision tasks. In most of them, the SVM
classifier assumes that the object to be classified is centered in
the query image which might not always be valid, e.g., when
locating and classifying a particular class of vehicles in a large
scene. In this paper we introduce a new classifier called Maximum
Margin Correlation Filter (MMCF), which while exhibiting the
good generalization capabilities of SVM classifiers is also capable
of localizing objects of interest, thereby avoiding the need for
image centering as is usually required in SVM classifiers. In other
words, MMCF can simultaneously localize and classify objects of
interest. We test the efficacy of the proposed classifier on three
different tasks: vehicle recognition, eye localization, and face
classification. We demonstrate that MMCF outperforms SVM
classifiers and also well-known correlation filters.

I. INTRODUCTION

The tasks of object (we use object and target interchange-
ably throughout this paper) localization and classification are
important in various applications such as automatic target
recognition (ATR), biometric recognition, etc. In this paper by
localization we refer to estimating the location of an object in
the scene, by classification we refer to determining the class
label of a particular object, and by recognition we refer to
performing both tasks (of localization and classification). Two
well-known types of classifiers used for these tasks are support
vector machines (SVMs) and correlation filters (CFs).

SVM classifiers [1], [2], [3] (referred to as SVMs through-
out this paper) have been investigated for vision tasks such as
face localization [4] and pedestrian localization [5]. SVMs are
often designed by extracting features from the training images
and then using a feature vector to represent an image. When
using pixel values as features, the image is lexicographically
scanned to form a feature vector. Given N of these training
column vectors x; € R? and class labels ¢; € {-1,1}
Vi e {1,---, N}, the SVM approach (for a 2-class problem)
finds the hyperplane that maximizes the smallest L-2 norm
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distance between the hyperplane and any data sample (also
called the margin) by solving

min
w,b

N

wiw+CY ¢ (1)
=1

st ti(xFw b)) >1-¢,

where superscript 7' denotes transpose, w and b represent the
hyperplane (w denotes the normal to the hyperplane and b
is the bias or offset from the origin), C' > 0 is a trade-off
parameter, and the sum of & > 0 is a penalty term containing
the slack variables which offset the effects of outliers. It can
be shown [6] that minimizing the squared L-2 norm of w
subject to the above inequality constraints is equivalent to
maximizing the margin, and that the solution to Eq. 1 is a
linear combination of the training vectors, i.e.,

N
w = ax; = Xa, (2)

i=1
where X = [x1,--+ ,xn], a = [a1, - ,an]?, Zfil a; =0,
0 < a; < C Vi corresponding to class label ¢; = 1, and
—C < a; <0 Vi corresponding to class label t; = —1. The

training vectors corresponding to non-zero coefficients a; are
known as the support vectors.

Assuming that training vectors contain pixels values (i.e.,
images with d pixels lexicographically rearranged into d-
dimensional column vectors), one can use the resulting d-
dimensional solution vector w for simultaneous object local-
ization and classification by cross-correlating the 2-D template
represented by w, with the query image. Note that the training
vectors can represent features other than pixels values, and
in that case we cross-correlate the template represented by
w with the features extracted from the query image. Either
way, since the template is not optimized to produce sharp
correlation peaks (i.e., peaks in the correlation output), the
resulting correlation output usually exhibits very broad peaks.
Broad peaks result in poor object localization because 1) the
top of the peak may be spread over several pixels and 2)
in the presence of multiple objects in the scene, the peaks
from different objects might overlap, leading to peaks being
in wrong locations.

CFs [7] have also been investigated for object recognition.
Attractive properties of CFs such as shift-invariance, noise
robustness, graceful degradation, and distortion tolerance have
been useful in a variety of pattern recognition applications
including face localization [8], pedestrian localization [9],



object localization and tracking [10], biometric recognition
[11], [12], and vehicle recognition [13]. In this approach, a
carefully designed template (loosely called a filter) w(p, q) is
cross-correlated with the query image x(p, ¢) to produce the
output g(7,, 7). This operation is efficiently carried out in the
frequency domain via Fourier transforms (FTs) as follows,

g=woi", 3)
where superscript * denotes complex conjugate, o denotes
the Hadamard product, and §, £ and w are the 2-D FTs
of the correlation output, the query image and the template,
respectively. When the query image is from the true-class
(also called authentic or Class-1), g(7,,7,) should exhibit a
sharp peak, and when the query image is from the false-class
(also called impostor or Class-2) g(7,,7,) should have no
such discernible peak. The sharper the peak (i.e., the larger
the peak compared to the surrounding values), the greater the
probability that the query image is from the true-class, and the
location of the peak indicates the location of the target. Thus,
CFs offer the ability to simultaneously localize and classify
objects of interest. We review some well-known CF designs
in Section II-A.

While SVMs are designed to maximize the margin and
thus usually offer good generalization (i.e., they usually offer
good classification performance for centered images outside
the training set), they exhibit poor localization because the
peaks resulting from cross-correlation of SVM templates with
test images are not sharp. In contrast, CFs can produce sharp
peaks and thus offer good localization performance, but they
are not explicitly designed to offer good generalization. In
this paper we combine the design principles of SVMs and
CFs leading to a new classifier called Maximum Margin
Correlation Filter (MMCEF) which has the good generalization
capability of SVMs and the good localization capability of
CFs. The MMCF template leads to a more distinguishable
peak in the correlation outputs than the SVM template. We will
show through numerical experiments on different databases
that MMCEF is able to simultaneously localize and classify
objects of interest with improved performance over SVMs and
well-known CFs. Figs. 1 and 2 show a comparison of the
correlation outputs of SVM and MMCEF, respectively, for the
same target class and test image. The MMCF output in Fig.
2 is able to localize the desired class tank image in the scene
more accurately than the SVM output in Fig. 1. The details of
how these outputs are obtained are explained in Section VI.

