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Abstract—Support vector machine (SVM) classifiers are pop-
ular in many computer vision tasks. In most of them, the SVM
classifier assumes that the object to be classified is centered in
the query image which might not always be valid, e.g., when
locating and classifying a particular class of vehicles in a large
scene. In this paper we introduce a new classifier called Maximum
Margin Correlation Filter (MMCF), which while exhibiting the
good generalization capabilities of SVM classifiers is also capable
of localizing objects of interest, thereby avoiding the need for
image centering as is usually required in SVM classifiers. In other
words, MMCF can simultaneously localize and classify objects of
interest. We test the efficacy of the proposed classifier on three
different tasks: vehicle recognition, eye localization, and face
classification. We demonstrate that MMCF outperforms SVM
classifiers and also well-known correlation filters.

I. INTRODUCTION

The tasks of object (we use object and target interchange-

ably throughout this paper) localization and classification are

important in various applications such as automatic target

recognition (ATR), biometric recognition, etc. In this paper by

localization we refer to estimating the location of an object in

the scene, by classification we refer to determining the class

label of a particular object, and by recognition we refer to

performing both tasks (of localization and classification). Two

well-known types of classifiers used for these tasks are support

vector machines (SVMs) and correlation filters (CFs).

SVM classifiers [1], [2], [3] (referred to as SVMs through-

out this paper) have been investigated for vision tasks such as

face localization [4] and pedestrian localization [5]. SVMs are

often designed by extracting features from the training images

and then using a feature vector to represent an image. When

using pixel values as features, the image is lexicographically

scanned to form a feature vector. Given N of these training

column vectors xi ∈ R
d and class labels ti ∈ {−1, 1}

∀i ∈ {1, · · · , N}, the SVM approach (for a 2-class problem)

finds the hyperplane that maximizes the smallest L-2 norm
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distance between the hyperplane and any data sample (also

called the margin) by solving

min
w,b

wTw + C

N
∑

i=1

ξi (1)

s.t. ti(x
T
i w + b) ≥ 1− ξi,

where superscript T denotes transpose, w and b represent the

hyperplane (w denotes the normal to the hyperplane and b
is the bias or offset from the origin), C > 0 is a trade-off

parameter, and the sum of ξi ≥ 0 is a penalty term containing

the slack variables which offset the effects of outliers. It can

be shown [6] that minimizing the squared L-2 norm of w

subject to the above inequality constraints is equivalent to

maximizing the margin, and that the solution to Eq. 1 is a

linear combination of the training vectors, i.e.,

w =

N
∑

i=1

aixi = Xa, (2)

where X = [x1, · · · ,xN ], a = [a1, · · · , aN ]T ,
∑N

i=1
ai = 0,

0 ≤ ai ≤ C ∀i corresponding to class label ti = 1, and

−C ≤ ai ≤ 0 ∀i corresponding to class label ti = −1. The

training vectors corresponding to non-zero coefficients ai are

known as the support vectors.

Assuming that training vectors contain pixels values (i.e.,

images with d pixels lexicographically rearranged into d-

dimensional column vectors), one can use the resulting d-

dimensional solution vector w for simultaneous object local-

ization and classification by cross-correlating the 2-D template

represented by w, with the query image. Note that the training

vectors can represent features other than pixels values, and

in that case we cross-correlate the template represented by

w with the features extracted from the query image. Either

way, since the template is not optimized to produce sharp

correlation peaks (i.e., peaks in the correlation output), the

resulting correlation output usually exhibits very broad peaks.

Broad peaks result in poor object localization because 1) the

top of the peak may be spread over several pixels and 2)

in the presence of multiple objects in the scene, the peaks

from different objects might overlap, leading to peaks being

in wrong locations.

CFs [7] have also been investigated for object recognition.

Attractive properties of CFs such as shift-invariance, noise

robustness, graceful degradation, and distortion tolerance have

been useful in a variety of pattern recognition applications

including face localization [8], pedestrian localization [9],



object localization and tracking [10], biometric recognition

[11], [12], and vehicle recognition [13]. In this approach, a

carefully designed template (loosely called a filter) w(p, q) is

cross-correlated with the query image x(p, q) to produce the

output g(τx, τy). This operation is efficiently carried out in the

frequency domain via Fourier transforms (FTs) as follows,

ĝ = ŵ ◦ x̂∗, (3)

where superscript ∗ denotes complex conjugate, ◦ denotes

the Hadamard product, and ĝ, x̂ and ŵ are the 2-D FTs

of the correlation output, the query image and the template,

respectively. When the query image is from the true-class

(also called authentic or Class-1), g(τx, τy) should exhibit a

sharp peak, and when the query image is from the false-class

(also called impostor or Class-2) g(τx, τy) should have no

such discernible peak. The sharper the peak (i.e., the larger

the peak compared to the surrounding values), the greater the

probability that the query image is from the true-class, and the

location of the peak indicates the location of the target. Thus,

CFs offer the ability to simultaneously localize and classify

objects of interest. We review some well-known CF designs

in Section II-A.

While SVMs are designed to maximize the margin and

thus usually offer good generalization (i.e., they usually offer

good classification performance for centered images outside

the training set), they exhibit poor localization because the

peaks resulting from cross-correlation of SVM templates with

test images are not sharp. In contrast, CFs can produce sharp

peaks and thus offer good localization performance, but they

are not explicitly designed to offer good generalization. In

this paper we combine the design principles of SVMs and

CFs leading to a new classifier called Maximum Margin

Correlation Filter (MMCF) which has the good generalization

capability of SVMs and the good localization capability of

CFs. The MMCF template leads to a more distinguishable

peak in the correlation outputs than the SVM template. We will

show through numerical experiments on different databases

that MMCF is able to simultaneously localize and classify

objects of interest with improved performance over SVMs and

well-known CFs. Figs. 1 and 2 show a comparison of the

correlation outputs of SVM and MMCF, respectively, for the

same target class and test image. The MMCF output in Fig.

2 is able to localize the desired class tank image in the scene

more accurately than the SVM output in Fig. 1. The details of

how these outputs are obtained are explained in Section VI.

