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Abstract

Achieving sub-pixel accuracy with face alignment algo-
rithms is a difficult task given the diversity of appearance
in real world facial profiles. To capture variations such as
perspective, illumination or occlusion, with adequate pre-
cision, current face alignment approaches rely on detect-
ing facial landmarks and iteratively adjusting deformable
models that encode prior knowledge of facial structure.
However, these methods involve optimization in latent sub-
spaces, where user-specific face shape information is eas-
ily lost after dimensionality reduction. Attempting to retain
this information to capture this wide range of variation re-
quires a large training distribution, which is difficult to ob-
tain without high computational complexity. Subsequently,
many face alignment methods lack the pixel-level accuracy
necessary to satisfy the aesthetic requirements of tasks such
as face de-identification, face swapping, and face model-
ing. In many applications, the primary source of aesthetic
inadequacy is a misaligned jawline or facial contour. In
this work, we explore the idea of an image-based refine-
ment method to fix the landmark points of a misaligned fa-
cial contour. We propose an efficient two stage process -
an intuitively constructed edge detection based algorithm to
actively adjust facial contour landmark points, and a data-
driven validation system to filter out erroneous adjustments.
Experimental results show that state-of-the-art face align-
ment combined with our proposed post-processing method
yields improved overall performance over multiple face im-
age datasets.

1. Introduction

Given an estimated facial contour returned from face
alignment, our objective is to refine the contour such that
it is closer to the true facial boundary. Accurately detect-
ing facial boundaries is a challenging problem because the
contours of facial profiles in the real world are subject to a
broad range of variations in illumination, occlusion, noise,
and individual differences. A facial contour in an image
may be partially occluded by hair, faded into the wrinkles,
or hidden by shadows. The challenge presented by these

Figure 1: Alignment refinement result. Initial facial contour
(red) and refinement result (green).

problems is further compounded by having to consider the
variations in jawline structure and individual facial features
that may cause irregularities in the facial outline. Handling
such variation at a high level of detail is the key to designing
a robust face alignment contour refinement algorithm.

With the explosive increase in personal photos across the
web nowadays, the popularity of face alignment in modern
applications is rapidly growing. For many of these appli-
cations, e.g., face de-identification, face swapping, and face
modeling, the aesthetic quality of the aligned facial bound-
ary is quite sensitive to slight misalignment. In the case of
face swapping, an estimated facial contour extending past
the true facial boundary will introduce background artifacts
onto the output face. The main motivation behind the work
is an application-side demand for more accurate face align-
ment results.

Despite the abundance of research on face alignment,
many state-of-the-art methods are not able to align an esti-
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mated facial shape to the true facial boundary with sub-pixel
accuracy. Face alignment typically involves an optimization
problem where the goal is to match some deformable face
model to the true face shape as closely as possible using
detected facial features as anchor points. During this op-
timization, the face shape model is often parametrized or
constrained resulting in the loss of the fine detailed infor-
mation about the facial contour. In this paper, we propose a
flexible facial contour refinement method to correct the fa-
cial contour inaccuracies of generic face alignment methods
using a data-driven post-processing technique.

Based on observations over various state-of-the-art face
alignment results [4, 12, 14, 1], we propose a two-step ap-
proach for fixing facial contour misalignment. In the first
step, we introduce the active adjustment algorithm respon-
sible for shifting individual landmark points that constitute
the facial contour. The shifting is performed heuristically
based on edge response, the distance from the initial con-
tour estimate returned from alignment, and edge direction.
In the second step, we introduce a data-driven validation
process that reinforces the overall performance of the ac-
tive adjustment algorithm by training a classifier to deter
the refinement process from making potentially erroneous
adjustments.

2. Related Works
Face alignment is a very challenging and well-studied

problem. Active Shape Models [6] and Active Appearance
Models [5] are the most well known and widely used mod-
els for shape-fitting. Constrained Local Models [1, 16, 7]
are another class of approaches for face alignment that are
largely focused on global spatial models built on top of local
landmark detectors. Recently many discriminative shape-
based regression approaches [4, 15] have been proposed in
the literature. Instead of relying on parametrized appear-
ance and shape models, these approaches leverage large
amounts of training data to learn a cascade of regressors,
mapping image features to the final facial shape.

The task of refining the contour of a face shape is sim-
ilar to the problem of contour fitting. Contour fitting gen-
erally requires some form of boundary detection, followed
by an optimization step, where the fitting of a deformable
contour model over the boundaries of interest is performed.
Some methods iteratively re-sample adaptive spline models
[9, 13] while other methods apply dynamic programming
to energy-minimizing deformable contours [2]. The task of
facial contour refinement however, differs from the task of
contour fitting in that facial contour refinement is given a
close initial alignment. Assuming that the results from face
alignment return a reasonable estimate of the facial contour,
refinement needs to actively work with this information in
order to accurately adjust the contour under a wide range
of image variation. Furthermore, because the results from

boundary detection can sometimes be noisy or misleading,
refinement also needs to be conservative in order to mini-
mize the number of erroneous adjustments. In this work,
our goal is to construct a refinement algorithm that maxi-
mally improves the accuracy of an estimated facial contour
only for those images that are problematic.