II. RELATED WORK

There are some previous approaches that attempt to achieve
shift-invariant classification. Most of these approaches cross-
correlate the template with the query image and are sometimes
known as sliding window algorithms. We now discuss these
approaches and how our approach differs from them.

Scholkopf et al. [14] proposed a method to achieve shift-
invariance by training an SVM on centered images, generating
shifted images of the support vectors and re-training the SVM.
Decoste et al. [15] described different algorithms for training
shift-invariant SVMs, and Chapelle et al. [16] proposed al-
gorithms to incorporate shift-invariance in non-linear SVMs.

These methods include shift-invariance constraints explicitly
as inequalities, i.e.,

N d
rvragl wliw+C Z Z ny 4)
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s.t. ti(wix] +b)>1-¢,

where x{ is the image x; shifted by j pixels. For images,
7 refers to shifts in both the x- and y-directions. In these
methods, the number of constraints gets multiplied by the
number of shifts making the complexity of these methods
prohibitive for large number of shifts. In fact, the approach
in [14], [15], [16] make the classifier invariant to just 1 or 2
pixel shifts in the images, and hence precise object localization
is still very challenging. In contrast, our proposed method
exhibits invariance to arbitrary shifts.

Dalal and Triggs [5] proposed cross-correlating the 2-D
template (represented by the vector w) with training images,
adding the false positives as false-class training images, and
retraining the template. We observe that this retraining method
greatly improves the performance of both SVM and MMCE.

Shivaswamy et al. [17] recently showed that the fype of
margin (e.g., L-2 norm margin) maximized is important while
designing maximum margin classifiers. Ashraf et al. [18]
maximized a non-Euclidean margin for their task of applying
Gabor filters in a lower dimensional feature space. We mention
their work since we also optimize a non-Euclidean margin
in the MMCF formulation. We, however, are motivated by
peak sharpness criterion which improves object localization
performance, while Ashraf et al’s work is motivated by
reduction in computational complexity of designing classifiers
on potentially infinite dimensional features extracted from
infinite number of Gabor filters.

Thornton et al. [19] proposed what they called SVM
Correlation Filter, but their work is very different from that
proposed in this paper. They simply treat shifted versions of
the true-class training images as virtual false-class training
images, which does not scale well with the number of training
images, i.e., the number of false-class training images gets
multiplied by the number of shifts making the complexity
of these methods prohibitive for large number of shifts.
Moreover, they do not deal with actual false-class training
images as well as their shifted versions which, if included,
could further increase the complexity of the problem making
the optimization problem intractable. In contrast, our proposed
method exhibits invariance to arbitrary shifts without using
shifted images as false-class training images.

Kumar et al. [20] proposed a CF design that provides some
rotation response control, and Kerekes et al. [21] proposed a
CF design that provides some scale response control. These
designs, however, sacrifice some recognition performance by
ignoring some of the circular harmonics and Mellin radial
harmonics in order to achieve some rotation and scale control,
respectively. In [22] Lowe proposed the popular scale-invariant
feature transform (SIFT) features which achieves scale invari-
ance. However, the SIFT approach is not aimed at localization.



0.005 4
oo
0005
T T
#F' 001
- 500
= - - i

(a) Pickup truck (b) Target localization

Figure 1.

(c) Correlation Output

The SVM template response (in (c)) to the test image (512 x 640 pixels) (in (b)). The SVM template is designed (using retraining [5]) to produce

a positive value for the pickup truck image (70 x 40 pixels) (in (a)) and negative values for background. This vehicle appears in the test image (see the
green box in the test image) but the correlation output does not show any noticeable sharp peak. The red box shows the window corresponding to the highest

correlation value.
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(a) Pickup truck (b) Target localization

Figure 2.

(c) Correlation Output

The MMCEF response (in (c)) to the test image (in (b)). The MMCEF is designed (using retraining [5]) to produce a large value for the pickup

truck image (in (a)) and small values for background. The green box shows the ground truth target window, and the red box show the window at the highest
correlation value. There is considerable overlap between the windows. In comparison to Fig. 1 there is distinguishable sharp peak leading to a more accurate

object localization.

A. Correlation Filters

We will briefly introduce the best known CFs. A detailed
review of CFs can be found elsewhere [7]. Because CFs
can be used for classification, we loosely use classifier and
filter interchangeably. Many CF designs can be interpreted
as optimizing a distance metric between an ideal desired
correlation output for an input image and the correlation output
of the training images with the filter template, i.e.,

N
w:argminZHw@Xi — gill3, &)

W=

where the ® symbol denotes the implied 2-D cross-correlation
operation of the 2-D input image and the template represented
by their vectors versions x; and w, respectively, and g; is the
vector versions of the desired correlation output. Fig. 3 shows
the desired correlation output to an input image correlated
with the filter template. We now discuss the two main kinds
of CF designs, namely unconstrained CFs (optimizing Eq. 5
for different forms of g;) and constrained CFs (optimizing Eq.
5 along with additional constraints on the correlation value at
the object’s location).

| g——
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Figure 3. The desired output (right) to an input image (left) correlated with
the filter template. CFs can be designed to output a sharp peak when the input
is the desired target.