II. RELATED WORK

There are some previous approaches that attempt to achieve

shift-invariant classification. Most of these approaches cross-

correlate the template with the query image and are sometimes

known as sliding window algorithms. We now discuss these

approaches and how our approach differs from them.

Scholkopf et al. [14] proposed a method to achieve shift-

invariance by training an SVM on centered images, generating

shifted images of the support vectors and re-training the SVM.

Decoste et al. [15] described different algorithms for training

shift-invariant SVMs, and Chapelle et al. [16] proposed al-

gorithms to incorporate shift-invariance in non-linear SVMs.

These methods include shift-invariance constraints explicitly

as inequalities, i.e.,

min
w,b

wTw + C

N
∑

i=1

d
∑

j=1

ξji (4)

s.t. ti(w
Tx

j
i + b) ≥ 1− ξji ,

where x
j
i is the image xi shifted by j pixels. For images,

j refers to shifts in both the x- and y-directions. In these

methods, the number of constraints gets multiplied by the

number of shifts making the complexity of these methods

prohibitive for large number of shifts. In fact, the approach

in [14], [15], [16] make the classifier invariant to just 1 or 2

pixel shifts in the images, and hence precise object localization

is still very challenging. In contrast, our proposed method

exhibits invariance to arbitrary shifts.

Dalal and Triggs [5] proposed cross-correlating the 2-D

template (represented by the vector w) with training images,

adding the false positives as false-class training images, and

retraining the template. We observe that this retraining method

greatly improves the performance of both SVM and MMCF.

Shivaswamy et al. [17] recently showed that the type of

margin (e.g., L-2 norm margin) maximized is important while

designing maximum margin classifiers. Ashraf et al. [18]

maximized a non-Euclidean margin for their task of applying

Gabor filters in a lower dimensional feature space. We mention

their work since we also optimize a non-Euclidean margin

in the MMCF formulation. We, however, are motivated by

peak sharpness criterion which improves object localization

performance, while Ashraf et al.’s work is motivated by

reduction in computational complexity of designing classifiers

on potentially infinite dimensional features extracted from

infinite number of Gabor filters.

Thornton et al. [19] proposed what they called SVM

Correlation Filter, but their work is very different from that

proposed in this paper. They simply treat shifted versions of

the true-class training images as virtual false-class training

images, which does not scale well with the number of training

images, i.e., the number of false-class training images gets

multiplied by the number of shifts making the complexity

of these methods prohibitive for large number of shifts.

Moreover, they do not deal with actual false-class training

images as well as their shifted versions which, if included,

could further increase the complexity of the problem making

the optimization problem intractable. In contrast, our proposed

method exhibits invariance to arbitrary shifts without using

shifted images as false-class training images.

Kumar et al. [20] proposed a CF design that provides some

rotation response control, and Kerekes et al. [21] proposed a

CF design that provides some scale response control. These

designs, however, sacrifice some recognition performance by

ignoring some of the circular harmonics and Mellin radial

harmonics in order to achieve some rotation and scale control,

respectively. In [22] Lowe proposed the popular scale-invariant

feature transform (SIFT) features which achieves scale invari-

ance. However, the SIFT approach is not aimed at localization.



(a) Pickup truck (b) Target localization (c) Correlation Output

Figure 1. The SVM template response (in (c)) to the test image (512× 640 pixels) (in (b)). The SVM template is designed (using retraining [5]) to produce
a positive value for the pickup truck image (70 × 40 pixels) (in (a)) and negative values for background. This vehicle appears in the test image (see the
green box in the test image) but the correlation output does not show any noticeable sharp peak. The red box shows the window corresponding to the highest
correlation value.

(a) Pickup truck (b) Target localization (c) Correlation Output

Figure 2. The MMCF response (in (c)) to the test image (in (b)). The MMCF is designed (using retraining [5]) to produce a large value for the pickup
truck image (in (a)) and small values for background. The green box shows the ground truth target window, and the red box show the window at the highest
correlation value. There is considerable overlap between the windows. In comparison to Fig. 1 there is distinguishable sharp peak leading to a more accurate
object localization.

A. Correlation Filters

We will briefly introduce the best known CFs. A detailed

review of CFs can be found elsewhere [7]. Because CFs

can be used for classification, we loosely use classifier and

filter interchangeably. Many CF designs can be interpreted

as optimizing a distance metric between an ideal desired

correlation output for an input image and the correlation output

of the training images with the filter template, i.e.,

w = argmin
w

N
∑

i=1

‖w ⊗ xi − gi‖
2
2, (5)

where the ⊗ symbol denotes the implied 2-D cross-correlation

operation of the 2-D input image and the template represented

by their vectors versions xi and w, respectively, and gi is the

vector versions of the desired correlation output. Fig. 3 shows

the desired correlation output to an input image correlated

with the filter template. We now discuss the two main kinds

of CF designs, namely unconstrained CFs (optimizing Eq. 5

for different forms of gi) and constrained CFs (optimizing Eq.

5 along with additional constraints on the correlation value at

the object’s location).

Figure 3. The desired output (right) to an input image (left) correlated with
the filter template. CFs can be designed to output a sharp peak when the input
is the desired target.

Four popular unconstrained CFs are the Unconstrained

Minimum Average Correlation Energy (UMACE) filter, the

Minimum Output Sum of Squared Error (MOSSE) filter, the

Average of Synthetic Exact Filter (ASEF), and the Uncon-

strained Optimal Trade-off Synthetic Discriminant Function

(UOTSDF) filter. The UMACE [23] filter is designed using Eq.

