
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Maximum-Margin Coupled Mappings for

Cross-Domain Face Recognition
Stephen Siena, Student Member, IEEE, Vishnu Naresh Boddeti, Member, IEEE,

and B.V.K. Vijaya Kumar, Fellow, IEEE

Abstract—Over the past decade, fueled by cheaper storage and
availability of ever increasing computational resources, there has
been an explosive increase in the collection of data about the
same concept (e.g. face images) from multiple sources and in
multiple formats. This leads to pattern matching scenarios across
that necessitate the development of learning algorithms that have
the ability to learn concepts from diverse sources of data, much
like human learning. In this paper, we consider this problem of
concept learning from and across multiple sources of data in
the context of face recognition under challenging scenarios i.e.,
we consider situations in the wild where the probe and gallery
images are captured under different conditions, thereby treating
the probe and gallery images as arising from different domains.
We present Maximum-Margin Coupled Mappings (MMCM), a
method which learns linear projections to map the data from the
different domains into a common latent domain, maximizing the
margin of separation between between the intraclass data and
the interclass data from different domains. We demonstrate the
effectiveness of this technique on multiple face biometric datasets
with a variety of cross-domain relationships.

Index Terms—Biometrics, Face Recognition, Coupled-
Mappings, Super-Resolution

I. INTRODUCTION

FACE recognition has seen tremendous progress over

the past decade, leading to excellent performance under

controlled conditions. However, face recognition still remains

a very challenging problem under uncontrolled conditions

due to factors such as pose, illumination, expression, image

resolutions, different camera sensors, etc. Efforts have been

made to address these challenging factors in face recognition

[1], [2], [3], [4], [5]. In this paper we consider the problem

of matching facial images across two different data domains

i.e., across image resolutions and camera sensors. While tradi-

tional machine learning algorithms for face recognition have

largely focused on concept learning from a single data source

(e.g., Principal Component Analysis [6], Linear Discriminant

Analysis [7], etc.), matching facial images across different data

domains necessitates the development of learning algorithms

using data from multiple domains.

More specifically, in the context of biometric image match-

ing, the focus of machine learning research has been to

perform matching between a probe sample and a gallery set

of data for tasks such as face verification and recognition.

Oftentimes the probe lies in the same domain as the gallery

set, but this is not always the case. For example, in some
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face recognition scenarios, the probe images captured in

uncontrolled settings (e.g. surveillance cameras) at a lower

resolution than the set of gallery images. Also, probe images

may be captured with one type of sensor while the gallery

images may have been acquired using a different type of

sensor. When the probe image is significantly different than

the gallery, classifiers trained on the gallery may not be

able to treat the probe image in a way that allows for an

effective comparison. In cases where the gallery and probe

images have fundamentally different feature representations,

methods effective for matching tasks in a single domain may

be completely impractical.

The techniques for handling data from different domains

can depend on the objectives . Domain adaptation and transfer

learning refer to approaches in settings where one domain of-

ten has significantly more training data, and the goal is to learn

a mapping from one domain to the other. In contrast, coupled

mappings focus on learning mappings to a latent subspace

common to both domains, typically leveraging equal amounts

of data from each domain. Additionally, this subspace can be

low-dimensional, in which case coupled mapping formulations

also perform dimensionality reduction with the assumption

that the underlying data lies in a latent low-dimensional

subspace that both domains can be mapped to. Many different

coupled-mapping algorithms for cross-domain face recognition

have been proposed, especially in the context of matching low-

resolution images against high-resolution images, where the

images are matched using a nearest neighbor classifier in the

common, possibly low-dimensional, subspace.

In this paper we present a new coupled mapping formulation

called Maximum-Margin Coupled Mappings (MMCM), which

combines the common subspace learning principle of coupled

mapping techniques and the margin maximizing properties

of single domain large margin nearest neighbor [8] methods.

The margin maximizing formulation of the proposed coupled-

mapping algorithm helps improve the robustness of the algo-

rithm to noise and outliers in comparison to other coupled-

mapping algorithms. While the existing algorithms learn the

linear projections to maximize the average distance between

the authentic and impostor match pairs, the proposed method

learns linear projections to maximize the distance between the

closest (worst case example) authentic and impostor match

pairs, thereby increasing the robustness to noise.

A preliminary version of the algorithm presented in this

paper was introduced in [4]. In this paper we present a more in-

depth analysis of MMCM along with experimental evaluation

under multiple cross-domain face matching scenarios. More
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specifically, the main contributions of this paper are:

1) The basic MMCM formulation and an in-depth anal-

ysis of the technique discussing the intuition behind

the development of MMCM relative to other related

techniques.

2) We also discuss how to optimize MMCM efficiently with

a new fast gradient descent algorithm, making MMCM’s

application to larger datasets more practical.

