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ABSTRACT

Advanced correlation �lters (CFs) were introduced over three decades ago to o�er distortion-tolerant object
recognition and are used in applications such as automatic target recognition (ATR) and biometric recognition.
Some of the advances in CF design include minimum average correlation energy (MACE) �lters that produce
sharp correlations and o�er excellent discrimination, optimal tradeo� synthetic discriminant function (OTSDF)
�lters that allow the �lter designer to control the tradeo� between peak sharpness and noise tolerance, maximum
average correlation height (MACH) �lter that removes correlation peak constraints to reduce �lter design com-
plexity and quadratic correlation �lters (QCFs) that extend the linear CFs to include second-order nonlinearity.
In this paper, we summarize two recent major advances in CF design. First is the introduction of maximum
margin correlation �lters (MMCFs) that combine the excellent localization properties of CFs with the very good
generalization abilities of support vector machines (SVMs). Second is the introduction of zero-aliasing correla-
tion �lters (ZACFs) that eliminate the aliasing in CF design due to the circular correlation caused by the use of
discrete Fourier transforms (DFTs).

Keywords: correlation �lters, support vector machine, aliasing, circular correlation, face recognition, iris recog-
nition, automatic target recognition

1. INTRODUCTION

Correlation �lters (CFs) have been successfully applied to a variety of pattern recognition applications32 including
automatic target recognition (ATR) and biometric recognition. ATR is a critical aspect of numerous applications
including guided weapons, autonomous surveillance, and unmanned vehicles. Biometrics are characteristics that
di�er from person to person (or group of persons), and are important in many security applications such as
accessing a secure building or system, identifying a person of interest in a scene, and determining whether a
person's actions present a threat. The term �correlation �lter� is in part due to the history of using optical
correlators to obtain cross-correlations. A review of optical correlators can be found elsewhere.32

CFs can be designed to yield correlation peaks for each target of interest in the scene while exhibiting low
response to clutter and background. Attractive properties such as shift-invariance, noise robustness, graceful
degradation, and e�cient implementation make CFs well-suited for ATR and biometric applications. In the past
decade, CFs have been used in a variety of applications including target recognition,9,20,21 target tracking,2,8

face recognition,26,27,35 face localization,3 face tracking,2 biometric encoding,1 �ngerprint recognition,33 iris
recognition,30 ocular recognition,22 pedestrian localization,4 and pedestrian action recognition.12,24

In the CF approach, a carefully designed template (loosely called a ��lter� and in some literature a �sliding
window template�) h(m,n) is cross-correlated with a query image x(m,n) to produce the output g(m,n). This
operation is e�ciently carried out in the frequency domain,

G(u, v) = X(u, v)H∗(u, v), (1)

where ∗ denotes the conjugate, andG(u, v), X(u, v) andH(u, v) are the 2-D discrete Fourier transforms (DFTs) of
the correlation output, the query image, and the template, respectively. When the query image is an authentic
match (also called true-class or Class-1) g(m,n) should exhibit a sharp peak at the center of the biometric
signature's location, and when the query image is an impostor (also called false-class or Class-2) g(m,n) should
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Figure 1. A �lter is designed using ocular images of the same subject. A test image is correlated with the �lter. If the
test image (e.g., a face) is from the same subject, the correlation plane should exhibit a sharp peak at the ocular region,
otherwise the correlation plane should not have any signi�cant peak.

not have any signi�cant peak. The higher the correlation peak, the higher the probability that the image is
authentic. This peak or some other relevant metric such as the peak-to-correlation energy (PCE) or peak-
to-sidelobe ratio (PSR) is used to determine whether the query image is from the authentic class or not. The
location of the peak indicates the location of the target in the image. Thus CFs o�er the ability to simultaneously
localize and classify an object of interest. Figure 1 shows a diagram summarizing the overall training and testing
stages. Throughout this paper we used the following terminology: target means the object of interest or biometric
signature; classi�cation means �nding the class-label of the target; localization means �nding the target's location
in a given scene (we do not assume that the targets are centered); and recognition means both classi�cation and
localization.