Four popular unconstrained CFs are the Unconstrained
Minimum Average Correlation Energy (UMACE) filter, the
Minimum Output Sum of Squared Error (MOSSE) filter, the
Average of Synthetic Exact Filter (ASEF), and the Uncon-
strained Optimal Trade-off Synthetic Discriminant Function
(UOTSDF) filter. The UMACE [23] filter is designed using Eq.
5 with g; = [0,---,0,1,0,---,0]7 with a one at the target
location and zeros everywhere else, meaning a sharp (delta
function-like) peak is desired at the target’s location. This
filter, however, overfits to the training images and does not
produce good correlation peaks in response to images outside
the training set. The MOSSE [10] filter is also designed using



Eq. 5 with g;(z) = exp((z — 11)?/(20?)) meaning a Gaussian
function-like correlation shape centered at the target’s location
is desired. Using a Gaussian function-like shape instead of
a delta function-like shape is one approach that can improve
performance for images outside the training set. The ASEF [§]
filter also uses g;(z) = exp((z — p)?/(20?%)). The difference
between ASEF and MOSSE is that ASEF computes one filter
template w; per image and then averages them, i.e.,

N
1
W= izzlar%vr?inﬂwi ®x; — gill3. (6)
The UOTSDF [24] filter is another approach to improve the
performance for images outside the training set. The filter
is designed with g; = [0,---,0,1,0,---,0]7 and has an
additional penalty term ~||w||3 in the objective function, i.e.,

N
w = argmin (Z Iw @ x; — gill3 + W||W|3> (D
w i=1
where v > 0. It can be shown [25] that this penalty term repre-
sents the output noise variance when the input is corrupted by
additive white noise. Including ~||w]||3 makes the filter more
robust to noise which can improve classification performance.
For convenience, we re-formulate Eq. 7 as follows,

N
w = argmin ((1 DY W e - gl +A|w||§> ,

i=1

®)
where A\ = ﬁ is 0 < X < 1 to avoid having the variable ~y
with no upper limit.

Constrained CFs constrain the peak correlation output to
be equal to a certain value. Two popular constrained CFs are
the Minimum Average Correlation Energy (MACE) [23] filter,
and the Optimal Trade-off Synthetic Discriminant Function
(OTSDF) [26] filter. These filters are designed using Eqgs. 5 and
8, respectively, with the additional constraint of wlx; = ¢,
where c; = 1 when x; represents a true-class training image
and ¢; = 0 when x; represents a false-class training image.
These constraints ensure a desired output at the target’s
location for training images.

III. MAXIMUM MARGIN CORRELATION FILTERS

The Maximum Margin Correlation Filter (MMCEF) classifier
combines the design principles of SVMs and CFs. In addition
to maximizing the smallest Euclidean distance between the
hyperplane and data points (i.e., the margin), we also want to
minimize the mean square error |w ® x; — g;||3 (see Eq. 5)
where we choose g; to be a delta function-like in order to have
a sharp peak in the correlation output at the target’s center
location (hereinafter referred to as the target’s location) to
improve the localization capability of SVMs. For this purpose
we write the MMCF multi-objective function as follows,

N N
. T ) o2
%1,11)1 <W W—|—CZ§Z,ZHW®Xz gz”z) )

i=1 =1
s.t. ti(wix; +b) > ¢ — &,

where ¢; = 1 for true-class images and c¢; = 0 or other small
value ¢ for false-class images. That is, for true-class images,
we expect a value near 1 and for false-class we expect a value
that is close to 0. This allows us to detect the true targets
and ignore everything else. We refer to wlw + C Zfil &
as the margin criterion and Zfil lw ® x; — g3 as the
localization criterion. The smaller the value of wlw, the
large the margin [6]; a large margin usually results in better
generalization and classification performance. The smaller the
value of Zf\;l ||lw®x;—g;||3, the sharper the correlation peak
(assuming g; is a delta function-like); a sharp peak usually
results in better localization performance. We set the desired
CF output to g; = [0,---,0,wx;,0,---,0]7 where we use
w’'x; as the cross-correlation value of w and x; at the target’s
location. In other words, we desire a peak centered at the
target’s location and zeros everywhere else for better object
localization.

We express the multi-objective function shown in Eq. 9 in
the frequency domain in order to take advantage of the well-
known property that cross-correlation in the spatial domain
is equivalent to multiplication in the frequency domain. The
localization criterion can be expressed in the frequency domain
as follows (using Parseval’s Theorem [27]),

N 1 N
2 T ~ (12
a2t B
;lelw@xz gill2 d;:lHX’W gill2

N
o ) IXw — i3, (10)
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where d is the dimensionality of x;, X, is a diagonal matrix
whose diagonal entries are the elements of X;, and X;, W,
and g; are the vector representations of the 2-D discrete
Fourier transforms (DFTs) of the 2-D images represented by
the vectors x;, w, and g;, respectively. We ignore the scalar
é because it does not affect the value of w that minimizes the
localization criterion. The vector g; can be expressed as

1
g =1x''w= Eszw, (11)

where superscript T denotes conjugate transpose, and 1 =
[1---1]" with d ones in it. The vector X; can be expressed as
x; = X;1. We expand Eq. 10 to get the following expression,

N N
SR - gl = (WK Xw - 2w Xog + gfe)

i=1 i=1

N
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where
N 1 N
Z=) XX;- y ZxxT =D-YY", 13



where D = Ei\il XiX;‘ is a diagonal matrix and Y =
ﬁ [%1, -+ ,%n]. Note from Eq. 12 that W1Zw is non-negative

for any w, and thus 7 is positive semidefinite.

We can formulate the SVM in the frequency domain making
use of the fact that inner products are only scaled by 5 [27].
Thus, the SVM frequency domain formulation is as follows,

N
wWiw+CY ¢

=1
st L(Wig+b) >1-¢,

(14)

min
w,b’

where b’ = b x d, and the other é scalars are ignored because
everything gets scaled appropriately.