3) Lastly, we present an extensive evaluation of MMCM

under different cross-domain matching scenarios. We

show results on problems that model both identification

and verification biometric problems, and show results

on a range of face recognition datasets covering a range

of cross-domain problems. Additionally, we incorporate

a simple face detector into our evaluations to minimize

the need for manually labeled facial landmarks. These

experimental procedures provide an illustration of the

strengths and the weaknesses of our proposed algorithm.

The paper is structured as follows: Section II defines the

problem coupled mappings aim to solve. Section III discusses

related work, particularly those related to coupled mappings.

Section IV discusses how MMCM is designed to solve cross-

domain matching problems. Section V introduces the datasets,

and the results are discussed in Section VI. Section VII

discusses additional properties of MMCM. Section VIII con-

cludes the paper.

II. PROBLEM STATEMENT

In many settings, data samples are collected from two

different domains, DA ∈ R
α and DB ∈ R

β , which share

a common set of labels L = {l1, l2, ..., lc}. If we are given

A = {a1, a2, ..., am} ∈ DA and B = {b1, b2, ..., bn} ∈ DB ,

the goal is to match samples from one domain to sam-

ples from the other. Defining a distance metric is relatively

straightforward for data samples from the same domain and

the same feature representation, but this may not be the

case when comparing data across different domains. To fa-

cilitate cross-domain comparisons, we map data from DA

and DB into a common space, which is denoted as DZ

∈ R
γ . The task is to learn mappings fA : DA → DZ and

fB : DB → DZ . MMCM is a method of learning linear

projections, therefore fA : PT
Aai → âi and fB : PT

Bbi → b̂i.

PA ∈ R
α×γ projects the α-dimensional data sample ai into a

γ-dimensional subspace. Similarly, PB ∈ R
β×γ projects the

β-dimensional data sample bi into a γ-dimensional subspace.

Once A and B are projected to Â = {â1, â2, ..., âm} ∈ DZ

and B̂ = {b̂1, b̂2, ..., b̂m} ∈ DZ , distances between data

samples from the two different domains can be more easily

compared. Typically simple metrics such as Euclidean dis-

tance (or some other distance metric) can be used to find

the similarity between samples from the different domains.

When given class labels YA = {ya1, ya2, ..., yam} ∈ L and

YB = {yb1, yb2, ..., ybn} ∈ L, ideally we will learn projections

such that dyai=ybj
(âi, b̂j) < dyai 6=ybj

(âi, b̂k), where d(·, ·) is

some distance metric. In other words, given data samples from

DA and data samples from DB , we want the cross-domain

match pairs to be closer together than the cross-domain non-

match pairs.

III. RELATED WORK

The main premise of this line of research is that, there

exists a functional relation between the different sources of

data since they are generated from the same underlying latent

phenomenon. This latent source is obvious in some scenarios

(like when the same data is captured by different sensors,

different viewpoints etc.) and not so in other scenarios (like

the relation between the text in a news article and the image

of a subject’s face in that article). Assuming that the premise

holds, the goal of the learning algorithms is to estimate or

learn the function, relating the different data sources, either

exactly or approximately. Many algorithms exist and can be

designed for this purpose. We note general paradigms and

specific algorithms for doing this. At a high level each of

these algorithms are designed to learn features from each data

source such that similar concepts are mapped close to each

other.

An increasing range of applications leverage domain adap-

tation and transfer learning methods. It is used in natural

language processing [9], as well as computer vision tasks [10],

[11], as well as multimodal learning tasks [12], [13]. Pan &

Yang offer a more complete survey of these fields [14].

Within biometrics, there has also been work addressing

cross-domain challenges. Hennings-Yeomans et al. proposed

a method for comparing low-resolution face images to a high-

resolution gallery [3]. Klare and Jain introduced a framework

for heterogeneous face recognition using prototypes in multi-

ple imaging modalities to compare different image representa-

tions [5]. Zuo et al. perform cross-spectral iris recognition by

learning a predictive mapping function from the visible light

spectrum to the near infrared channel [15]. Pillai et al. learn a

kernel transformation and impose sensor adaptation constraints

for cross-sensor iris matching[16].

A. Coupled Mappings

Coupled mappings aim to learn projections to a single

subspace, with the assumption that data from multiple sources

actually lie on a subspace whose dimensionality is lower than

the data sources. These approaches seek to take advantage of

any correlation between the data sources to learn functions that

map different data sources close to each other in the mapped

space, and work in conjunction with non-parametric classifiers

like nearest neighbor matching.

Canonical Correlation Analysis (CCA) learns projections

which maximize the correlation between two sets of data [17].