This paper is organized as follows. In Section 2, we present the background of CFs and highlight important
CF designs including minimum average correlation energy (MACE) �lters that produce sharp correlations and
o�er excellent discrimination, optimal tradeo� synthetic discriminant function (OTSDF) �lters that allow the
�lter designer to control the tradeo� between peak sharpness and noise tolerance, maximum average correlation
height (MACH) �lter that removes correlation peak constraints to reduce �lter design complexity and quadratic
correlation �lters (QCFs) that extend the linear CFs to include second-order nonlinearity. We summarize two
recent major advances in CF design: in Section 3 we summarize maximum margin correlation �lters (MMCFs)
that combine the excellent localization properties of CFs with the very good generalization abilities of support
vector machine (SVM), and in Section 4 we summarize zero-aliasing correlation �lters (ZACFs) that eliminate
the aliasing in the CF design due to the circular correlation caused by the use of discrete Fourier transforms
(DFTs). We o�er some concluding remarks in Section 5.

Throughout this paper, we use the following notational conventions:

• lower case non bold letters, e.g., xi(m,n), denote spatial domain 2-D arrays (also called planes or images)

� we loosely use xi(m,n) to represent both image i and the (m,n) pixel value of image i

• upper case non bold letters, e.g., Xi(u, v), denote frequency domain 2-D arrays

• lower case bold letters denote vectors (lexicographically arranged) of 2-D frequency domain arrays, e.g, xi
denotes Xi(u, v)

� we loosely refer to xi as the ith image when we mean the vectorized 2-D DFT representation of the
ith image



� we loosely refer to g as the correlation plane when we mean the vectorized 2-D DFT representation
of the correlation plane

� we loosely refer to h as the template (or �lter) when we mean the vectorized 2-D DFT representation
of the template

• lower case bold letters with an inverted hat denote vectors of 2-D spatial domain arrays, e.g, x̌i denotes
xi(m,n)

• upper case bold letters denote matrices, e.g., X = [x1, . . . ,xN ]

� some matrices are diagonal matrices representations of vectors, e.g., Xi = diag(xi)

• the ⊗ symbol denotes the 2-D correlation operator of either two 2-D arrays, e.g., gi(m,n) = xi(m,n) ⊗
h(m,n), or of the implied 2-D arrays represented by their vector versions, e.g., g = xi ⊗ h

• the � symbol denotes the Hadamard product, e.g., xi � h

• the � symbol denotes the Hadamard divide, e.g., gi � xi

• the overbar symbol denotes the mean of a set, e.g., x̄ = 1
N

∑N
i=1 xi

• the overdot symbol denotes the desired output, e.g., ġi denotes the desired gi

• the superscript T symbol denotes the transpose, e.g., hT

• the superscript asterisk symbol denotes the conjugate, e.g., X∗i

• the superscript dagger symbol denotes the conjugate transpose, e.g., h†

2. CORRELATION FILTER BACKGROUND

Most CFs are templates carefully designed using a set of training images that captures the expected distortions
(in testing). The minimum average correlation energy (MACE) �lter13 is designed to reduce the energy of the
correlation output resulting in a sharp peak at the location of the target facilitating target recognition. The
optimal-tradeo� synthetic discriminant function (OTSDF) �lter18 is an extension of the MACE �lter to achieve
robustness to additive noise. MACE and OTSDF are constrained to have a certain value for the inner product
between the training image and the �lter. This inner or dot product value is referred to as the value at the origin
(for centered images) or the correlation peak in the correlation plane (also known as the correlation output).
For example the correlation peak can be constrained to be 1 for the authentic images and 0 for impostor images
so that in testing the �lter produces a high value (near 1) for authentic images and a low value (near 0) for
impostor images.

Another advance in CF designs was removing the correlation peak constraints. Removing these constraints
increases the solution space and may improve the chances of �nding a �lter with better recognition performance.
The family of unconstrained CFs include the maximum average correlation height (MACH) �lter,15 the uncon-
strained MACE (UMACE) �lter,15 and the minimum output sum of squared error (MOSSE) �lter.4 Another
advance were quadratic correlation �lters (QCFs)9 that determine and use a quadratic nonlinearity to maximize
a metric of separation between authentic and impostor classes.