3. Problem
In a two-dimensional digital face image I , a face shape

S = {pi ∈ R2}Ni=1 consists of N facial landmark points
pi = (xi, yi). The goal of face alignment is to estimate a
shape S as close as possible to the true shape Ŝ, e.g. to
minimize

||S − Ŝ||2 (1)

Among theN points that constitute a face shape S, there are
M < N points that make up the facial contour C = {pi ∈
S}Mi=1. Given S, our objective is to fine-tune alignment con-
tour C to be closer to the true contour Ĉ = {p̂i ∈ Ŝ}Mi=1

after refinement, e.g. to maximize

Error(Cbefore, Ĉ,mp)− Error(Cafter, Ĉ,mp) (2)

where mp is the performance metric, Cbefore and Cafter are
the alignment contours before and after refinement respec-
tively. Equation 2 semantically represents contour improve-
ment, and will be used to guide training and evaluate the
performance of our post-processing approach. As part of
our objective, we want this value to be as consistently posi-
tive as possible.

4. Facial Contour Refinement
In this section, we first introduce our active observation-

based adjustment process. Conceptually, the algorithm in-
dividually adjusts each landmark point pi of a given align-
ment facial contour C ⊂ S by shifting it to the nearest,
strongest edge that is closely parallel to the facial outline
originally generated by alignment contour C. But since this
method is constructed on the basis of human intuition, it
remains incapable of performing robustly under the wide
range of misalignment variations in illumination, noise, oc-
clusions, etc. Hence, if used without proper discretion,
this algorithm is susceptible to performing ”bad” adjust-
ments. Therefore, we present a compatible data-driven val-
idation framework, in which we conditionally perform the
active adjustments based on prior post-refinement observa-
tions. Given that each facial contour consists of M land-
mark points, we train M distinct SVMs over a large col-
lection of training faces in order to be able to determine,
per contour at test time, which alignment landmark points
should undergo active adjustments and which points should
be left alone in order to maximize the overall contour im-
provement. As we shall see later, this form of preemptive
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filtering is necessary in our refinement approach in order to
conceivably maintain positive contour improvement as con-
sistently as possible.

4.1. Active Refinement

Our active adjustment algorithm is based on three ma-
jor observations. The first observation is that a true facial
boundary is more likely to be located on an edge than any-
where else. Given a landmark point pi in facial contour
C, a naı̈ve adjustment algorithm reflecting this observation
would shift pi to the point with the strongest edge response
within some small search radius r, e.g.

P = {s ∈ R2 : ||pi − s||2 < r}

fh(p) = Edge(p)

Refine(pi) = {p ∈ P s.t. fh(p) = max
s∈P

fh(s)} (3)

where Edge(x) ∈ [0, 1] returns the edge response for a point
x. Our second observation is that the pre-refined alignment
facial contour serves as an adequate estimate for the true fa-
cial boundary. To incorporate this into the first observation
reflected in Eq. 3, we add a distance factor to the heuristic
function fh(p), e.g.

fh(p) = w1Edge(p) + w2

(
1− ||pi − p||2

r

)
Refine(pi) = {p ∈ P s.t. fh(p) = max

s∈P
fh(s)} (4)

where w1 and w2 are weights. The refinement algorithm in
Eq. 4 using the new heuristic function, as it currently stands,
may adjust landmark points to edges that do not retain the
innate facial structure estimated from alignment. In other
words, the variation in edge direction is not properly con-
strained, i.e. erroneously shifting a landmark point around
the chin to the edge of a collar directionally perpendicular to
the outline generated by the true facial contour. So our final
observation, conceptually derived from our second observa-
tion, is that the outline generated by pre-refined alignment
facial contour should be near parallel to the outline gener-
ated by the true facial boundary.

Under all three observations, the ultimate goal of our ac-
tive refinement algorithm is to move each landmark point to
the nearest, strongest edge segment that is near parallel to
the outline generated by the alignment facial contour. See
Figure 2. More specifically, for each alignment landmark
point pi in facial contour C, we generate a series of cas-
cading line segments parallel to the outline generated by C,
each line segment explicitly defined as a collection of points
in a single direction e.g.

vic = pi+1 − pi−1 vip = (−vicy , vicx )

Figure 2: Active adjustment. The landmark point (red) is
updated to a new location (green) by searching along a line
perpendicular to the tangent line (dashed cyan line).

bi = pi −
r

2

(
vic
||vic ||

)
− r
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(
vip
||vip ||

)
pkj = bi +

r

3σ
k(vip) +

r

3σ
j(vic)

L = {Lk}3σk=1 Lk = {pkj}σj=1 (5)

where pi+1 and pi−1 are neighboring alignment contour
points of pi, and σ is a saturation value. A score is computed
for each line segment in L based on the heuristic function
fh(p) in Eq. 4

score(Lk) =
σ∑
j=1

fh(pkj )

σ
(6)

and pi is shifted to the midpoint of the line segment with the
highest computed score from Eq. 6, e.g.