5 with gi = [0, · · · , 0, 1, 0, · · · , 0]T with a one at the target

location and zeros everywhere else, meaning a sharp (delta

function-like) peak is desired at the target’s location. This

filter, however, overfits to the training images and does not

produce good correlation peaks in response to images outside

the training set. The MOSSE [10] filter is also designed using



Eq. 5 with gi(x) = exp((x−µ)2/(2σ2)) meaning a Gaussian

function-like correlation shape centered at the target’s location

is desired. Using a Gaussian function-like shape instead of

a delta function-like shape is one approach that can improve

performance for images outside the training set. The ASEF [8]

filter also uses gi(x) = exp((x− µ)2/(2σ2)). The difference

between ASEF and MOSSE is that ASEF computes one filter

template wi per image and then averages them, i.e.,

w =
1

N

N
∑

i=1

argmin
wi

‖wi ⊗ xi − gi‖
2
2. (6)

The UOTSDF [24] filter is another approach to improve the

performance for images outside the training set. The filter

is designed with gi = [0, · · · , 0, 1, 0, · · · , 0]T and has an

additional penalty term γ||w||22 in the objective function, i.e.,

w = argmin
w

(

N
∑

i=1

‖w ⊗ xi − gi‖
2
2 + γ||w||22

)

, (7)

where γ ≥ 0. It can be shown [25] that this penalty term repre-

sents the output noise variance when the input is corrupted by

additive white noise. Including γ||w||22 makes the filter more

robust to noise which can improve classification performance.

For convenience, we re-formulate Eq. 7 as follows,

w = argmin
w

(

(1− λ)

N
∑

i=1

‖w ⊗ xi − gi‖
2
2 + λ||w||22

)

,

(8)

where λ = γ
1+γ

is 0 ≤ λ ≤ 1 to avoid having the variable γ
with no upper limit.

Constrained CFs constrain the peak correlation output to

be equal to a certain value. Two popular constrained CFs are

the Minimum Average Correlation Energy (MACE) [23] filter,

and the Optimal Trade-off Synthetic Discriminant Function

(OTSDF) [26] filter. These filters are designed using Eqs. 5 and

8, respectively, with the additional constraint of wTxi = ci,
where ci = 1 when xi represents a true-class training image

and ci = 0 when xi represents a false-class training image.

These constraints ensure a desired output at the target’s

location for training images.

III. MAXIMUM MARGIN CORRELATION FILTERS

The Maximum Margin Correlation Filter (MMCF) classifier

combines the design principles of SVMs and CFs. In addition

to maximizing the smallest Euclidean distance between the

hyperplane and data points (i.e., the margin), we also want to

minimize the mean square error ‖w ⊗ xi − gi‖
2
2 (see Eq. 5)

where we choose gi to be a delta function-like in order to have

a sharp peak in the correlation output at the target’s center

location (hereinafter referred to as the target’s location) to

improve the localization capability of SVMs. For this purpose

we write the MMCF multi-objective function as follows,

min
w,b

(

wTw + C

N
∑

i=1

ξi,

N
∑

i=1

‖w ⊗ xi − gi‖
2
2

)

(9)

s.t. ti(w
Txi + b) ≥ ci − ξi,

where ci = 1 for true-class images and ci = 0 or other small

value ε for false-class images. That is, for true-class images,

we expect a value near 1 and for false-class we expect a value

that is close to 0. This allows us to detect the true targets

and ignore everything else. We refer to wTw + C
∑N

i=1
ξi

as the margin criterion and
∑N

i=1
‖w ⊗ xi − gi‖

2
2 as the

localization criterion. The smaller the value of wTw, the

large the margin [6]; a large margin usually results in better

generalization and classification performance. The smaller the

value of
∑N

i=1
‖w⊗xi−gi‖

2
2, the sharper the correlation peak

(assuming gi is a delta function-like); a sharp peak usually

results in better localization performance. We set the desired

CF output to gi = [0, · · · , 0,wTxi, 0, · · · , 0]
T where we use

wTxi as the cross-correlation value of w and xi at the target’s

location. In other words, we desire a peak centered at the

target’s location and zeros everywhere else for better object

localization.

We express the multi-objective function shown in Eq. 9 in

the frequency domain in order to take advantage of the well-

known property that cross-correlation in the spatial domain

is equivalent to multiplication in the frequency domain. The

localization criterion can be expressed in the frequency domain

as follows (using Parseval’s Theorem [27]),

N
∑

i=1

‖w ⊗ xi − gi‖
2
2 =

1

d

N
∑

i=1

‖X̂∗
i ŵ − ĝi‖

2
2

∝

N
∑

i=1

‖X̂∗
i ŵ − ĝi‖

2
2, (10)

where d is the dimensionality of xi, X̂i is a diagonal matrix

whose diagonal entries are the elements of x̂i, and x̂i, ŵ,

and ĝi are the vector representations of the 2-D discrete

Fourier transforms (DFTs) of the 2-D images represented by

the vectors xi, w, and gi, respectively. We ignore the scalar
1

d
because it does not affect the value of ŵ that minimizes the

localization criterion. The vector ĝi can be expressed as

ĝi = 1xT
i w =

1

d
1x̂

†
i ŵ, (11)

where superscript † denotes conjugate transpose, and 1 =
[1 · · · 1]T with d ones in it. The vector x̂i can be expressed as

x̂i = X̂i1. We expand Eq. 10 to get the following expression,

N
∑

i=1

‖X̂∗
i ŵ − ĝi‖

2
2 =

N
∑

i=1

(

ŵ†X̂iX̂
∗
i ŵ − 2ŵ†X̂iĝi + ĝ

†
i ĝi

)

=

N
∑

i=1

(

ŵ†X̂iX̂
∗
i ŵ −

2

d
ŵ†X̂i1x̂

†
i ŵ +

1

d2
ŵ†x̂i1

†1x̂†
i ŵ

)

=

N
∑

i=1

(

ŵ†X̂iX̂
∗
i ŵ −

2

d
ŵ†x̂ix̂

†
i ŵ +

1

d
ŵ†x̂ix̂

†
i ŵ

)

= ŵ†

(

N
∑

i=1

X̂iX̂
∗
i −

1

d

N
∑

i=1

x̂ix̂
†
i

)

ŵ = ŵ†Ẑŵ, (12)

where

Ẑ =

N
∑

i=1

X̂iX̂
∗
i −

1

d

N
∑

i=1

x̂ix̂
†
i = D̂− ŶŶ†, (13)



where D̂ =
∑N

i=1
X̂iX̂

∗
i is a diagonal matrix and Ŷ =

1√
d
[x̂1, · · · , x̂N ]. Note from Eq. 12 that ŵ†Ẑŵ is non-negative

for any ŵ, and thus Ẑ is positive semidefinite.