2.1 Minimum average correlation energy (MACE) �lter

The MACE �lter13 is the �rst �lter designed to control the shape of the correlation plane gi(m,n) and not just
the peak value h†xi. The correlation output shape is controlled by minimizing the average correlation energy
(ACE) of the correlation plane from the training images while simultaneously satisfying the correlation outputs
h†xi to yield a pre-speci�ed value ui for all i = {1, . . . , N}, where N is the number of training images.

The MACE �lter facilitates recognition by producing very sharp delta-function-like peaks with minimum
sidelobes for authentic class training images and no such sharp peaks for imposter training images. However the



recognition performance decreases for non-training intra-class images.5,13 In practice many images of interest
have strong low frequency components. Since the MACE �lter e�ectively whitens the spectrum (on the average),
it enhances high frequency components. It is therefore sensitive to distortions, i.e., to images outside of the
training set, as well as to additive (high frequency) noise. In practice, although this �lter has been successfully
used in pattern recognition applications,28 variations of this �lter are more robust (e.g., the OTSDF18 discussed
below).

Savvides and Kumar27 showed that the MACE �lter can be e�ciently trained online without inverting a
matrix at each iteration, thus reducing the computational requirement. The design is able to train online and
adapt to varying data streams caused by changes in illuminations, backgrounds, and/or di�erent views (e.g., due
to rotation, scale, pose, non-rigid deformation, etc).

Boddeti, Su, and Kumar1 used a modi�ed form of the MACE �lter for biometric encryption. The traditional
MACE �lter produces a sharp peak at the correlation output of centered images. The modi�ed MACE �lter
produces multiple peaks at di�erent locations by adjusting the phase of the images in the frequency domain.
This �lter is used for face veri�cation and the peak locations are used to encode a secret key of the authorized
user.

2.1.1 Derivation

The hard constraints are given by h†xi = ui, where xi represents the ith image, h represents the �lter, and ui is
the pre-speci�ed peak �lter response. The correlation plane in response to image xi is represented by gi = X∗ih,

where diagonal matrix Xi contains xi along its diagonal. The energy of the ith correlation output is Ei = 1
dg†igi,

where d is the dimension of gi and
1
d is a scalar that accounts for the fact that inner products in the space domain

are scaled by 1
d in the frequency domain. Since all the Ei {i = 1, . . . , N} cannot be simultaneously minimized

subject to X†h = u, the ACE is minimized instead. The ACE can be expressed as

Eavg =
1

N

N∑
i=1

Ei =
1

Nd

N∑
i=1

g†igi =
1

Nd

N∑
i=1

h†XiX
∗
ih

=
1

Nd

N∑
i=1

h†Dih = h†

(
1

Nd

N∑
i=1

Di

)
h = h†Dh, (2)

where diagonal matrix Di = XiX
∗
i contains the power spectrum of xi along its diagonal, and diagonal matrix

D = 1
N

∑N
i=1 Di contains the average power spectral density of the training images along its diagonal.

The quadratic h†Dh is minimized subject to the linear constraints X†h = u when

h = D−1X(X†D−1X)−1u. (3)

2.2 Optimal tradeo� synthetic discriminant function (OTSDF) �lter

The OTSDF �lter was introduced in 1990.18,19 The average correlation energy (ACE) (see Eq. 2) is denoted by
E1 = h†Dh and the output noise variance (ONV) is denoted by E2 = h†Ph, where diagonal matrix P contains
the power spectral density of the input noise along the diagonal (usually approximated by the identity matrix,
i.e., white input noise is assumed).31 Minimizing E1 typically leads to high-frequency emphasizing �lters whereas
minimizing E2 typically leads to low-frequency emphasizing �lters. Thus, minimizing one criterion signi�cantly
deteriorates the performance from the point of view of the other criterion. An optimal �lter is de�ned such that
for a given value of E1, E2 is minimized. Typically, slightly increasing the value of E1 from its minimum, greatly
improves E2, and vice-versa as shown in Fig. 2. In practice this �lter is widely used.