We can now express the MMCF multi-criteria shown in Eq.
9 in the frequency domain as follows,

N

Iv%l’ibrll <v“vTv”v +C Zl &, VAVTZVAV)
i

s.t. ti(v“va(i +b) > — &,

5)

where Wiw + CZ?;I & is the margin criterion and W!Zw
is the localization criterion.

Refregier [28] showed that two quadratic criteria are opti-
mized (i.e., the solution yields the best for one criterion for
a fixed value of the other) by minimizing a weighted sum of
the two criteria (see also [29]), i.e.,

N

Wiw +C) &+ owiZw
=1

st Wik + ) > ¢ — &,

min

w,b’

(16)

where 6 > 0. For convenience in our experiments, we re-

formulate Eq. 16 as follows,

min AW w—l—C’Zfl — W Zw
=1

s.t. ti(WT}’\(i + b/) > — &,

a7

where A = ﬁ is 0 < X\ < 1 to avoid having a variable & with
no upper limit and C’ = AC. Subsuming one quadratic term
into the other quadratic term we rewrite Eq. 17 as follows,

N
C'Zfi
=1

s.t. t(WXl+b)>Ci_§i7

min
Wb/

wiSw + (18)

where S = Al 4 (1 — \)Z. Here )\ is the parameter which
trades-off margin (i.e., L-2 norm margin maximization be-
tween the centered true-class and false-class training images)
and object localization. Setting A = 1 will ignore the local-
ization criterion and result in the conventional SVM classifier
for centered images. Therefore the SVM objective function is
a special case of this more general MMCF objective function
with A = 1. Smaller values of A improve object localization
by having sharper peaks in the correlation output.

Since 0 < A< 1,Sisa positive deﬁnlte matrix, and we

can transform the data such that W = S?W and % X; = S- 2x2

and rewrite the MMCEF criterion as follows,

min
w,b’

N
wiw+ 'y & (19)
i=1
s.t. tz(V~VT)~(1 + b/) > C; — Ez
This means that we can implement the MMCF design using a
standard SVM solver by using transformed images to find w.

IV. IMPLEMENTATION
A. Sequential minimal optimization
The dual of Eq. 19 can be shown [6] to be

min a’TX X Ta + ¢’ Ta (20)
a
s.t. 0<a<1C’, aTt =0,
where X = [X1,.-,%Xn], t = [t1,...,ty]T, T is a diagonal
matrix with t along the diagonal, and ¢ = [c;...,cn]7.

Sequential minimal optimization (SMO) [30] is used to find
a. Instead of simultaneously solving for the entire a =
[a1,-++,an]T vector, SMO recursively solves for different
(@i, a;)i; pairs and can be implemented efficiently. Once we
solve for a, the MMCEF filter w can be computed as

Xa. (1)

w =S

M\»—l

1
W =S"

B. Sum of correlation energies

Computing S2 s computationally expensive especially
when d is large. Therefore to reduce the computational com-
plexity we ignore YYT and approximate S by a diagonal
matrix, i.e.,

S=AM+(1-NZ~ A+ (1-)\D, (22)

thus avoiding the inversion of a non-diagonal matrix. This
simplifies the localization criterion shown in Eq. 15 to W Dw.
The value

N
WwiDw = w <Z XX) W
i=1

is a measure of the sum of the energies of the correlation
outputs. This localization criterion ignores the single pixel at
the target’s location. However, the energy contribution of the
value at the target’s location to the energy of the entire correla-
tion output is negligible, and thus our approximation does not
adversely affect the filter. Empirically, in our experiments we
observed that the overall loss in filter performance is negligible
when using this approximation.

N
=> |w (23)

i=1

C. Limitations

MMCFs (as well as SVMs, and CFs) are sensitivity to
different scales (e.g., as the sensor moves closer/farther to the
target), target occlusions, and challenging lighting conditions.
To deal with scale changes, Dalal and Triggs [5] use a pyramid
approach; they compute a template and compare different
scaled versions of the template to the test image. To deal with
occlusions, Rodriguez and Kumar [13] combine the CF output
with a tracker to estimate the target’s location even when it



Table T
COMPUTATIONAL COMPLEXITY BIG O AND MEASURED (SEC.)

Training one template Testing one image

Template Big O time Big O time
MMCF min(N3, N2d) + Ndlogd | 0.89 | dslogds | 0.20
SVM min(N3, N2d) 048 | dslogds | 0.20
OTSDF N3 4 Ndlogd 0.61 | dslogds | 0.20
ASEF Ndlogd 041 | dslogds | 0.20
MOSSE Ndlogd 0.38 | dslogds | 0.20
UOTSDF Ndlogd 0.35 | dslogds 0.20

is temporarily occluded (e.g., going under a bridge). To deal
with different lighting conditions, Kumar and Hassebrook [31]
present different performance measures, including the peak-to-
correlation-energy (PCE) to measure a peak value relative to
the surrounding values. In our dataset these techniques are
not required but may be useful with datasets that have these
challenges.