Li et al. introduced two methods, one referred to as Coupled

Mappings, and an augmented technique called Coupled Lo-

cality Preserving Mappings (CLPM), which preserves local

neighborhoods of data samples when learning the mappings

[18]. Yang et al. added local consistency terms to preserve

distances within each domain, and show improvements over

CLPM [19]. Kan et al. introduced Multi-view Discriminant

Analysis (MvDA), which was proposed to potentially learn

more than two sets of projections from any number of domains

to a single common subspace [20].
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1) Simultaneous Discriminant Analysis: Simultaneous Dis-

criminant Analysis (SDA) was introduced for the purpose of

matching low resolution (LR) face images to high resolution

(HR) face images [21]. It can be seen as a cross-domain

extension of Linear Discriminant Analysis (LDA) [7]. While

LDA learns projections to minimize intraclass variation and

maximize interclass separation in the learned subspace for

one domain, SDA optimizes the same criteria for data across

two domains simultaneously. Intraclass variation is defined as

the sample variance within each class in the projected space,

and interclass variation is defined as the sample between-class

covariance in the projected space.

To learn projections that improve both the intraclass vari-

ation and the interclass variation, the full objective can be

written as a ratio of the two; so the objective for SDA is

argmax
P

PT
SbP

PTSwP
. (1)

where PT
SwP and PT

SbP capture the intraclass and inter-

class variation of the data from both domains, respectively, and

P = [PT
APT

B ]T . This maximization results in a generalized

eigenvalue problem (GEV)

S
−1
w SbP = PΛ, (2)

where the eigenvectors P corresponding to the γ-largest

eigenvalues comprise the projections PA and PB .

For S
−1
w to be symmetric (required for S

−1
w Sb to produce

real eigenvectors), the number of training samples from each

domain must be equal for each class. This constraint is similar

to that of CCA. By using the class means and variances,

SDA is implicitly modeling the distribution of each class as a

Gaussian. How well this assumption holds will depend on the

particular application.

2) Coupled Marginal Fisher Analysis: While SDA could be

seen as a cross-domain extension of LDA, Coupled Marginal

Fisher Analysis (CMFA) [22] can be seen as the coupled

mapping extension of Marginal Fisher Analysis (MFA) [23].

MFA learns projections that optimize distances in the learned

subspace based on the local neighborhoods of the original data.

The objective function for CMFA is

min
PA,PB

∑m
i=1

∑n
j=1

‖PAai − PBbj‖
2
2wij

∑m
i=1

∑n
j=1

‖PAai − PBbj‖22w
P
ij

, (3)

where wij ∈ W and wP
ij ∈ W

P , where W ∈ R
m×n and

W
P ∈ R

m×n represent connectivity graphs between data

samples. wij ∈ W represents how strongly the distance

between a pair of cross-domain data samples should be

minimized (corresponding to data samples in the same class),

and wP
ij ∈ W

P represents how strongly the distance between

a pair of cross-domain data samples should be maximized

(corresponding to data samples from different classes). In

CMFA, wij is non-zero if ai and aj have the same class label

and are in the same local region, according to some number

of nearest neighbors. Similarly, wP
ij is non-zero if ai and aj

have different class labels and are in the same local region

according to some number of nearest neighbors.

Note that while the objective function optimizes cross-

domain distances, W and W
P often must be defined by

comparisons of data samples in a single domain. This is

because when the domains do not have feature representations

of the same dimension, the cross-domain distance is not well-

defined before being projected.

Similar to SDA, CMFA can be reformulated into a GEV.

While SDA is best suited for a Gaussian distribution of each

class, CMFA relies on optimizing the local neighborhoods of

data samples. CMFA was shown to outperform SDA in a LR

face recognition task[22].

3) Multi-Dimensional Scaling: Biswas et al. take a multi-

dimensional scaling (MDS) approach to LR face recognition

[24]. The objective is

min
PA,PB

λ

m
∑

i=1

n
∑

j=1

(d(PT
Aai,P

T
Bbj)− d(PT

Bbi,P
T
Bbj))

+ (1− λ)

m
∑

i=1

n
∑

j=1

δ(yi, yj)d(P
T
Aai,P

T
Bbj),

(4)

where λ is a tradeoff parameter, and δ(yi, yj) = 1 if yi = yj ,

and 0 otherwise (with the assumption that yai
= ybi ). The as-

sumption of the first term, the distance preserving term, is that

given two HR face images, the distances between matching

images will be small, and the distance between non-matching

images will be large. With that in mind, the MDS approach

learns projections such that the distance between a LR and

HR image approximates the distance of two corresponding

HR images. Additionally, the second term of the objective,

the class separation term, penalizes large distances between

LR and HR images from the same class. Biswas et al. show

how the objective can be reformulated to a form that can be

solved by iterative majorization [25]. Iterative majorization

solves a closely related function iteratively until some stopping

criterion is met. Biswas et al. introduced the MDS method

for LR face recognition, and because face recognition is

more effective at higher resolutions, the objective is sensible.

However, if the domains and application are different, learning

projections to mimic the distances of data in one domain may

not be effective.