We can formulate the SVM in the frequency domain making

use of the fact that inner products are only scaled by 1

d
[27].

Thus, the SVM frequency domain formulation is as follows,

min
ŵ,b′

ŵ†ŵ + C

N
∑

i=1

ξi (14)

s.t. ti(ŵ
†x̂i + b′) ≥ 1− ξi,

where b′ = b× d, and the other 1

d
scalars are ignored because

everything gets scaled appropriately.

We can now express the MMCF multi-criteria shown in Eq.

9 in the frequency domain as follows,

min
ŵ,b′

(

ŵ†ŵ + C

N
∑

i=1

ξi, ŵ
†Ẑŵ

)

(15)

s.t. ti(ŵ
†x̂i + b′) ≥ ci − ξi,

where ŵ†ŵ + C
∑N

i=1
ξi is the margin criterion and ŵ†Ẑŵ

is the localization criterion.

Refregier [28] showed that two quadratic criteria are opti-

mized (i.e., the solution yields the best for one criterion for

a fixed value of the other) by minimizing a weighted sum of

the two criteria (see also [29]), i.e.,

min
ŵ,b′

ŵ†ŵ + C

N
∑

i=1

ξi + δŵ†Ẑŵ (16)

s.t. ti(ŵ
†x̂i + b′) ≥ ci − ξi,

where δ ≥ 0. For convenience in our experiments, we re-

formulate Eq. 16 as follows,

min
ŵ,b′

λŵ†ŵ + C ′
N
∑

i=1

ξi + (1− λ)ŵ†Ẑŵ (17)

s.t. ti(ŵ
†x̂i + b′) ≥ ci − ξi,

where λ = 1

1+δ
is 0 < λ ≤ 1 to avoid having a variable δ with

no upper limit and C ′ = λC. Subsuming one quadratic term

into the other quadratic term we rewrite Eq. 17 as follows,

min
ŵ,b′

ŵ†Ŝŵ + C ′
N
∑

i=1

ξi (18)

s.t. ti(ŵ
†x̂i + b′) ≥ ci − ξi,

where Ŝ = λI + (1 − λ)Ẑ. Here λ is the parameter which

trades-off margin (i.e., L-2 norm margin maximization be-

tween the centered true-class and false-class training images)

and object localization. Setting λ = 1 will ignore the local-

ization criterion and result in the conventional SVM classifier

for centered images. Therefore the SVM objective function is

a special case of this more general MMCF objective function

with λ = 1. Smaller values of λ improve object localization

by having sharper peaks in the correlation output.

Since 0 < λ ≤ 1, Ŝ is a positive definite matrix, and we

can transform the data such that w̃ = Ŝ
1

2 ŵ and x̃i = Ŝ− 1

2 x̂i

and rewrite the MMCF criterion as follows,

min
w̃,b′

w̃†w̃ + C ′
N
∑

i=1

ξi (19)

s.t. ti(w̃
†x̃i + b′) ≥ ci − ξi.

This means that we can implement the MMCF design using a

standard SVM solver by using transformed images to find w̃.

IV. IMPLEMENTATION

A. Sequential minimal optimization

The dual of Eq. 19 can be shown [6] to be

min
a

aTTX̃†X̃Ta+ cTTa (20)

s.t. 0 ≤ a ≤ 1C ′, aT t = 0,

where X̃ = [x̃1, . . . , x̃N ], t = [t1, . . . , tN ]T , T is a diagonal

matrix with t along the diagonal, and c = [c1 . . . , cN ]T .

Sequential minimal optimization (SMO) [30] is used to find

a. Instead of simultaneously solving for the entire a =
[a1, · · · , aN ]T vector, SMO recursively solves for different

(ai, aj)i 6=j pairs and can be implemented efficiently. Once we

solve for a, the MMCF filter ŵ can be computed as

ŵ = Ŝ− 1

2 w̃ = Ŝ− 1

2 X̃a. (21)

B. Sum of correlation energies

Computing Ŝ− 1

2 is computationally expensive especially

when d is large. Therefore to reduce the computational com-

plexity we ignore ŶŶ† and approximate Ŝ by a diagonal

matrix, i.e.,

Ŝ = λI+ (1− λ)Ẑ ≈ λI+ (1− λ)D̂, (22)

thus avoiding the inversion of a non-diagonal matrix. This

simplifies the localization criterion shown in Eq. 15 to ŵ†D̂ŵ.

The value

ŵ†D̂ŵ = ŵ†

(

N
∑

i=1

X̂iX̂
∗
i

)

ŵ =

N
∑

i=1

∣

∣

∣
ŵ†X̂i

∣

∣

∣

2

(23)

is a measure of the sum of the energies of the correlation

outputs. This localization criterion ignores the single pixel at

the target’s location. However, the energy contribution of the

value at the target’s location to the energy of the entire correla-

tion output is negligible, and thus our approximation does not

adversely affect the filter. Empirically, in our experiments we

observed that the overall loss in filter performance is negligible

when using this approximation.

C. Limitations

MMCFs (as well as SVMs, and CFs) are sensitivity to

different scales (e.g., as the sensor moves closer/farther to the

target), target occlusions, and challenging lighting conditions.

To deal with scale changes, Dalal and Triggs [5] use a pyramid

approach; they compute a template and compare different

scaled versions of the template to the test image. To deal with

occlusions, Rodriguez and Kumar [13] combine the CF output

with a tracker to estimate the target’s location even when it



Table I
COMPUTATIONAL COMPLEXITY BIG O AND MEASURED (SEC.)