V. COMPUTATIONAL COMPLEXITY

The theoretical and measured complexity of each method
is shown in Table I. These comparisons were done using
MATLAB on a 2.91 GHz, 3.25 GB RAM Dual Core Windows
XP desktop. To measure the training and testing time, we used
N =100 training images of dimension d = 40 x 70 = 2800,
and 200 testing images of dimension d; = 512 x 640 =
327680 and report the average time (in seconds) per image.
MMCEF, OTSDF, UOTSDF, ASEF, and MOSSE are designed
by transforming the images into the frequency domain thereby
requiring N FFTs of size d, i.e., O(Ndlogd). In addition
to the Fourier transforms of the images, MMCF and SVM
solve the quadratic optimization problem using SMO which
has a computational complexity of O(min(N3, N2d)), and
OTSDF requires a matrix inversion of complexity O(N?).
The computation required to test any of these filters on a
given query image is exactly the same, i.e., it involves the
cross-correlation of the query image with the template which
is computed efficiently in the frequency domain which has a
computational complexity of O(d; logdy).

Using non-linear classifiers such as Quadratic CFs [32]
and Kernel SVMs [6] may be useful to handle data non-
linearities. However, these classifiers require O(Ndlogd)
operations so the testing time grows linearly with the number
of training images, making their usage impractical in some
scenarios. Extending linear MMCF to kernel MMCF is not
straightforward and is a topic of future research.

VI. NUMERICAL EXPERIMENTS

To demonstrate the efficacy of the MMCF approach, we
consider three different computer vision tasks: vehicle recog-
nition in large scenes, eye localization in face images, and
face classification in centered images. For each of the tasks
we consider six different classifiers, SVM, ASEF, MOSSE,
UOTSDF, OTSDF, and MMCF. Since MACE and UMACE
are special cases of OTSDF and UOTSDF, respectively, we
will not explicitly consider these classifiers. In addition to
MMCEF, we selected these other classifiers because they have
been shown to outperform other classifiers [33], [8], [10]. We

(d) BRDM2

(a) Pickup (b) SUV (c) BTRT0
e = o< | ok
(e) BMP2 (f) T72 (g) ZSU23-4 (h) 283

Figure 4. Example of the different classes of military vehicles.

determine target location by cross-correlating the 2-D template
(obtained from the w vector described earlier) with the query
image and determining the location of the largest value in
the resulting correlation output. In addition, we applied the
retraining technique described in Dalal and Triggs [5], i.e., we
iteratively apply the template to the training frames (training
images plus background) and include the false positives as
false-class training images and recompute the template. Em-
pirically we observed that for ASEF, MOSSE, and UOTSDF
the performance degrades when we include false-class training
images, therefore retraining was done only for SVM, OTSDF
and MMCEF. The goal of these experiments is to compare the
performance of the different template designs for simultaneous
localization and classification. We conducted several tests with
various parameters (e.g., the A shown in Eq. 17 or the o used
in ASEF and MOSSE—-see Section II-A) for these filters and
present the best results for each filter type.

A. Vehicle Recognition

We investigate vehicle recognition (i.e., classification and
localization) using a set of infrared images (frames from
videos) where the vehicle’s class-label and location are un-
known. We use the recently approved for public release ATR
Algorithm Development Image Database [34] produced by the
Military Sensing Information Analysis Center. The database
contains infrared videos of 512 x 640 pixels/frame of eight
military vehicles (one vehicle in each video), shown in Fig.
4, taken at multiple ranges during day and night time at 30
frames/sec. Note in Fig. 4 that some of the military vehicles
are very similar, making the classification task challenging.
These vehicles were driven at about 5 m/sec. making a full
circle of diameter of about 100 m., therefore exhibiting 360°
of azimuth rotation. Each video is 60 sec. long (i.e., 1800
frames), allowing the vehicle to complete at least one full
circle. We used videos from each vehicle collected during day
time at a range of 1000 m. and compared our results to the
ground truth data provided in the database.

We conducted two sets of experiments. In Exp. 1 we divided
each video into four segments and trained one different MMCF
per vehicle (we use all 8 vehicles) per segment (32 MMCFs
in total). Each video segment contains one vehicle exhibiting
approximately 90° azimuth range (i.e., —45° to 45°, 45° to
135°, 135° to 225°, and 225° to 315°). Fig. 5 shows examples
of the vehicle Pickup at approximately 0°, 90°, 180°, and
270°, so that four segments cover 360°. From each segment,



(a) 0° (b) 90° (c) 180° (d) 270°

Figure 5. Images of vehicle Pickup at ~ 0°, 90°, 180°, and 270° views.

we selected 15 true-class images (manually cropped from the
corresponding frames of width w = 70 and height h = 40
pixels) per filter and 100 non-overlapping background images
as false-class images for training, and 100 test frames (images
plus background). We verified that none of the testing frames
were used in training. Note that the low quality frame and
the general background (see Fig. 1b) makes the recognition
task challenging. For comparison, we similarly trained 32
SVMs, OTSDFs, ASEFs, MOSSEs, and UOTSDFs classifiers
and correlated them with the scene.

It is important to note that we did not include shifted
images of true-class vehicles as false-class images as done in
some recognition approaches [32], [14], [15]. Including every
possible shift would have required an additional 15 x {(2 x
70—1)x (2x40—1)—1} = 1647000 false-class images per
filter. One of the strengths of the MMCF approach is avoiding
the need to use these shifted images during training without
sacrificing the ability to accurately localize the vehicle.

To investigate the ability of the various approaches to
localize and classify targets, we did not use any tracker in these
experiments but assumed that the vehicle can be anywhere in
each frame, and we treated each frame independently from
other frames. Including a tracker may improve localization
performance but is omitted from our experiments in order to
analyze the performance of the unaided MMCF.