With the exception of CCA and MvDA, all the coupled

mapping methods discussed were introduced for the purpose

of low-resolution face recognition. Much of the focus of

coupled mappings is to leverage the information available in

high-resolution face images to help recognize low-resolution

face images. While this has traditionally been the purpose of

the previous coupled mapping methods, we intend to show

the utility of these approaches for both low resolution face

recognition and heterogeneous face recognition, where images

from different imaging modalities are matched.

IV. METHODOLOGY

Coupled mapping methods focus on learning mappings to a

latent subspace common to both domains. In this section we

describe our proposed coupled mapping technique, MMCM.

Figure 1 gives a pictorial overview showing how MMCM

maps data from DA and DB to a common subspace DZ such

that there is an explicit margin of separation of between the

match and non-match pairs. We also note that the mappings
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𝓓࡭ 
Matching Samples 

from   𝓓࡭ to  𝓓࡮ 

𝓓࡮ 

Initial 𝓓ࢆ 

Matching  Samples 

from  𝓓࡮ to  𝓓࡭ 

- Domain A 

- Domain B 

              - Class 1 

- Class 2 

- Class 3 

Fig. 1: Overview of coupled mappings and MMCM. Coupled mappings project data from DA and DB into a common subspace,

DZ , where matching can be done between data samples from the different domains. MMCM learns mappings optimized for

matching data samples from one domain to the second, but not vice versa (i.e. comparing samples from DA to a gallery from

DB , but not samples from DB to a gallery from DA, or vice versa). MMCM learns coupled mappings such that there is a

margin between cross-domain matches and the nearest cross-domain non-matches. The cross-domain match distances define a

perimeter around each class, and no cross-domain non-matches enter a margin extending from this perimeter.

learned by MMCM are different depending on the whether the

data samples are being matched from one domain to the other

or vice-versa. Just like most other coupled mapping methods

can be seen as extensions of single domain methods, MMCM

is inspired by Large Margin Nearest Neighbor (LMNN) clas-

sification [8]. LMNN learns a Mahalanobis distance such that

same class pairs have a small distance while ensuring a margin

between pairs of data from different classes.

A. MMCM Formulation

MMCM is inspired by large margin based distance learning

methods [26], [8] which have demonstrated success in single

domain problems. We learn the projections PA and PB by

solving the following minimization problem:

min
PA,PB

λfpull(PA,PB) + (1− λ)fpush(PA,PB) (5)

where expanding fpull and fpush are defined as

fpull =

∑

M d(ai, bj)

|M |
(6)

fpush =

∑

V [1 + d(ai, bj)− d(ai, bk)]+
|V |

(7)

where M = {(i, j)|yai = ybj} and V = {(i, j, k)|yai =
ybj , yai 6= ybk} and [x]+ signifies the hinge loss, defined as

max(0, x). In practice we match test samples to our gallery

using Euclidean distance nearest neighbor, so we use the

squared Euclidean distance to compare data samples, thus

d(ai, bj) = ‖PT
Aai −P

T
Bbj‖

2
2. (8)

Equation 5 contains two terms, with λ = (0, 1) acting as

the tradeoff parameter between the two (|M | and |V | also

normalize the scale of the two terms). Figure 2 illustrates

how the two components of MMCM work in conjunction to

learn projections. Minimizing the first term, fpull, brings cross-

domain match pairs close together. The second term, fpush,

consists of a margin, set to 1, a cross-domain match pair, and

a cross-domain non-match pair. In reducing the hinge loss of

these three components to zero, the non-match bk is farther

from ai compared to bj by at least a margin of 1. It is important

to note that even in the case where data is linearly separable,

even though the margin is a fixed value in the minimization,

|PA| and |PB | cannot simply approach ∞ (thus ensuring there

is always a margin of at least 1). As |PA| and |PB | increase,

so too will fpull. Similarly, |PA| → 0 and |PB | → 0, the

fixed margin of 1 will be violated in an increasing number of

triplets in V . Thus, fpull and fpush work antagonistically to

ensure that solving the minimization does not result in a trivial

solution, but rather mappings that result in tightly clustered
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- Domain A 

- Domain B 

              - Class 1 
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- fpull 

- fpush 

Fig. 2: Illustration showing the objective of the MMCM

optimization, and the effect of fpull and fpush (for simplicity,

only a single data sample from DA is shown). The large

blue circle represents the perimeter defined by the largest

match pair distance, and the dashed line shows the margin

extending from that perimeter. Initially, cross-domain matches

are far from the data sample from DA, and cross-domain

non-matches are within boundary of the margin. The fpull
term brings together the match pairs, and fpush moves the

intruding non-matches outside of the boundary of the margin,

while non-matches outside of the margin are not explicitly

acted upon. The result is that the data samples from Class 1

are closer together, and non-matches are now outside of the

margin around Class 1.

same class data that has large separation from other classes.