Training one template Testing one image

Template Big O time Big O time

MMCF min(N3, N2d) +Nd log d 0.89 ds log ds 0.20

SVM min(N3, N2d) 0.48 ds log ds 0.20

OTSDF N3 +Nd log d 0.61 ds log ds 0.20

ASEF Nd log d 0.41 ds log ds 0.20

MOSSE Nd log d 0.38 ds log ds 0.20

UOTSDF Nd log d 0.35 ds log ds 0.20

is temporarily occluded (e.g., going under a bridge). To deal

with different lighting conditions, Kumar and Hassebrook [31]

present different performance measures, including the peak-to-

correlation-energy (PCE) to measure a peak value relative to

the surrounding values. In our dataset these techniques are

not required but may be useful with datasets that have these

challenges.

V. COMPUTATIONAL COMPLEXITY

The theoretical and measured complexity of each method

is shown in Table I. These comparisons were done using

MATLAB on a 2.91 GHz, 3.25 GB RAM Dual Core Windows

XP desktop. To measure the training and testing time, we used

N = 100 training images of dimension d = 40× 70 = 2800,

and 200 testing images of dimension ds = 512 × 640 =
327680 and report the average time (in seconds) per image.

MMCF, OTSDF, UOTSDF, ASEF, and MOSSE are designed

by transforming the images into the frequency domain thereby

requiring N FFTs of size d, i.e., O(Nd log d). In addition

to the Fourier transforms of the images, MMCF and SVM

solve the quadratic optimization problem using SMO which

has a computational complexity of O(min(N3, N2d)), and

OTSDF requires a matrix inversion of complexity O(N3).
The computation required to test any of these filters on a

given query image is exactly the same, i.e., it involves the

cross-correlation of the query image with the template which

is computed efficiently in the frequency domain which has a

computational complexity of O(ds log ds).
Using non-linear classifiers such as Quadratic CFs [32]

and Kernel SVMs [6] may be useful to handle data non-

linearities. However, these classifiers require O(Nds log ds)
operations so the testing time grows linearly with the number

of training images, making their usage impractical in some

scenarios. Extending linear MMCF to kernel MMCF is not

straightforward and is a topic of future research.

VI. NUMERICAL EXPERIMENTS

To demonstrate the efficacy of the MMCF approach, we

consider three different computer vision tasks: vehicle recog-

nition in large scenes, eye localization in face images, and

face classification in centered images. For each of the tasks

we consider six different classifiers, SVM, ASEF, MOSSE,

UOTSDF, OTSDF, and MMCF. Since MACE and UMACE

are special cases of OTSDF and UOTSDF, respectively, we

will not explicitly consider these classifiers. In addition to

MMCF, we selected these other classifiers because they have

been shown to outperform other classifiers [33], [8], [10]. We

(a) Pickup (b) SUV (c) BTR70 (d) BRDM2

(e) BMP2 (f) T72 (g) ZSU23-4 (h) 2S3

Figure 4. Example of the different classes of military vehicles.

determine target location by cross-correlating the 2-D template

(obtained from the w vector described earlier) with the query

image and determining the location of the largest value in

the resulting correlation output. In addition, we applied the

retraining technique described in Dalal and Triggs [5], i.e., we

iteratively apply the template to the training frames (training

images plus background) and include the false positives as

false-class training images and recompute the template. Em-

pirically we observed that for ASEF, MOSSE, and UOTSDF

the performance degrades when we include false-class training

images, therefore retraining was done only for SVM, OTSDF

and MMCF. The goal of these experiments is to compare the

performance of the different template designs for simultaneous

localization and classification. We conducted several tests with

various parameters (e.g., the λ shown in Eq. 17 or the σ used

in ASEF and MOSSE–see Section II-A) for these filters and

present the best results for each filter type.

A. Vehicle Recognition

We investigate vehicle recognition (i.e., classification and

localization) using a set of infrared images (frames from

videos) where the vehicle’s class-label and location are un-

known. We use the recently approved for public release ATR

Algorithm Development Image Database [34] produced by the

Military Sensing Information Analysis Center. The database

contains infrared videos of 512 × 640 pixels/frame of eight

military vehicles (one vehicle in each video), shown in Fig.

4, taken at multiple ranges during day and night time at 30

frames/sec. Note in Fig. 4 that some of the military vehicles

are very similar, making the classification task challenging.

These vehicles were driven at about 5 m/sec. making a full

circle of diameter of about 100 m., therefore exhibiting 360◦

of azimuth rotation. Each video is 60 sec. long (i.e., 1800

frames), allowing the vehicle to complete at least one full

circle. We used videos from each vehicle collected during day

time at a range of 1000 m. and compared our results to the

ground truth data provided in the database.

We conducted two sets of experiments. In Exp. 1 we divided

each video into four segments and trained one different MMCF

per vehicle (we use all 8 vehicles) per segment (32 MMCFs

in total). Each video segment contains one vehicle exhibiting

approximately 90◦ azimuth range (i.e., −45◦ to 45◦, 45◦ to

135◦, 135◦ to 225◦, and 225◦ to 315◦). Fig. 5 shows examples

of the vehicle Pickup at approximately 0◦, 90◦, 180◦, and

270◦, so that four segments cover 360◦. From each segment,



(a) 0◦ (b) 90◦ (c) 180◦ (d) 270◦

Figure 5. Images of vehicle Pickup at ∼ 0◦, 90◦, 180◦, and 270◦ views.

we selected 15 true-class images (manually cropped from the

corresponding frames of width w = 70 and height h = 40
pixels) per filter and 100 non-overlapping background images

as false-class images for training, and 100 test frames (images

plus background). We verified that none of the testing frames

were used in training. Note that the low quality frame and

the general background (see Fig. 1b) makes the recognition

task challenging. For comparison, we similarly trained 32

SVMs, OTSDFs, ASEFs, MOSSEs, and UOTSDFs classifiers

and correlated them with the scene.

It is important to note that we did not include shifted

images of true-class vehicles as false-class images as done in

some recognition approaches [32], [14], [15]. Including every

possible shift would have required an additional 15 × {(2 ×
70− 1)× (2× 40− 1)− 1} = 1647000 false-class images per

filter. One of the strengths of the MMCF approach is avoiding

the need to use these shifted images during training without

sacrificing the ability to accurately localize the vehicle.