We declare a correct recognition when the correct template
produces the maximum response to a given frame (i.e., correct
classification) and produces the peak within a specified win-
dow centered at the correct location (i.e., correct localization).
This means that it is considered an error 1) when the largest
correlation peak is close to the target’s ground truth location
but is from the incorrect class, or 2) when the largest correla-
tion peak is from the correct class but the peak’s location is not
near the target’s ground truth location. In these experiments,
we defined the window as follows,

P, — P, P,— P
window = <|w| < D) N (|yhy| < D) , (24)

where P, and P, are the ground truth location coordinates,
P, and P are correlatlon peak location coordinates, and
0 < D < 1 is the normalized distance. Recall that in our
experiments, width w = 70 and height h = 40. D = 0 requires
that the correlation peak location be the same as the ground
truth location. D = (.5 requires that the peak location be
within 35 and 20 pixels of the ground truth location in the
x— and y—directions, respectively. D = 1 requires that the
peak location be within 70 and 40 pixels of the ground truth
location in the x— and y—directions, respectively.

Exp. 2 is much more challenging because we required
one filter per vehicle to correctly classify the vehicle in

Table 11
RECOGNITION PERFORMANCE (%) FOR EXPS. 1 AND 2

[ Exp MMCF | SVM | OTSDF | ASEF | MOSSE | UOTSDF |
974 | 867 | 946 | 613 81.3 66.9
743 | 567 | 379 | 344 | 328 26.0

the presence of 360° azimuth variation. For each vehicle,
we selected 50 true-class images and 100 non-overlapping
background images as false-class images for training, and 1000
test frames. The rest of the set up is the same as Exp. 1.

Table II shows the average recognition percentages of the
filters in these two experiments using D = 0.5. As expected,
the recognition rates in Exp. 1 when using four filters per
vehicle are higher than in Exp. 2 when using only one filter
per vehicle. We observe that the unconstrained CFs UOTSDF,
ASEEF, and MOSSE perform poorly. This is because the design
formulations for these unconstrained filters use only true-
class training images; including false-class training images
decreases their performance. Therefore, these filters lack the
advantage of the other filter’s usage of false-class training
images, and hence, also of retraining.

We performed retraining [5] on SVM, MMCEF, and OTSDF.
Retraining greatly helps the performance of SVM and MMCE.
Note that Table II shows the results after retraining. In Exp. 1
retraining improved SVM from 51.3% recognition rate (not
shown in the table) to 86.7% and MMCF from 75.4% to
97.4%, and in Exp. 2 retraining improved SVM from 21.8%
to 56.7% and MMCEF from 52.5% to 74.3%. We observed (not
shown in the table) that OTSDF reaches a point of saturation
and adding more training images actually decreases its perfor-
mance (Table II shows OTSDF at its best performance). This
is because, as mentioned earlier, OTSDF uses hard constraints,
i.e., it must satisfy w’ x; = ¢;, resulting in overfitting to the
training data.

In Exp. 2, MMCF outperformed the next best classifier
SVM by 31%. This is due to the localization criterion wiDw
discussed earlier that MMCF has in addition to the margin
criterion WiW. The localization criterion results in sharp
correlation peaks. Fig. 2 shows an example of a test frame
showing a target-sized rectangle around the ground truth data
and around the corresponding location of the correlation peak.
It can be seen that the MMCEF correlation peak is well defined
and leads to more accurate localization than the SVM template
result shown in Fig. 1.

We also compare performance as a function of the normal-
ized distance D in Fig. 6 for Exps. 1 and 2. In both sets
of experiments, MMCF outperforms all the other classifiers
for all values of D. We observe that the improvement when
D > 0.3 is insignificant over D = 0.3. This means when
the target is correctly recognized, the classifier usually puts
the target’s location within 21 and 12 pixels in the z- and
y-direction, respectively, of the ground truth location.

We also investigated the performance of MMCF as a
function of A\ for a given set of training images. Earlier, we
discussed that MMCF is equivalent to SVM when A = 1.
We now show the benefits of MMCF by testing the MMCF
classifier over a variety of A values using the same training
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Figure 6. Recognition rate as a function of normalized localization error D
for different classifiers (top: Exp. 1, bottom: Exp. 2). In every case, MMCF
outperforms all the other classifiers.

images that we obtained for SVM in Exp. 2 (after retraining).
To be clear, before retraining, all the filters have the same
training images, but as we retrain, each filter selects a different
set of false-class training images. Therefore, MMCF usually
has a different set of false-class training images for each A
value after retraining. However, to investigate the effect of
changing A for a fixed set of training images, we designed
the filters using the same set of training images obtained
for SVM after retraining. We call these set of experiments
MMCF X = 1. For comparison, we repeat the experiment
using the set of training images obtained after retraining for
A = 0.67 (since that value gave the best MMCEF results) and
call these set of experiments MMCF A = 0.67. In addition, we
investigate the effect of changing A (see Eq. 8) on OTSDF and
UOTSDF before retraining (since retraining decreases their
performance). The results are shown in Fig. 7. Note from
Fig. 7 that even when using the training images obtained for
SVM after retraining, MMCF can outperform SVM, i.e., SVM
recognition rate is 56.7% whereas MMCEF recognition rate is
68.7% when A\ = 0.92.

All the previous experiments focus on recognition (i.e.,
classification and localization) rate. Localization rate only tests
a filter against its targeted class, therefore it does not test
for classification. To be clear, suppose that the test image
contains Target 3. To test classification, the image is cross-
correlated with all eight templates. If Template 7 produces
the best correlation peak value then that image is incorrectly
classified as Target 7. To test localization, the image is cross-
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Figure 8. The localization performance of the classifiers as a function of .
In every case, MMCF outperforms all the other classifiers.

correlated with the correct template, i.e., Template 3, and
if the correlation output (only from Template 3) produces
the best peak near the correct location, then this image is
correctly localized. Because this image is correctly localized
but incorrectly classified, the image is deemed to have been
incorrectly recognized. Therefore, recognition requires both
correct classification and localization and this is what we
report. Localization rates are always better (or at worse,
they are equal) than the recognition rates. Fig. 8 shows the
localization rates.