Learning a margin of separation between classes has benefits

over other coupled mappings. The hinge loss associated with

margin learning ensures that the worst cases seen in training

have the largest impact on the learned projections. Other

coupled mappings, such as SDA and MDS, learn projections

that optimize the average case. If interclass samples are already

well separated, there is no need to push them farther apart. Our

margin based technique instead learns projections to handle

the most challenging cases seen in training without further

optimizing adequately separated data.

It is important to note that fpush does not treat data samples

from DA the same as data samples from DB . Specifically, the

margins are only explicitly learned for data samples from DA

with respect to match pairs and non-match pairs from DB .

By only optimizing the margins for data from one domain,

MMCM focuses only on matching from one domain to the

other. For example, in LR face recognition, MMCM will

optimize matching LR images to a gallery of HR images, while

not explicitly learning to match HR images to a gallery of LR

images. Other coupled mapping techniques such as SDA, and

CMFA, will balance the two cross-domain matching cases,

even when an application does not need it. In a case where it

may be desirable to match from DA to DB , as well as from

DB to DA, we can simply learn 2 sets of coupled mappings

using MMCM, one for each scenario.

B. Optimizing MMCM

We observe that the MMCM formulation shown in Eq. 6

is not convex. Because we are only guaranteed to find a local

minimum when solving this non-convex optimization problem,

we demonstrate the impact of different initializations for PA

and PB in Sections VI and VII.

We find a local minimum using gradient descent. Algorithm

1 details the process of optimizing the MMCM approach. As

mentioned earlier, we use the squared Euclidean distance in

our experiments. With that distance metric in mind, the partial

derivatives of the objective function J with respect to PA and

PB are

∇PA
J = 2λ

∑

M

(PT
Aai −P

T
Bbj)a

T
i

+ 2(1− λ)
∑

V+

P
T
B(bk − bj)a

T
i

(9)

∇PB
J = 2λ

∑

M

(PT
Bbj −P

T
Aai)b

T
j

+ 2(1− λ)
∑

V+

(

P
T
B(bjb

T
j − bkb

T
k )

+P
T
Aai(b

T
k − bTj )

)

(10)

where V+ represents the subset of V that has a non-zero hinge

loss, based on PA,t and PB,t, which are the projections at the

tth iteration of the optimization. PA and PB are updated as

follows,

PA,t+1 = PA,t − ηt∇PA
Jt

PB,t+1 = PB,t − ηt∇PB
Jt

(11)

where η is the learning rate. The learning rate is changed

according to whether the update to PA and PB lowers the

objective value; if the value is lowered, then ηt+1 = 1.1ηt,
and if the objective value is higher, we set ηt = .9ηt and

try updating PA,t+1 and PB,t+1 again. We stop the gradient

descent algorithm when η < ε, or after a determined number of

iterations. In practice, we set ε = 10−6, and if that threshold

is not reached, we stop after 150 iterations of the gradient

descent algorithm.

1) Approximated Gradient Descent: One of the drawbacks

with the gradient descent computation is that the size of V+

is O(n3). With matrix multiplications performed for each

member of V+, this part of the gradient computation requires

the most computation in the entire MMCM algorithm, and is

a bottleneck for applying MMCM to larger datasets (which

increases the size of V+) or larger feature representations

(increases the time each matrix multiplication takes). To avoid

these problems, we instead choose to compute the gradients

using only a subset of V+. For each image ai ∈ A, we use

a fraction of Vi+, where Vi+ = {(j, k)|yai = ybj , yai 6= ybk}
with a non-zero hinge loss. We denote the fraction used

as ρ = (0, 1], where ρ = 1 represents using the original

gradient descent, ρ = .5 represents using half of the members

of Vi+ for each image ai ∈ A, and so on. Performing

this approximated gradient descent can be effective when

V+ is very large, when even a small subset of V+ can be

representative of the true gradient. The risk of approximating
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Algorithm 1 Maximum-Margin Coupled Mapping

Require: A and B - data with labels YA and YB , and λ -

trade-off parameter

Initialization: Need estimates of PA and PB .

η0 = 1
while (not converged) do

V+ = {(i, j, k) ∈ V, d(ai, bk)− d(ai, bj) < 1}
while Jt+1 > Jt do

PA,t+1 = PA,t − ηt∇PA
Jt

PB,t+1 = PB,t − ηt∇PB
Jt

if Jt+1 > Jt then

ηt = .9ηt
end if

end while

ηt+1 = 1.1ηt
t = t+ 1

end while

gradient descent is present when the subset is too small to

capture the true gradient. In this case, while the calculations in

each iteration will be quick, the algorithm may not converge

to a suitable result. We explored selecting the tuples from

Vi+ based on the the largest hinge loss values, but found that

picking a random sample was more effective. We discuss the

effect of the ρ parameter on both recognition performance and

computation time in Section VII.