To investigate the ability of the various approaches to

localize and classify targets, we did not use any tracker in these

experiments but assumed that the vehicle can be anywhere in

each frame, and we treated each frame independently from

other frames. Including a tracker may improve localization

performance but is omitted from our experiments in order to

analyze the performance of the unaided MMCF.

We declare a correct recognition when the correct template

produces the maximum response to a given frame (i.e., correct

classification) and produces the peak within a specified win-

dow centered at the correct location (i.e., correct localization).

This means that it is considered an error 1) when the largest

correlation peak is close to the target’s ground truth location

but is from the incorrect class, or 2) when the largest correla-

tion peak is from the correct class but the peak’s location is not

near the target’s ground truth location. In these experiments,

we defined the window as follows,

window =

(

|Px − P̂x|

w
≤ D

)

∩

(

|Py − P̂y|

h
≤ D

)

, (24)

where Px and Py are the ground truth location coordinates,

P̂x and P̂y are correlation peak location coordinates, and

0 ≤ D ≤ 1 is the normalized distance. Recall that in our

experiments, width w = 70 and height h = 40. D = 0 requires

that the correlation peak location be the same as the ground

truth location. D = 0.5 requires that the peak location be

within 35 and 20 pixels of the ground truth location in the

x− and y−directions, respectively. D = 1 requires that the

peak location be within 70 and 40 pixels of the ground truth

location in the x− and y−directions, respectively.

Exp. 2 is much more challenging because we required

one filter per vehicle to correctly classify the vehicle in

Table II
RECOGNITION PERFORMANCE (%) FOR EXPS. 1 AND 2

Exp. MMCF SVM OTSDF ASEF MOSSE UOTSDF

1 97.4 86.7 94.6 67.3 81.3 66.9

2 74.3 56.7 37.9 34.4 32.8 26.0

the presence of 360◦ azimuth variation. For each vehicle,

we selected 50 true-class images and 100 non-overlapping

background images as false-class images for training, and 1000

test frames. The rest of the set up is the same as Exp. 1.

Table II shows the average recognition percentages of the

filters in these two experiments using D = 0.5. As expected,

the recognition rates in Exp. 1 when using four filters per

vehicle are higher than in Exp. 2 when using only one filter

per vehicle. We observe that the unconstrained CFs UOTSDF,

ASEF, and MOSSE perform poorly. This is because the design

formulations for these unconstrained filters use only true-

class training images; including false-class training images

decreases their performance. Therefore, these filters lack the

advantage of the other filter’s usage of false-class training

images, and hence, also of retraining.

We performed retraining [5] on SVM, MMCF, and OTSDF.

Retraining greatly helps the performance of SVM and MMCF.

Note that Table II shows the results after retraining. In Exp. 1

retraining improved SVM from 51.3% recognition rate (not

shown in the table) to 86.7% and MMCF from 75.4% to

97.4%, and in Exp. 2 retraining improved SVM from 21.8%

to 56.7% and MMCF from 52.5% to 74.3%. We observed (not

shown in the table) that OTSDF reaches a point of saturation

and adding more training images actually decreases its perfor-

mance (Table II shows OTSDF at its best performance). This

is because, as mentioned earlier, OTSDF uses hard constraints,

i.e., it must satisfy wTxi = ci, resulting in overfitting to the

training data.

In Exp. 2, MMCF outperformed the next best classifier

SVM by 31%. This is due to the localization criterion ŵ†D̂ŵ

discussed earlier that MMCF has in addition to the margin

criterion ŵ†ŵ. The localization criterion results in sharp

correlation peaks. Fig. 2 shows an example of a test frame

showing a target-sized rectangle around the ground truth data

and around the corresponding location of the correlation peak.

It can be seen that the MMCF correlation peak is well defined

and leads to more accurate localization than the SVM template

result shown in Fig. 1.

We also compare performance as a function of the normal-

ized distance D in Fig. 6 for Exps. 1 and 2. In both sets

of experiments, MMCF outperforms all the other classifiers

for all values of D. We observe that the improvement when

D > 0.3 is insignificant over D = 0.3. This means when

the target is correctly recognized, the classifier usually puts

the target’s location within 21 and 12 pixels in the x- and

y-direction, respectively, of the ground truth location.

We also investigated the performance of MMCF as a

function of λ for a given set of training images. Earlier, we

discussed that MMCF is equivalent to SVM when λ = 1.

We now show the benefits of MMCF by testing the MMCF

classifier over a variety of λ values using the same training



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

R
e

c
o

g
n

it
io

n
 R

a
te

 (
%

)

Normalized Distance (D)

 

 

MMCF

SVM

OTSDF

ASEF

MOSSE

UOTSDF

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

R
e

c
o

g
n

it
io

n
 R

a
te

 (
%

)

Normalized Distance (D)

 

 

MMCF

SVM

OTSDF

ASEF

MOSSE

UOTSDF

Figure 6. Recognition rate as a function of normalized localization error D
for different classifiers (top: Exp. 1, bottom: Exp. 2). In every case, MMCF
outperforms all the other classifiers.

images that we obtained for SVM in Exp. 2 (after retraining).

To be clear, before retraining, all the filters have the same

training images, but as we retrain, each filter selects a different

set of false-class training images. Therefore, MMCF usually

has a different set of false-class training images for each λ
value after retraining. However, to investigate the effect of

changing λ for a fixed set of training images, we designed

the filters using the same set of training images obtained

for SVM after retraining. We call these set of experiments

MMCF λ = 1. For comparison, we repeat the experiment

using the set of training images obtained after retraining for

λ = 0.67 (since that value gave the best MMCF results) and

call these set of experiments MMCF λ = 0.67. In addition, we

investigate the effect of changing λ (see Eq. 8) on OTSDF and

UOTSDF before retraining (since retraining decreases their

performance). The results are shown in Fig. 7. Note from

Fig. 7 that even when using the training images obtained for

SVM after retraining, MMCF can outperform SVM, i.e., SVM

recognition rate is 56.7% whereas MMCF recognition rate is

68.7% when λ = 0.92.