2.2.1 Derivation

The goal is to minimize E1 subject to a speci�ed value of E2 and to the linear constraints X†h = u (this method
could be generalized for more than two criteria). Lagrange multipliers are used to obtain the following functional

Lβ(h, β,∆) = E1 + βE2 − 2∆†(X†h− u)

= h†Dh + βh†Ph− 2∆†(X†h− u)

= h†Th− 2∆†(X†h− u), (4)



Figure 2. Tradeo� between the output noise variance (ONV) and the average correlation energy (ACE). Note that,
although not shown, the values extend beyond 1.

where 0 ≤ β ≤ ∞ is a scalar Lagrange multiplier, ∆ 6= 0 is a vector of nonzero Lagrange multipliers, and
T = D + βP. Note that negative values for β are not considered because E2 ≥ 0. The values of β lie between
β = 0 when only E1 is optimized and β = ∞ when only E2 is optimized. The solution that minimizes h†Th
subject to X†h = u is

h = T−1X(X†T−1X)−1u. (5)

In order to use a bounded scalar, β can be replaced with β = 1
λ (1− λ), where 0 ≤ λ ≤ 1, i.e.,

T = D + βP = D +
1

λ
(1− λ)P =

1

λ
(λD + (1− λ)P)

∝ λD + (1− λ)P. (6)

For λ = 1 OTSDF becomes the MACE �lter.

2.3 Unconstrained correlation �lters: MACH and UMACE �lters

The �rst unconstrained CFs introduced in 199415 were the maximum average correlation height (MACH) �lter
and the unconstrained MACE (UMACE) �lter. Previous CFs were constrained to produce an inner product of
h†xi = ui for the training images, but such hard constraints are not necessarily satis�ed by the non-training
images. Removing these constraints increases the solution space and may improve the chances of �nding a �lter
with better recognition performance.

The MACH �lter has been investigated for many applications.11,14,16,24,34 The MACH �lter is designed to
minimize the average (dis-)similarity measure (ASM), i.e., the scatter of the correlation planes, and simultane-
ously minimize the ACE and maximize the average correlation peak intensity (|ḡ|2 = |h†x̄|2). The UMACE is a
variations of the MACH �lter that ignores ASM.

Savvides and Kumar27 showed that the UMACE �lter can be e�ciently trained online and adapt to varying
data streams caused by changes in illuminations, backgrounds, and/or di�erent views (e.g., due to rotation, scale,
pose, non-rigid deformation, etc).

2.3.1 Derivation

The ideal desired correlation output that minimizes the distortion of the correlation outputs with respect to ġ
measured as the mean squared error (MSE)

e =
1

Nd

N∑
i=1

|gi − ġ|2 (7)

is found by taking the gradient of e with respect to ġ, setting it equal to zero, and solving for ġ. This gives

ġOPT =
1

N

N∑
i=1

gi = ḡ. (8)



Substituting Eq. 8 into Eq. 7 gives the ASM,

ASM =
1

Nd

N∑
i=1

|gi − ḡ|2 =
1

Nd

N∑
i=1

|X∗ih− X̄∗h|2

= h†

(
1

Nd

N∑
i=1

(Xi − X̄)(Xi − X̄)∗

)
h = h†Sh, (9)

where diagonal matrix Xi contains xi along its diagonal, and diagonal matrix S = 1
Nd

∑N
i=1(Xi − X̄)(Xi − X̄)∗

represents a measure of the similarity (or more correctly, dissimilarity) of the training images to the true-class
mean. The ACE is the previously derived quadratic h†Dh (see Eq. 2). The average peak intensity may be
expressed as

|ū|2 = |h†x̄|2 = h†x̄x̄†h. (10)

The �lter h that simultaneously maximizes the average peak intensity |ū|2 and minimizes both ASM and ACE
is obtained using the following Rayleigh quotient (RQ),