Figs. 7 and 8 show that as the value of A increases from
0 to 1, the performance of MMCF first increases and then
decreases as it approaches SVM (i.e., A = 1). Therefore in
these set of experiments, we can always find a A value for
which MMCF outperforms SVM.

We next investigated the relation between the number of
support vectors that MMCF, SVM, and OTSDF have. The
MMCF, SVM, and OTSDF templates can all be formulated
as weighted sums of training images (or transformed images)
as in Eqs. 2 and 21 (see [28] for OTSDF’s formulation). The
vectors a used in MMCF and SVM have many zero elements
while OTSDF does not have any zero elements. We referred
to the training vectors corresponding to non-zero elements of
a as support vectors. Fig. 9 compares the average percentage
of supports vectors to the number of training images over the
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Figure 9. The percent of support vectors (i.e., support vectors over number
of training images) for MMCF and OTSDF as a function of .

eight (one per vehicle) templates. We see from this figure that
SVM (i.e., MMCF with A = 1) has the fewest number of
support vectors. As the value of A\ decreases, the number of
support vectors that MMCF has slightly increases. OTSDF
uses all training vectors. This trend was observed for all
SVMs, MMCFs, and OTSDFs in all our experiments. We note
that using all training images as support vectors (as is the
case in OTSDF), actually decreases performances because the
classifier overfits to the training images. MMCF uses more
support vectors than SVM to improve localization (and there-
fore recognition) while maintaining a much smaller number
of support vectors than OTSDF which avoids overfitting.

In addition, we investigated how the margin criterion W
and the localization criterion wiDw vary as a function of
A. When A = 0 we minimize only the localization criterion
vAVT]A)vAV, and when A\ = 1 we minimize only the margin
criterion Wiw. For MMCF, we show the average (over the
eight filters—one per vehicle) values of criteria Wiw and
wiDW as function of X in Fig. 10. We do not show the
values for OTSDF, UOTSDF, ASEF, and MOSSE because they
are much higher than MMCEF (i.e., they are off this chart).
As expected, as A — 1, the MMCF margin criterion Ww'w
decreases and the localization criterion wiDW increases. We
observe that a slight increase in one criterion can significantly
improve the other criterion. For example, increasing the value
of wiw from 1.1 x 107* at A = 1 to 1.3 x 107* at
A = 0.9, decreases the average correlation energy wiDw
from 9.8 x 107 to 2.7 x 10~*. MMCF optimally trades-off
between these two criteria resulting in a filter with improved
recognition.

We also investigated the effects of additive white Gaussian
noise (AWGN). We used the same setup as Exp. 2 and applied
AWGN to the test images. Fig. 11 shows the performance
loss (%) as a function of signal-to-noise-ratio (SNR) in dB.
SNR is defined as 10log,,(Signal Power/AWGN variance).
From this figure we see that MMCEF is comparable to SVM
in performance loss. Even at -20dB, the MMCF has only
16% performance loss. ASEF, MOSSE, and UOTSDF have
a smaller performance loss but their recognition rates were
much smaller to begin with.

Figure 10. The margin criterion WwTw and localization criterion wiDW as
a function of A for the MMCEF. Note that as the MMCF classifiers approach
SVM (A = 1), the margin criterion value decreases (i.e., gets better), and the
localization criterion value increases.
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Figure 11. Recognition performance loss as a function of decreasing SNR.

B. Eye Localization

Accurate localization of the eyes in face images is an
important component of face, ocular, and iris recognition. In
this experiment we consider the task of accurately determining
the location of the left and the right eye given a bounding box
around a face obtained from a face detector. Since a good
face detector makes eye localization overly simple, following
the experimental setup outlined in [8], we make the problem
harder by introducing errors in face localization. We first
center the faces obtained using the OpenCV face detector [35]
to produce 128 x 128 images with the eyes centered at (32.0,
40.0) and (96.0, 40.0) and then apply a random similarity
transform with translation of up to +4 pixels, scale factor of
up to 1.0+ 0.1 and rotations of up to +7/16 radians. We used
the FERET [36] database for this task which has about 3400
images of 1204 people. We randomly partitioned the database
with 512 images used for training, 675 for parameter selection
by cross-validation, and the rest for testing. The different
template design approaches are compared by evaluating the
normalized distance defined as follows,

P — Pl
P=iR—rr =
where P is the ground truth location, P is the predicted loca-
tion, and P, and P, are the ground truth locations of the left



Table III
EYE LOCALIZATION PERFORMANCE (%)

Table IV
MULTI-PIE DATABASE RANK-1 CLASSIFICATION ACCURACY (%)

[Eye | MMCF | SVM | OTSDF | ASEF | MOSSE | UOTSDF |

[Exp. | MMCF | SVM | OTSDF | ASEF | MOSSE | UOTSDF |

(a) Face

(b) Left

(c) Right

Figure 12. Example showing the output of the left and right MMCF eye
detector on a sample face image (a).

and the right eye, respectively. The localization performance
results averaged over 5 different runs with random partitions
for training and testing and random similarity transforms are
shown in Table III. Fig. 12 shows an example of the response
of the left and the right MMCEF eye detector on a sample face
image. While our results for ASEF are consistent with those
reported by Bolme et al. [8] for the same task, our results for
UOTSDF and OTSDF are better than those reported. This is
because Bolme et al. used the full face images to train ASEF
but only a window around each eye to train UOTSDF and
OTSDEF, and we used the full face images to train UOTSDF
and OTSDF. It must be noted that the performance of SVM
and MMCF improves significantly after at least one round of
retraining (we do 3 rounds of retraining in our experiments),
while the performance of OTSDF degrades due to overfitting.
As is consistent with the other experiments, SVM uses the
fewest support vectors (200) followed by MMCF (600) fol-
lowed by OTSDF (1024) among 1024 initial training images.