All the previous experiments focus on recognition (i.e.,

classification and localization) rate. Localization rate only tests

a filter against its targeted class, therefore it does not test

for classification. To be clear, suppose that the test image

contains Target 3. To test classification, the image is cross-

correlated with all eight templates. If Template 7 produces

the best correlation peak value then that image is incorrectly

classified as Target 7. To test localization, the image is cross-
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Figure 7. The recognition performance of the classifiers as a function of λ.
In every case, MMCF outperforms all the other classifiers.
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Figure 8. The localization performance of the classifiers as a function of λ.
In every case, MMCF outperforms all the other classifiers.

correlated with the correct template, i.e., Template 3, and

if the correlation output (only from Template 3) produces

the best peak near the correct location, then this image is

correctly localized. Because this image is correctly localized

but incorrectly classified, the image is deemed to have been

incorrectly recognized. Therefore, recognition requires both

correct classification and localization and this is what we

report. Localization rates are always better (or at worse,

they are equal) than the recognition rates. Fig. 8 shows the

localization rates.

Figs. 7 and 8 show that as the value of λ increases from

0 to 1, the performance of MMCF first increases and then

decreases as it approaches SVM (i.e., λ = 1). Therefore in

these set of experiments, we can always find a λ value for

which MMCF outperforms SVM.

We next investigated the relation between the number of

support vectors that MMCF, SVM, and OTSDF have. The

MMCF, SVM, and OTSDF templates can all be formulated

as weighted sums of training images (or transformed images)

as in Eqs. 2 and 21 (see [28] for OTSDF’s formulation). The

vectors a used in MMCF and SVM have many zero elements

while OTSDF does not have any zero elements. We referred

to the training vectors corresponding to non-zero elements of

a as support vectors. Fig. 9 compares the average percentage

of supports vectors to the number of training images over the
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Figure 9. The percent of support vectors (i.e., support vectors over number
of training images) for MMCF and OTSDF as a function of λ.

eight (one per vehicle) templates. We see from this figure that

SVM (i.e., MMCF with λ = 1) has the fewest number of

support vectors. As the value of λ decreases, the number of

support vectors that MMCF has slightly increases. OTSDF

uses all training vectors. This trend was observed for all

SVMs, MMCFs, and OTSDFs in all our experiments. We note

that using all training images as support vectors (as is the

case in OTSDF), actually decreases performances because the

classifier overfits to the training images. MMCF uses more

support vectors than SVM to improve localization (and there-

fore recognition) while maintaining a much smaller number

of support vectors than OTSDF which avoids overfitting.

In addition, we investigated how the margin criterion ŵ†ŵ
and the localization criterion ŵ†D̂ŵ vary as a function of

λ. When λ = 0 we minimize only the localization criterion

ŵ†D̂ŵ, and when λ = 1 we minimize only the margin

criterion ŵ†ŵ. For MMCF, we show the average (over the

eight filters–one per vehicle) values of criteria ŵ†ŵ and

ŵ†D̂ŵ as function of λ in Fig. 10. We do not show the

values for OTSDF, UOTSDF, ASEF, and MOSSE because they

are much higher than MMCF (i.e., they are off this chart).

As expected, as λ → 1, the MMCF margin criterion ŵ†ŵ
decreases and the localization criterion ŵ†D̂ŵ increases. We

observe that a slight increase in one criterion can significantly

improve the other criterion. For example, increasing the value

of ŵ†ŵ from 1.1 × 10−4 at λ = 1 to 1.3 × 10−4 at

λ = 0.9, decreases the average correlation energy ŵ†D̂ŵ

from 9.8 × 10−4 to 2.7 × 10−4. MMCF optimally trades-off

between these two criteria resulting in a filter with improved

recognition.

We also investigated the effects of additive white Gaussian

noise (AWGN). We used the same setup as Exp. 2 and applied

AWGN to the test images. Fig. 11 shows the performance

loss (%) as a function of signal-to-noise-ratio (SNR) in dB.

SNR is defined as 10 log10(Signal Power/AWGN variance).

From this figure we see that MMCF is comparable to SVM

in performance loss. Even at -20dB, the MMCF has only

16% performance loss. ASEF, MOSSE, and UOTSDF have

a smaller performance loss but their recognition rates were

much smaller to begin with.
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ŵ
†
ŵ
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ŵ and localization criterion ŵ
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Figure 11. Recognition performance loss as a function of decreasing SNR.

B. Eye Localization

Accurate localization of the eyes in face images is an

important component of face, ocular, and iris recognition. In

this experiment we consider the task of accurately determining

the location of the left and the right eye given a bounding box

around a face obtained from a face detector. Since a good

face detector makes eye localization overly simple, following

the experimental setup outlined in [8], we make the problem

harder by introducing errors in face localization. We first

center the faces obtained using the OpenCV face detector [35]

to produce 128× 128 images with the eyes centered at (32.0,

40.0) and (96.0, 40.0) and then apply a random similarity

transform with translation of up to ±4 pixels, scale factor of

up to 1.0± 0.1 and rotations of up to ±π/16 radians. We used

the FERET [36] database for this task which has about 3400

images of 1204 people. We randomly partitioned the database

with 512 images used for training, 675 for parameter selection

by cross-validation, and the rest for testing. The different

template design approaches are compared by evaluating the

normalized distance defined as follows,

D =
‖P − P̂‖

‖Pl − Pr‖
, (25)

where P is the ground truth location, P̂ is the predicted loca-

tion, and Pl and Pr are the ground truth locations of the left



Table III
EYE LOCALIZATION PERFORMANCE (%)

Eye MMCF SVM OTSDF ASEF MOSSE UOTSDF

L 95.1 87.8 81.2 91.2 94.1 94.6

R 93.6 89.4 78.5 90.6 92.9 93.2

(a) Face (b) Left (c) Right

Figure 12. Example showing the output of the left and right MMCF eye
detector on a sample face image (a).

and the right eye, respectively. The localization performance

results averaged over 5 different runs with random partitions

for training and testing and random similarity transforms are

shown in Table III. Fig. 12 shows an example of the response

of the left and the right MMCF eye detector on a sample face

image. While our results for ASEF are consistent with those

reported by Bolme et al. [8] for the same task, our results for

UOTSDF and OTSDF are better than those reported. This is

because Bolme et al. used the full face images to train ASEF

but only a window around each eye to train UOTSDF and

OTSDF, and we used the full face images to train UOTSDF

and OTSDF. It must be noted that the performance of SVM

and MMCF improves significantly after at least one round of

retraining (we do 3 rounds of retraining in our experiments),

while the performance of OTSDF degrades due to overfitting.