J(h) =
h†x̄x̄†h

h†Sh + h†Dh
(11)

which is maximized when
hMACH = (D + S)−1x̄. (12)

The UMACE �lter is obtained by ignoring S, i.e.,

hUMACE = D−1x̄. (13)

2.4 Minimum output sum of squared error (MOSSE) �lter

The MOSSE �lter was introduced in 2010.2 This �lter is designed to minimize the MSE between the desired
correlation plane and the actual correlation plane. The simplicity of the MOSSE �lter allows the �lter to adapt
in real time to changes due to rigid-body motion, deformation, and/or lighting. The �lter adapts by weighting
new images more, with weights for older images decaying exponentially over time. The application investigated
was adaptively recognizing faces and other objects-of-interest as the images go through di�erent changes in
illuminations and poses. It was reported that the �lter processed frames at a rate of 669 frames per second using
a standard desktop with 2.4 GHz Core 2 Duo CPU.

2.4.1 Derivation

The MSE between the correlation output g and the desired correlation output ġi of the training images is given
by

MSE =
1

Nd

N∑
i=1

|gi − ġi|2 =
1

Nd

N∑
i=1

(
g†igi − 2g†i ġ + ġ†i ġi

)
=

1

Nd

N∑
i=1

(
h†XiX

∗
ih− 2h†Xiġi + ġ†i ġi

)
= h†

(
1

Nd

N∑
i=1

XiX
∗
i

)
h− 2h†

(
1

Nd

N∑
i=1

Xiġi

)
+

1

Nd

N∑
i=1

ġ†i ġi = h†Dh− 2h†p + Ef , (14)

where diagonal matrix Xi contains the entries of the xi along its diagonal, D = 1
Nd

∑N
i=1 XiX

∗
i , p = 1

Nd

∑N
i=1 Xiġi,

Ef = 1
Nd

∑N
i=1 ġ†i ġi, and ġ represents the desired correlation output. The h that minimizes the MSE is found

by taking its gradient and setting it equal to zero and solving for h, i.e.,

h = D−1p. (15)



2.5 Quadratic correlation �lter (QCF)

QCFs were introduced in 2004.10 A disadvantage of linear CFs is that several CFs are required to handle the
wide variety of target appearances. When these CFs are applied to a test image, their outputs are compared to
select a winner. A QCF requires several linear CFs as well but has the advantage that these CFs are designed
to work together to produce a single correlation output. In addition, quadratic classi�ers are able to exploit
the higher-order statistics of the data, potentially leading to superior recognition performance. In one set of
experiments using gray-scale images, QCFs were shown to outperform other CFs.7

2.5.1 Derivation

QCF maximizes a metric of separation between the overall outputs for two classes of targets. To express this
separation metric, let x̌(c) (all the notation in this derivation is in the spatial domain) be a vectorized image from

Class c where c ∈ {1, 2} with d elements and let Q be a d × d matrix. The goals is to make y =
(
x̌(c)

)T
Qx̌(c)

large and positive when c = 1 (i.e., when the target is from Class 1) and large and negative when c = 2 (i.e.,
when the target is from Class 2). Let

φc = E

{(
x̌(c)

)T
Qx̌(c)

}
(16)

indicate the mean QCF output for all training images from Class c. In the most basic QCF design, Q is computed
such that

J(Q) = |φ1 − φ2| (17)

is a large value. In other words, a large between-class separation is desired. To enable a correlation-type QCF
implementation architecture, Q is assumed to be of the form

Q =

N1∑
i=1

f̌if̌
T
i −

N2∑
i=1

b̌ib̌
T
i . (18)

It can be shown10 that J(Q) is maximized for a given N1 and N2 when f̌1, · · · , f̌N1 and b̌1, · · · , b̌N2 are the
eigenvectors corresponding to the N1 largest positive and the N2 largest negative eigenvalues, respectively, of

R = R1 −R2, (19)

where

Rc = E

{
x̌
(c)
i

(
x̌
(c)
i

)T}
(20)

is the correlation matrix for all the training images in Class c.