C. Face Classification

We consider face classification on 64 x 64 images where
the bounding boxes for the faces have been pre-determined
by running a face detector like the Viola-Jones face detector
[37]. We use the Multi-PIE database [38] which is an extension
of the CMU PIE database [39] with images that have been
captured over multiple sessions (maximum of 5 sessions).
It has a total of 337 subjects with different face poses,
expressions and illumination variations. We present results
using frontal images of neutral expressions with different
illuminations (see Fig. 13) of which there are over 23000
images. We conducted eight experiments using these images.
In each face classification experiment, we select a set of true-
class training images for each subject, and used the true-class
training images from all the impostor subjects as false-class
training images. The descriptions of the eight experiments are:
o« Exp. 1: We selected 1 true-class training image per
subject (frontal illumination) from session 1 and tested on
images from all the other sessions (i.e, excluding images
from session 1).

o Exp. 2: We selected 2 true-class training images per
subject (one with illumination from the right and one with
illumination from the left) from session 1 and tested on

L 95.1 87.8 81.2 91.2 94.1 94.6 1 58.3 17.0 50.2 26.5 24.8 32.0
R 93.6 89.4 78.5 90.6 92.9 93.2 2 71.9 21.6 56.1 339 57.6 50.3
3 73.5 24.7 55.2 34.1 64.3 50.8
4 97.7 37.0 98.3 539 51.6 97.7
5 99.9 47.3 99.9 58.3 88.7 99.9
6 99.9 50.2 99.9 61.0 92.2 99.9

images from all the other sessions (i.e., excluding images
from session 1).

o« Exp. 3: We selected 3 true-class training images per
subject (one image with frontal illumination, one image
with illumination from the left and one image with
illumination from the right) from session 1 and tested on
images from all the other sessions (i.e., excluding images
from session 1).

o Exp. 4: Similar to Exp. 1 except that we test on all the
images from session 1 only excluding the training images.

o Exp. 5: Similar to Exp. 2 except that we test on all the
images from session 1 only excluding the training images.

« Exp. 6: Similar to Exp. 3 except that we test on all the
images from session 1 only excluding the training images.

o Exp. 7: Similar to Exp. 3 except that we test on images
with varying degrees of occlusion.

o Exp. 8: Similar to Exp. 6 except that we test on images
with varying degrees of occlusion.

In each experiment, each test image is cross-correlated with all
337 templates (each template is designed to positively classify
one subject). A correct classification means that the highest
correlation value was produced by the correct template. Table
IV presents the classification accuracy (%) for the first six
experiments using different classifiers. Exps. 1 to 3 are more
challenging than Exps. 4 to 6 since the testing session is
different from the training session, while in Exps. 4 to 6 the
testing and training session are the same. We observe that
MMCEF outperforms the other classifiers (especially OTSDF)
in Exps. 1 to 3 due to its better generalization capability while
OTSDF performs better in Exp. 4 since the test images are
from the same session as the training images. We can also
see that MMCF exhibits higher classification accuracies than
SVMs. We conjecture that this is mainly due to the implicit
increase in the number of training images when minimizing
the localization criterion used by CFs. Minimizing the local-
ization criterion is equivalent to making the correlation output
approximate a delta function. This is the same as requiring the
inner products of the template with centered true-class training
images to be 1 and the inner products with the shifted training
images to be 0, effectively using centered training images as
well as all shifted versions in designing the CF. In contrast,
SVMs only constrain the inner product of the template and
the centered training images and does not constrain the other
values of the correlation plane.

In addition to the above mentioned experiments, we further
compare the robustness of various template designs to occlu-
sions. Towards this purpose, in Exps. 7 and 8 we perform
face recognition on the same test set as in Exps. 3 and 6,



Figure 13. Sample Multi-PIE database images with illumination variations.
(a) 25% (b) 50% (c) 75%
Figure 14. Test images with 25%, 50%, and 75% occlusion.

respectively, with varying degrees of occlusions (results for
the other experimental settings follow the same general trend).
In Fig. 14 we show an example of the simple occlusion
pattern that we performed experiments on and in Fig. 15 we
present the percentage loss in Rank-1 identification accuracy,
as a function of the percent of missing pixels in the image,
in comparison to the Rank-1 identification accuracy with no
occlusions/missing pixels. In the more challenging setting of
Exp. 7 MMCEF is more robust to small amounts of occlusion
compared to the other template designs while in the relatively
easier Exp. 8, UOTSDF and OTSDF show more robustness
across all degrees of occlusions. A more thorough analysis of
robustness to different kinds of occlusions for some of the CF
template designs considered here can be found in [40].

VII. CONCLUSIONS

Conventional object recognition approaches based on SVMs
do not explicitly take into account object localization criterion
while earlier CF designs were not explicitly designed to
provide good generalization. In this work, we introduced the
Maximum Margin Correlation Filter (MMCF), which is an
extension of SVMs and CFs. It combines the generalization
capability of SVMs and the localization capability of CFs. We
evaluated this classifier on three distinct tasks (vehicle recogni-
tion, eye localization, and face classification) and demonstrated
that MMCF outperforms well-known CF designs and SVMs
for object recognition.
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