As is consistent with the other experiments, SVM uses the

fewest support vectors (200) followed by MMCF (600) fol-

lowed by OTSDF (1024) among 1024 initial training images.

C. Face Classification

We consider face classification on 64 × 64 images where

the bounding boxes for the faces have been pre-determined

by running a face detector like the Viola-Jones face detector

[37]. We use the Multi-PIE database [38] which is an extension

of the CMU PIE database [39] with images that have been

captured over multiple sessions (maximum of 5 sessions).

It has a total of 337 subjects with different face poses,

expressions and illumination variations. We present results

using frontal images of neutral expressions with different

illuminations (see Fig. 13) of which there are over 23000

images. We conducted eight experiments using these images.

In each face classification experiment, we select a set of true-

class training images for each subject, and used the true-class

training images from all the impostor subjects as false-class

training images. The descriptions of the eight experiments are:

• Exp. 1: We selected 1 true-class training image per

subject (frontal illumination) from session 1 and tested on

images from all the other sessions (i.e, excluding images

from session 1).

• Exp. 2: We selected 2 true-class training images per

subject (one with illumination from the right and one with

illumination from the left) from session 1 and tested on

Table IV
MULTI-PIE DATABASE RANK-1 CLASSIFICATION ACCURACY (%)

Exp. MMCF SVM OTSDF ASEF MOSSE UOTSDF

1 58.3 17.0 50.2 26.5 24.8 32.0

2 71.9 21.6 56.1 33.9 57.6 50.3

3 73.5 24.7 55.2 34.1 64.3 50.8

4 97.7 37.0 98.3 53.9 51.6 97.7

5 99.9 47.3 99.9 58.3 88.7 99.9

6 99.9 50.2 99.9 61.0 92.2 99.9

images from all the other sessions (i.e., excluding images

from session 1).

• Exp. 3: We selected 3 true-class training images per

subject (one image with frontal illumination, one image

with illumination from the left and one image with

illumination from the right) from session 1 and tested on

images from all the other sessions (i.e., excluding images

from session 1).

• Exp. 4: Similar to Exp. 1 except that we test on all the

images from session 1 only excluding the training images.

• Exp. 5: Similar to Exp. 2 except that we test on all the

images from session 1 only excluding the training images.

• Exp. 6: Similar to Exp. 3 except that we test on all the

images from session 1 only excluding the training images.

• Exp. 7: Similar to Exp. 3 except that we test on images

with varying degrees of occlusion.

• Exp. 8: Similar to Exp. 6 except that we test on images

with varying degrees of occlusion.

In each experiment, each test image is cross-correlated with all

337 templates (each template is designed to positively classify

one subject). A correct classification means that the highest

correlation value was produced by the correct template. Table

IV presents the classification accuracy (%) for the first six

experiments using different classifiers. Exps. 1 to 3 are more

challenging than Exps. 4 to 6 since the testing session is

different from the training session, while in Exps. 4 to 6 the

testing and training session are the same. We observe that

MMCF outperforms the other classifiers (especially OTSDF)

in Exps. 1 to 3 due to its better generalization capability while

OTSDF performs better in Exp. 4 since the test images are

from the same session as the training images. We can also

see that MMCF exhibits higher classification accuracies than

SVMs. We conjecture that this is mainly due to the implicit

increase in the number of training images when minimizing

the localization criterion used by CFs. Minimizing the local-

ization criterion is equivalent to making the correlation output

approximate a delta function. This is the same as requiring the

inner products of the template with centered true-class training

images to be 1 and the inner products with the shifted training

images to be 0, effectively using centered training images as

well as all shifted versions in designing the CF. In contrast,

SVMs only constrain the inner product of the template and

the centered training images and does not constrain the other

values of the correlation plane.

In addition to the above mentioned experiments, we further

compare the robustness of various template designs to occlu-

sions. Towards this purpose, in Exps. 7 and 8 we perform

face recognition on the same test set as in Exps. 3 and 6,



Figure 13. Sample Multi-PIE database images with illumination variations.

(a) 25% (b) 50% (c) 75%

Figure 14. Test images with 25%, 50%, and 75% occlusion.

respectively, with varying degrees of occlusions (results for

the other experimental settings follow the same general trend).

In Fig. 14 we show an example of the simple occlusion

pattern that we performed experiments on and in Fig. 15 we

present the percentage loss in Rank-1 identification accuracy,

as a function of the percent of missing pixels in the image,

in comparison to the Rank-1 identification accuracy with no

occlusions/missing pixels. In the more challenging setting of

Exp. 7 MMCF is more robust to small amounts of occlusion

compared to the other template designs while in the relatively

easier Exp. 8, UOTSDF and OTSDF show more robustness

across all degrees of occlusions. A more thorough analysis of

robustness to different kinds of occlusions for some of the CF

template designs considered here can be found in [40].

VII. CONCLUSIONS

Conventional object recognition approaches based on SVMs

do not explicitly take into account object localization criterion

while earlier CF designs were not explicitly designed to

provide good generalization. In this work, we introduced the

Maximum Margin Correlation Filter (MMCF), which is an

extension of SVMs and CFs. It combines the generalization

capability of SVMs and the localization capability of CFs. We

evaluated this classifier on three distinct tasks (vehicle recogni-

tion, eye localization, and face classification) and demonstrated

that MMCF outperforms well-known CF designs and SVMs

for object recognition.
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