To show how to apply the QCF to a test image x(m,n), �rst let test chip ž denote a vectorized subregion
(equal in size to a training image) of x(m,n) with QCF output

y = žTQž = žT

(
N1∑
i=1

f̌if̌
T
i

)
ž− žT

(
N2∑
i=1

b̌ib̌
T
i

)
ž

= žTFFT ž− žTBBT ž = v̌T v̌ − w̌T w̌, (21)

where F = [f̌1, . . . , f̌N1 ], B = [b̌1, . . . , b̌N2 ], v̌ = FT ž, and w̌ = BT ž. The value of vi (the ith element of v̌) can
be obtained for all locations within the image x(m,n) by means of 2-D correlation, i.e.,

vi(m,n) = x(m,n)⊗ fi(m,n), (22)

where the eigen�lter fi(m,n) is the f̌i eigenvector reshaped as 2-D �lter. A similar derivation can be shown for
wi (the ith element of w̌). Fig. 3 shows the architecture to apply the QCF to image x(m,n). The QCF output



Figure 3. E�cient architecture to apply the QCF to image x(m,n).

g(m,n) is

g(m,n) =

N1∑
i=1

v2i (m,n)−
N2∑
i=1

w2
i (m,n)

=

N1∑
i=1

(x(m,n)⊗ fi(m,n))2 −
N2∑
i=1

(x(m,n)⊗ bi(m,n))2, (23)

which can be e�ciently implemented in the frequency domain as

g(m,n) =

N1∑
i=1

(
F−1 {F{x(m,n)}F∗{fi(m,n)}}

)2 − N2∑
i=1

(
F−1 {F{x(m,n)}F∗{bi(m,n)}}

)2
, (24)

where F and F−1 represent the DFT and IDFT, respectively.

3. MAXIMUM MARGIN CORRELATION FILTERS

A recent breakthrough in CF design is maximum margin correlation �lters (MMCFs).20 MMCFs combine the
excellent localization properties of CFs with the very good generalization abilities of support vector machines
(SVMs). Traditionally, constrained CF designs are constrained such that the dot product of a training image and
the CF template is set to a speci�c value. In the MMCF formulation, however, this hard constraint is removed
and is replaced with an inequality constraint instead; the dot product of a training image and the CF template
must be larger than or equal to some value.

MMCFs is designed as a tradeo� between maximizing the distance between the hyperplane and data points
(i.e., maximizing the margin as in SVM) and minimizing the ACE in order to have a sharp peak in the correlation
output. The MMCF multi-objective function can be written as follows,

min
h,b

λh†h + C

N∑
i=1

ξi + (1− λ)h†Dh (25)

s.t. ti(h
†xi + b) ≥ ui − ξi,

where ui = 1 and ti = 1 for true-class images, ui = 0 and ti = −1 for false-class images, h†h + C
λ

∑N
i=1 ξi

is the margin criterion, h†Dh is the ACE criterion, and 0 < λ ≤ 1 is the parameter which trades-o� margin
maximization and energy minimization (i.e., sharp peaks used for object localization). Setting λ = 1 will ignore
the localization criterion and result in the conventional SVM classi�er for centered images. Subsuming one



(a) Pickup truck (b) Target localization (c) Correlation Output

Figure 4. The MMCF response (in (c)) to the test image (in (b)). The MMCF is designed to produce a large value for
the pickup truck image (in (a)) and small values for background. The green box shows the ground truth target window,
and the red box show the window at the highest correlation value.20

quadratic term into the other quadratic term, Eq. 25 can be written as follows,

min
h,b

h†Sh + C

N∑
i=1

ξi (26)

s.t. ti(h
†xi + b) ≥ ui − ξi,

where S = λI + (1− λ)D. The MMCF objective function can be written as follows,

min
h̃,b

h̃†h̃ + C

N∑
i=1

ξi (27)

s.t. ti(h̃
†x̃i + b) ≥ ui − ξi,

where h̃ = S
1
2 h and x̃i = S−

1
2 xi. This is the SVM objective function which means that the MMCF design can

be implemented using a standard SVM solver by using transformed images to �nd h̃.

