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Abstract

In this supplementary material we show a full derivation of our Reduced Ensemble of

Correlation Filters and provide more quantitative results that are not shown in the paper

due to space constraints.

1 Ensemble of Exemplar Classifiers for Pose-by-Detection

1.1 Exemplar Correlation Filters

Exemplar classifiers are suited to the task of pose-by-detection. For each one of the V view-

point renders we train an Exemplar Correlation Filter (ECF) using the rendered image as

the single positive, and N − 1 image patches selected randomly from a background set of

images that do not contain the object instance. Each ECF is trained to detect the object from

a specific viewpoint.

Let {xi}
N
i=1 be a set of Histogram of Oriented Gradients (HOG) representations of the

training examples, consisting of one positive exemplar rendering of the v-th view and N −1

negative bounding boxes. Also, define
{

g1
v , · · · ,g

C
v

}
as the ECF for a viewpoint v, where C

is the number of channels of the HOG feature representation (commonly 32). The response

of an image xi to the filter is defined as

C

∑
c=1

xc
i ⊗gc

v = Correlation Output, (1)

where ⊗ denotes the 2D convolution operator. The ECF design is posed as:

min
g1

v ,··· ,g
C
v

N

∑
i=1
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∥
∥
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∑
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+λ
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∑
c=1

‖gc
v‖

2
2 , (2)
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where ri is the matrix holding the desired correlation output of the i-th training image, and λ

moderates the degree of regularization. The desired correlation output ri is set to a positively

scaled Gaussian for the positive exemplar and to a negatively scaled Gaussian for the neg-

ative patches. This choice of the desired output correlation shape also implicitly calibrates

the different exemplar classifiers. The minimization problem can be equivalently posed in

the frequency domain to derive a closed form expression, which in turn lends itself to an

efficient solution [1]. It should be noted that, as a complete set, each view v ∈ V is trained

independently, and that increase in the desired precision d increases the size of the ensemble

(linearly for one axis of rotation, quadratically for two, and cubically for all three). Figure 1

(A) shows the training configuration for one exemplar correlation filter. For visualization

clarity we do not show negative images.

1.2 Discriminative Reduction of Ensembles of Correlation Filters

The procedure described in Section 1 produces a large set of exemplar classifiers, one per

view that needs to be resolved. Let G ∈ R
D×V be the matrix of all V filters arranged as

column vectors, where D is the dimensionality of the feature. This set is an exhaustive

representation of the object’s appearance from many views, but applying all the filters during

test time is computationally expensive. It is also highly redundant as many views of the

object are similar in appearance.

Our reduced Ensemble of Exemplar Correlation Filter (EECF) approach is designed to

jointly learn a set of K exemplar correlation filters F = [f1, . . . , fK ] (each with C channels)

and a set of V sparse coefficient vectors A = [α1, . . . ,αV ] such that a detector gv for any

viewpoint v of the object is defined by

gv = Fαv. (3)

As before, there are V positive training images, one corresponding to each view that is

expected to be resolved. Define B to be a set of randomly selected negative background

patches. To learn a reduced EECF, we define the following discriminative objective:

argmin
F,A
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Regularization and sparsity

, (4)

where xi and ri are as defined for Eq. (2) and fc
k is the c-th channel of the k-th reduced filter. α i

is the sparse mixing coefficient for the i-th training image, and λ1, λ2 control regularization

and enforce sparseness. The need for sparsity will be explained presently.

The first part of the equation guides the optimization to find a reduced set of correlation

filters F and a matrix A of coefficients such that Eq. (3) holds. That is, that a detector

for any viewpoint can be estimated by a linear combination of the columns of F , weighted

by αi. The second part of the equation controls the discriminability of the ensemble. The

key idea is that, as there is no value of α that can be defined for a negative instance, we

enforce a negative response r j for each negative instance, with any of the learned α . This
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Figure 1: Overview of learning the Exemplar Correlation Filter Basis (EECF). (A) The

Vector Correlation Filter (VCF) design aggregates the responses of all feature channels to

produce a correlation output which is constrained to have a sharp peak only at the target

location. We use ⊗ for convolution and ⊕ for element-wise sum. (B) Our method (EECF)

jointly learns a set of Vector Correlation Filters such that their linear combination produces

the sharp peak.

optimization can be solved efficiently by posing the problem in the Fourier-domain. Details

of the derivation are included in the supplementary material.