V. DATABASES

We use four databases in this paper: two including only

visible light images that we use to test matching faces at

different resolutions, one comprised of visible light and near-

infrared (NIR) photos, and one comprised of visible light

photos and viewed sketches1 Each test was run 10 times, with

training images chosen randomly for each separate trial.

The general testing procedure is as follows. Images in both

domains are run through the Viola-Jones face detector in

MATLAB’s Computer Vision System Toolbox [27]. The face

detector outputs square bounding boxes. These regions are

resized to a uniform size, and the left and right borders are

equally cropped such that the remaining regions have an aspect

ratio of 4:5. The borders are cropped because these areas

often contained more background pixels than face information.

Datasets containing larger images use principal component

analysis (PCA) [6] to reduce the dimensionality of the data

in both domains. When PCA is used, the basis vectors are

learned on the training data for that trial, and we use enough

basis vectors to keep 99% of the total variance. Each image is

represented by either its PCA coefficients or pixel intensities.

Once data is projected into the learned common subspace,

matching is performed via nearest neighbor matching using

the Euclidean distance in the common subspace as a measure

of similarity between the probe and gallery set of images. The

objective of our tests is to demonstrate which coupled mapping

techniques learn the most effective mappings into a common

1A viewed sketch is a sketch drawn by looking at an available photograph.
(Compare to forensic sketch, where no photo is available.)

subspace. More elaborate feature extraction techniques, such

as that presented in [5], would almost certainly improve the

performance of all the coupled mapping techniques presented.

We learn coupled mappings using an implementation of

Canonical Correlation Analysis (CCA) by Sun et al. [28],

as well as our own implementations of Simultaneous Dis-

criminant Analysis (SDA) [21] and Coupled Marginal Fisher

Analysis [22]. Each of these coupled mapping techniques

are used as initializations for MMCM, and are denoted as

MMCMCCA MMCMSDA and MMCMCMFA respectively.

For all tests using MMCM, we set λ based on previous

results showing that λ = .5 consistently performs very well

[4]. We perform approximated gradient descent using ρ = .05,

i.e., using 5% of triplets that violate the margin. The following

sections will discuss the training, gallery, and probe sets for

each dataset as well as other notes unique to each dataset.

We now briefly describe the different datasets we use to

evaluate the efficacy of the proposed cross-domain image

matching algorithm.

A. Multi-PIE (Cross-Resolution)

The CMU Multi-PIE Face Database (Multi-PIE)[29] con-

tains a total of 337 subjects captured over up to 4 sessions,

with a number of different poses, illuminations, and facial

expressions during each section. We use a subset of the Multi-

PIE datasets to consider the problem of cross-resolution face

recognition. Our training set is comprised of neutral expression

photos from the first session, comprised of 249 subjects. We

include all 20 illuminations, but only use 3 poses (yaw = −15◦,

0◦, and 15◦). Because of the large number of images, face

detections were not reviewed; instead any face detection that

was smaller than 150 × 150 pixels was discarded (less than

1% of images). The remaining faces were normalized to 200

× 160 pixels, and 4 images were randomly selected from each

subject to serve as training images and the test gallery. Low

resolution training images were generated by downsampling

and blurring the training images to 100 × 80 pixels. PCA is

used to reduce the dimension of the data.

The training set for each trial is also used as the gallery set.

We have two probe sets comprised of 100 × 80 pixel images

from the second Multi-PIE session. 166 subjects appear in both

the first and second sessions of the Multi-PIE dataset. Each

of these subjects is imaged with the same 20 illuminations

and 3 poses, as well as with 3 expressions, neutral, “surprise,”

and “squint”. We report the results using neutral probe images

separately from the other two expressions which are not

represented in the training and gallery set.

B. SCFace (Cross-Resolution)

The Surveillance Cameras Face Database (SCFace) [30]

contains 130 subjects captured at low resolutions in a sim-

ulated setting with surveillance cameras. Each subject is

captured at three distances from a portal, and 7 cameras (5

visible light, 2 near infrared (NIR)) positioned over the portal

to photograph the subject. There are additional images for

each subject, but we only use the 5 visible light surveillance

cameras, and we designate the nearest distance as the high
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(a) Multi-PIE (b) SCFace (c) LDHF (d) CUFS

Fig. 3: Sample images from each database, after Viola-Jones face detection and cropping

resolution, and the farthest of distance as the low resolution.

The high and low resolutions used are 90 × 72 and 30 × 24,

respectively. We do not use PCA for this dataset. A total of

4 HR and 7 LR images did not have any faces detected. For

these 11 images, bounding boxes are manually provided, and

these are used in the gallery and training sets. These manual

corrections are not used when the particular LR images are

included in the probe sets.