MMCF has been tested against SVM, OTSDF, MACH, and MOSSE in various computer vision tasks including
ATR in a large scene, eye localization in face images, and face classi�cation in centered images. The details of
these experiments are found elsewhere.20 ATR required localizing (in a large scene) and classifying eight targets
in 1600 images (see Fig. 4 for one test image and correlation output). The recognition performance of the top
three classi�ers were MMCF (74.3%), SVM (56.7%), and OTSDF (37.9%). Eye localization required correctly
detecting the left and right eyes in 2200 people in the FERET17 dataset. The top three classi�ers were MMCF
(96.4%), MOSSE (93.5%), and SVM (88.6%). Face classi�cation required classifying a face into 337 possible
classes (the number of subjects) from the Multi-PIE database.? The top three classi�ers were MMCF (73.5%),
MOSSE (64.3%), and OTSDF (55.2%). In all the experiments, MMCF outperformed SVM and state-of-the-art
CFs.

4. ZERO-ALIASING CORRELATION FILTERS

In the frequency domain, correlation may be represented as an element-wise multiplication between the DFTs
of two signals. However, it is well known that multiplying two DFTs together results in a circular correlation,
rather than a linear correlation. In the past, CFs have been formulated with this element-wise multiplication,
which implicitly assumes a circular correlation. However, CFs are applied to test data using linear correlation.
Therefore, there is an inconsistency between how CFs are designed and how they are applied.

This problem was �rst explored by Sudharsanan, et al.,29 in which the well-known MACE �lter was re-
formulated in the space domain. While this CF avoided circular correlation e�ects, it required a cumbersome



(a) DFT: 92×92 (b) DFT: 128×128 (c) DFT: 183× 183 (d) DFT: 183× 183

Figure 5. (best viewed in color) (a-c) The designed templates using di�erent DFT sizes; note that the tail of the templates
(for (b) 128× 128 and (c)183× 183) are non-zero. (d) The designed 183× 183 template using the ZAMACE formulation;
note that the tail of the template is constrained to be all zero (denoted by the color red).

formulation that was very ine�cient to compute. Despite this work, the circular correlations in CF design were
largely assumed to be approximately the same as linear correlation, and, as such, CF designs over the years
continued to ignore the circular correlation issues in their frequency domain formulations. Recently, Rodriguez
and Vijaya Kumar23 explored several di�erent methods to reduce circular correlation e�ects during CF design.
These methods include various methods of padding training images or windowing training images to reduce edge
e�ects. However, none of the methods presented adequately deal with eliminating circular correlation. In 2013,
Fernandez and Vijaya Kumar6 introduced a solution to the long standing problem of circular correlation in CF
designs. This solution, known as zero-aliasing correlation �lters (ZACFs) imposes zero-aliasing constraints on
the CF design to ensure that the multiplication of DFTs in the frequency domain does in fact correspond to a
linear correlation.

In this section, we illustrate the circular correlation problem with existing CF designs. Then, we introduce
the ZACF formulation for the MACE �lter, and illustrate how it leads to improved recognition performance.

4.1 Circular correlation problem in existing CF designs

When CFs are designed in the frequency domain, the resulting template is of the same size as the DFT used
to train the CF. Typically, CFs have been designed either using a DFT the size of the training images or a
DFT of size 2d− 1, where d is size (number of pixels) of the image. The rationale for the latter is that, by zero
padding training images, the DFT-based correlation will correspond to a linear correlation, rather than a circular
correlation. While this assumption has been used greatly in practice, it is not accurate. To see why, we illustrate
three resulting templates in Fig. 5(a-c). Here, we train a MACE �lter using face images of size 92× 92. We use
three di�erent DFT sizes: 92 × 92, 128 × 128, and 183 × 183. In each case, we obtain a template of a di�erent
size, equal in size to that of the DFT that was used. Note that the three templates are di�erent from each other.
Furthermore, the values in the tail of the templates are all non-zero, regardless of how much zero padding is
used on the training images. Therefore, the element-wise multiplication of the DFT of the CF template and the
DFT of the training images will always represent a circular correlation, regardless of zero padding.