The mental picture one should have in mind when learning the F matrix, is that shown

in Figure 1 (B). The full basis of K filters is convolved with the image and the convolution

with fk are weighted by αk.

2 Optimization

2.1 Learning Vector Correlation Filters

We first provide a short derivation of VCF here as it will be helpful for understanding our

joint approach in 1.2. For an in depth tutorial, we direct the reader to [2].

We can restate Eq. (2) in the frequency domain using Parseval’s theorem [3]

arg min
f̂1
,...f̂c

N

∑
i=1
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C

∑
c=1

f̂c† f̂c
. (5)

Where we use the ˆ notation for the Fourier Transform of a vector, for example r̂i is the

Fourier Transform of ri. X̂c
i is a diagonal matrix with the values of x̂c

i on its main diagonal.

f̂c† is the conjugate transpose of f̂c. Let f̂ and ŷ be

f̂ =






f̂1

...

f̂C




 ŷ =

N

∑
i=1

ŷi =
N
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
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X̂C
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


 , (6)

Then Eq. (5) can be written in matrix form as

argmin
f̂

f̂†Ŝf̂−2f̂†ŷ, (7)

where Ŝ = D̂+λ I and

D̂ =
N

∑
i=1

D̂i =
N
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Figure 2: Some filters from a learned Ensemble of Exemplar Correlation Filter (EECF) of

size 40. The filters are learned in HOG space. We use the standard HOG visualization in

which light pixels show orientations with a large positive weight.

The matrix Ŝ is block diagonal. D̂ is the interaction energy between different channels

of the feature. For a HOG template of size m each block is of size m×m, and the matrix is

of size mC×mC.

The desired filter is

f̂ = Ŝ−1ŷ. (9)

2.2 Learning the Basis Filters

The filter basis can be solved for analytically in the frequency domain by weighted averaging

of the inputs. Define

f̂ =
[
f̂1
1 . . . f̂

C
1 . . . f̂

1
K . . . f̂C

K

]T
. (10)

The solution that minimizes Eq. (4) is

f̂ = (D̂+λ1I)−1ŷ. (11)

where

D̂ =
N

∑
i=1
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i
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
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N
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


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α i
K ŷi




(12)

and D̂i and ŷi are as defined in Eq. (8) and Eq. (6)

The matrix Ŝ is now of size mKC×mKC which can become large — typical values are

m = 450,K = 20,C = 32. However this matrix is block diagonal and sparse. Each X̂i block

is of size m×m but only has m non zero elements. The number of non zero elements in

Ŝ is m(CK)2. The block structure of the matrix allows for efficient inversion using Schur

complement matrix inversion.

We initialize the matrix of coefficients A using sparse coding on the HOG features of the

training images. This provides a reasonable starting point for the optimization.

Figure 2 shows a number of filters from learned Ensemble of Exemplar Correlation Fil-

ter (EECF). Note that the ensemble members capture the shape of the car from different

viewpoints. This is interesting as the optimization does not restrict the learned filters to be

specific viewpoints.
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Detection WCVP (mAP)

Method KNOWN UNKNOWN

EECF, K = 20 0.54 0.52

EECF, K = 40 0.61 0.58

ECF full (360) 0.72 0.62

((a)) Detection Results: WCVP

Detection CMU-car (AP)

Method

EECF, K = 20 0.2

EECF, K = 40 0.36

ECF Full (360) 0.46

((b)) Detection Results: CMU-car

Table 1: (a) Detection results on the WCVP dataset. Reported numbers are the mean average

precision (mAP) over all 22 car classes in the dataset. (b) Detection results on the CMU-car

dataset. Reported numbers are average precision (AP).

3 Results

The main focus of our method is estimating the pose of an object. For completeness we also

report detection results on two datasets: WCVP and CMU-car. Table 1 shows the average

precision (AP) of our method using Ensembles of 20 and 40 correlation filters, and compared

to using a non reduced set of 360 filters. We urge the reader to be careful when interpreting

these reported numbers. Both datasets have images with multiple cars, but only a single

instance is annotated. This can have unintuitive results, e.g. an improved detector may have

lower AP. Figure 3 shows a number of instances in which the top detection is a car that is not

annotated in the dataset.

Figure 3: The results above illustrate the problem with measuring detection rate on datasets

used to evaluate pose estimation. In each image there only one car is annotated (yellow dotted

box). In these examples the top scoring detection (red solid box) is on another vehicle.
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