We perform two tests with the SCFace database. In the first

test, we select 4 sensors for all 130 subjects. The 520 HR

and LR images comprise the training set, and the 520 HR

images are used as the gallery set. The LR image from the

remaining sensor for each of the 130 subjects (which varies

for each subject) becomes the probe set. The second test uses

80 randomly selected subjects, and all 5 HR and LR images

comprise the training set. From the remaining 50 subjects, a

single HR images is chosen to be included in the gallery set,

and 4 LR images from the remaining sensors are included in

the probe set.

C. LDHF Database (Visible to NIR)

The Long Distance Heterogeneous Face Database (LDHF)

[31] is a dataset of 100 subjects captured at 4 distances with a

visible light and NIR camera. We use high resolution images

(1280 × 1024) captured at 1 meter, and use PCA. A single

visible light image did not have a face detected, and a manual

bounding box was used instead. The training set is comprised

of 67 subjects, and the 33 remaining visible light and NIR

images make up the gallery and probe sets, respectively.

D. CUFS (Photo to Sketch)

The CUHK Face Sketch database (CUFS) [32] contains 606

subjects with a single visible light images, and a corresponding

viewed sketch. The resolution of both the photos and sketches

is 320 × 256. There were no face detection errors for the 606

photos. Face detection was not performed on the sketches.

Instead, we use the eye landmarks provided for both photos

and sketches to align the sketches. After face detection was

performed, we calculate the average eye location within the

bounding boxes for the 606 photos. These average eye coordi-

nates are used for all the sketches, which are then cropped and

resized to the same resolution. The training set is comprised

of 404 subjects, and the remaining 202 photos and sketches

make up the gallery and probe sets, respectively.

VI. EXPERIMENTAL RESULTS

A. Face Identification

Identification tasks arise when a person’s biometric is cap-

tured, and we want to identify who the subject is among a

closed set of people. In these scenarios, we can produce a rank

ordering of gallery subjects, and determine the quality of an

algorithm by where in the ordering the first true match is. We

show the rank 1 identification rates for the SCFace “closed set”

scenario, where all subjects are included in training, and Multi-

PIE, in Table I, and cumulative match characteristic curves

(CMCs) are shown in Figure 4. In addition to the coupled

mappings, we also perform linear discriminant analysis (LDA)

as a single-domain baseline, using only low-resolution images

from the two databases for training and the gallery.

As Table I and Figure 4 show, MMCM improves on nearly

every initialization in each of the three cases, with the excep-

tion of MDS in the SCFace database. As would be expected,

probe images from Multi-PIE containing novel expressions

were much more challenging than neutral expression probe

images, which matched the neutral expression images used

in training for Multi-PIE. The best results were produced by

MMCMCCA for SCFace, and MMCMSDA for Multi-PIE.

Previous work [4] shows much lower rank 1 identification

rates on the SCFace database, under a very similar testing

regime. We attribute the large improvement to key factors.

First, the images used in this work are higher resolution. Per-

haps more significantly, the Viola-Jones face detector produces

a wider and more consistent field of view (FOV). The wider

FOV retains more information about each face; we found

that reducing the FOV to only include a smaller face region

reduced performance. Additionally, inspection of the manual

landmarks in the SCFace show that even when eye coordinates

are accurately annotated, they may not be reliable for aligning

low resolution images, as a difference of 1 or 2 pixels can
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drastically affect image appearance when the distance between

the two eyes is normalized in alignment. This phenomenon can

be seen in one of the subjects in Fig. 5. More extreme cases

appear in the dataset but we do not have the permission to

display those examples.

A separate note regarding LDA’s CMC for SCFace (Fig. 4a):

It can be seen that the identification rate only increases every

4th rank. This is because the 4 gallery images for each subject

are very tightly clustered after being projected into the LDA

subspace, making it extremely likely that a probe image will

have the 4 nearest neighbors belonging to the same subject,

as well as the next 4 nearest neighbors, and so on.

Method SCFace Multi-Pie, neutral Multi-PIE, expressions

LDA 85.37 61.46 36.67

CCA 84.30 9.23 6.43
MMCMCCA 95.19 68.77 42.03

SDA 91.61 69.45 42.94
MMCMSDA 91.16 74.17 45.06

CMFA 86.05 62.10 38.18
MMCMCMFA 92.91 68.94 40.69

MDS 49.27 59.13 35.12
MMCMMDS 47.67 64.22 36.87

TABLE I: Rank 1 identification rates (%) for each identifica-

tion scenario.

Method SCFace LDHF CUFS

CCA 36.17 21.21 25.69
MMCMCCA 27.48 16.76 23.91

SDA 30.57 – –
MMCMSDA 31.32 – –

CMFA 31.72 14.87 17.99
MMCMCMFA 28.45 15.06 17.87

MDS 35.50 15.44 12.92
MMCMMDS 36.36 15.53 12.92

TABLE II: Equal error rates (EER) for each verification

scenario.