To �x the circular correlation problem, we introduced hard constraints on the CF design that force the tail
of the template to zero. We require that training images are padded and a DFT of size 2d − 1 is used. By
zero-padding training images and imposing constraints on the �lter design, we obtain a template that is all zeros
in the tail. The element-wise multiplication of the DFT of this template with DFTs of padded training images
corresponds to a linear correlation, rather than a circular correlation. An example template obtained from the
ZACF approach is shown in Fig. 5(d).

The zero-aliasing MACE (ZAMACE) �lter is formulated as follows.6 Note that this formulation is for 1D
signals; the details for 2D signals (images) are found elsewhere.6 As in the MACE design, the ACE (see Eq. 2)
is minimized subject to the peak constraints

X†h = u. (28)



For the ZAMACE formulation, zero-aliasing constraints are imposed (which force the tail of the template to
zero), i.e.,

A†h = 0 (29)

where A is a matrix formed from the IDFT matrix

A† =


1 ej2π(1)(Nx)/N · · · ej2π(N−1)(Nx)/N

1 ej2π(1)(Nx+1)/N · · · ej2π(N−1)(Nx+1)/N

...
...

. . .
...

1 ej2π(1)(N−1)/N · · · ej2π(N−1)(N−1)/N

 . (30)

These constraints (i.e., Eq. 28 and Eq. 29) can be jointly represented as

B†h = k (31)

where

B† =

[
X†

A†

]
and k =

[
u
0

]
. (32)

Minimizing the ACE in Eq. 2 subject to the linear equality constraints in Eq. 31 leads to the new ZAMACE
�lter6 given by

h̄ = D−1B(B†D−1B)−1k (33)

The superior performance of the ZAMACE �lter is demostrated by correlating it and the original CF templates
with one of the images from the training set. In Fig. 6(a-c), the correlation outputs exhibit higher ACE than
the zero-aliasing case shown in Fig. 6(d). This is because the original MACE formulation implicitly assumes
circular correlation, and, as such, is not actually minimizing the ACE from a linear correlation. ZAMACE, on
the other hand, minimizes the ACE of a linear correlation. The result is a correlation output that features a
sharp peak and very low sidelobes, which is the primary objective behind the MACE �lter.

We showed that the ZAMACE �lter exhibits signi�cantly better performance than the conventional MACE
�lter. Using the AT&T/ORL Face Dataset,25 we tested classi�cation performance for human faces. The
AT&T/ORL dataset features 10 images of 40 di�erent subjects. Using leave-one-out cross validation, we built
CFs using 9 images of each subject, testing on the remaining image of each subject. This was repeated 10 times.
We achieved a lower equal error rate for the ZAMACE �lter (0.086) compared to a conventional MACE �lter
using padded training images (0.17). Details can be found elsewhere.6

ZACFs o�er a fundamental and signi�cant solution to the long-standing issue of circular correlation in CF
designs. ZACFs trained using zero-aliasing constraints satisfy the original objective function (minimize the
ACE) better than the original MACE �lter by ensuring that the objective function accurately represents a linear
correlation. The result is signi�cantly improved recognition performance.

5. CONCLUSION

In this paper we reviewed important CFs and cited works where CFs have been successfully used for a variety of
ATR and biometric applications, including vehicle recognition, target tracking, face recognition, face localization,
face tracking, identi�cation encoding, �ngerprint recognition, iris recognition, ocular recognition, pedestrian
localization, and human actions. We summarized two recent breakthroughs in CFs: MMCFs and ZACFs and
their superior performance in various ATR and biometric experiments.



(a) MACE, DFT: 92× 92 (b) MACE, DFT: 128× 128

(c) MACE, DFT: 183× 183 (d) ZAMACE, DFT: 183× 183

Figure 6. Correlation outputs for (a-c) three examples of MACE �lters and (d) the ZAMACE �lter.
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