B. Face Verification

Verification tasks differ from identification tasks in that, for

verification the probe subject is not assumed to belong to a

closed set of people. In this open set problem, we compare

gallery images to probe images on a one-to-one basis, and

use the match score to make a decision as to whether the two

images are of the same person. Table II shows the equal error

rates (EERs) for testing on the SCFace “open set” scenario,

where 50 subjects are withheld from training, as well as

the LDHF and CUFS datasets. Figure 6 shows the receiver

operating characteristic curves (ROCs) for these tests. As a

note, SDA is not trained on the LDHF and CUFS datasets, as

these databases only contain a single image in each domain

per subject.

While the results are not as consistently strong as the

identification tests, MMCMCCA still achieves the lowest EER

in the SCFace and CUFS datasets, while it is difficult to

distinguish the best performance on the LDHF database be-

tween CMFA and MMCMCMFA. The EERs are very high for

both SCFace and LDHF, across all coupled mappings. This

highlights how challenging these databases are, as designed for

Method Rank 1 Accuracy (%) Equal Error Rate (%)

Random Projections 0.49 (0.41) 49.26 (1.16)
MMCM 50.19 (3.21) 11.08 (0.97)

TABLE III: Results on CUFS sketch-to-photo matching using

random coupled mappings as well as MMCM, using the

random projections to initialize MMCM. We report the average

(µ and σ) results over 100 different random sets.

these experiments. The LDHF contains only 100 subjects, and

using only 67 subjects for training makes learning a classifier

that generalizes to unseen subjects very difficult. The poor

performance of the coupled mappings on the SCFace database,

when contrasted with 90% rank 1 identification rate in the

“closed set” scenario highlights how the testing regime can

dramatically impact results. The verification problem is made

more challenging by (a) training on separate subjects from

the testing set, and (b) only including 1 gallery image per test

subject, and including only the 4 images from other cameras

in the probe set. The low TAR rates at very low FARs could be

attributed to high match scores between images from the same

sensor, which can only occur between mismatched subjects.

VII. DISCUSSION

In this section, we will discuss a few additional properties

of our proposed coupled mapping algorithm.

A. Random Initializations

Due to the non-convex nature of the MMCM formulation,

the MMCM optimization routine needs to be initialized by a

”good” initial guess for the projections. Therefore in the previ-

ous section we used the projections learned by other coupled

mapping methods as an initialization. In this subsection we

investigate the sensitivity of our MMCM optimization routine

to the initial projections that we start with by initializing

the projections with random vectors. Table III shows the

Rank-1 and EER performance of random coupled mappings

and MMCM on the CUFS dataset. The results shown are

obtained by using 100 different random sets of coupled

mappings. While the random coupled mappings result in a

performance that is no better than random guessing, MMCM

initialized from these random projections is able to learn

coupled mappings that perform well on the sketch-to-photo

matching problem. Additionally, the low standard deviation

in the performance of MMCM across the different random

initializations suggests that MMCM is not very sensitive to

the initializations. Further, the fact that the performance of

MMCM when initialized with random projections is similar

to the performance when initialized with projections from

other coupled mapping methods suggests that even though the

objective function is non-convex, there are many reasonably

good solutions (local minima) that our optimization routine is

able to converge to.

B. Approximated Gradient Descent

We demonstrate the effect of the ρ parameter on 5 trials on

the SCFace database. SCFace is chosen because it is a larger
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Fig. 4: CMCs for each identification scenario

Fig. 5: Example of bad registration of SCFace images using

manual landmarks, outlined in green. Small inconsistencies of

1 or 2 pixels result in very poorly aligned faces.

dataset, where V+ can be very large and iterations of the full

gradient descent can be time consuming. Figure 7 shows both

the Rank 1 ID rates and the timing for optimizing MMCM.

One plot shows that the Rank 1 ID rate is consistent, with a

small dropoff from ρ = 1 to ρ = .01 (< .5%). There is a

sharper dropoff with very aggressive values of ρ which result

in the quickest optimizations. The timing measurements show

that as the chosen value of ρ is decreased, the time required

consistently decreases. When ρ = .05, the value chosen for

the tests in Section V, the time required is approximately

half of the standard gradient descent. The speedup gained by

low values of ρ is reduced by the fact that some parts of the

gradient computation are still independent of the value chosen,

and computing the objective value uses the entire set of V+

(necessary for choosing the correct value of ηt+1. Despite this,

the choice of ρ = .05 results in a 2X speedup, with very little

effect on the recognition performance.

VIII. CONCLUSION

We discussed a new coupled mapping technique, MMCM,

which is designed for cross-domain matching problems. We

explained how the MMCM objective can be efficiently solved

with an approximated gradient descent tailored to the chal-

lenges of the MMCM optimization. The effectiveness of

MMCM for various cross-domain face biometric scenarios,

including cross-resolution and cross-modality matching for

both identification and verification problems. We also include

face detection, making the results more indicative of an end-

to-end biometrics system.
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