Lbest = {Lk ∈ L s.t. score(Lk) = max
l∈L

score(l)}

Lbest = {pbestj}σj=1

Refine(pi) = pbestdσ
2

e (7)

4.2. Data-Driven Validation

An observation-based edge detection approach to refine-
ment is sufficient to fix the easy misalignment cases. How-
ever, a large percentage of misaligned landmark points is
still difficult to assess and fix, even to the human eye. We
address this problem by adopting a data-driven approach to
recognize and preemptively avoid such difficult cases. For
each of theM landmark points that make up a facial contour
C, we train a binary SVM to classify each corresponding
landmark as an easy or difficult case. In order to minimize
the total number of erroneous adjustments, these classifiers
are used to limit the refinement algorithm from adjusting
the difficult cases.

Contrast normalized pixel values extracted from a small
region around each point serve as the features used to train
the classifiers. These patches are rotated with respect to the
outline generated by the alignment facial contour such that
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Figure 3: Refinement pipeline: (1) select landmark patches to be updated (green boxes), (2) adjust landmark positions, (3)
return updated landmarks.

the right side of the patch is further away from the face than
the left side. At test time, prior to running the active adjust-
ment algorithm for each landmark point, we generate a fea-
ture vector reflecting the small rotated square region around
the point. If the SVM classifies the region as likely to facil-
itate negative improvement after refinement, then we skip
active adjustment for that particular landmark point. This is
done before the adjustment of each landmark point of every
test facial contour. Since our objective for face alignment
post-processing is to maintain positive improvement as con-
sistently as possible, this validation framework essentially
reinforces the dependability of the active adjustment algo-
rithm by learning and avoiding potential erroneous adjust-
ments. Figure 3 illustrates the role of the validation frame-
work within the refinement approach.

5. Experiments
In this section, we provide some experimental analysis

which highlights the advantages of our proposed facial con-
tour refinement approach. The experiments are designed to
demonstrate the validity of our active adjustment method,
illustrate the intuition behind the validation framework, and
evaluate the quantitative and qualitative performance of our
refinement approach as a whole.
Face Alignment For our experiments, we use Face Align-
ment Robust To Occlusion [1], which approximates face
shape S and returns N binary labels corresponding to the
estimated state of occlusion for each individual landmark
point in S. Since our approach was not designed to be ro-
bust for occluded landmark points, during refinement we
limit our adjustments to the non-occluded points in order
to minimize the number of misalignment cases attributed to
occlusions.
Datasets We demonstrate the efficacy of our contour re-
finement approach, by evaluating it on three different face
datasets namely, HELEN [11], “Labeled Face Parts in the
Wild” (LFPW) [3] and “Anootated Faces in the Wild”

Figure 4: A conceptual visualization of the error metric in-
troduced in Equation 9. The accuracy of some point pk ∈ C
is measured by its distance to the facial outline generated by
the true contour Ĉ (blue).

(AFW) [16]. For consistent cross-database annotations,
we used the generated annotations provided by IBUG [10].
Each dataset presents a different challenge due to varying
degrees of image quality and facial variation. The HELEN
dataset contains 2,000 training and 300 testing high reso-
lution images obtained from Flickr. The LFPW face im-
age dataset features 1,132 training and 300 testing images
pulled from the Internet using simple search queries. The
facial images in both of these datasets feature exhibit a wide
range of appearance variations including pose, lighting, fa-
cial expressions, occlusion, and individual differences. The
AFW dataset consists of 250 images with 468 faces out of
which we isolate 100 images for testing, and use the rest for
training. Most of the faces from this dataset have poor im-
age quality and/or low resolution and consist of faces cap-
tured under unconstrained conditions.
Edge Detection In our experiments, we use the fast edge
detection method proposed by Dollár and Zitnick [8]. Ca-
pable of multi-scale edge detection, this edge detector fea-
tures superior run-time complexity while maintaining state-
of-the-art edge detection performance.
Error Metric If we derive from the metric in Equation 1,
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then the facial contour error is computed as

Error(C, Ĉ) = ||C − Ĉ||2 (8)

The relative position of each estimated landmark point pi
on the alignment facial contour C is likely to differ from
the relative position of its ground truth counterpart p̂i in Ĉ.
Unfortunately, the error metric in Eq. 8 does not capture
this variation. So we adopt a new error metric mp that con-
ceptually reflects the perpendicular distance between each
landmark point of C to the outline generated by the true
contour Ĉ (see Fig. 4), e.g.

Error(pk,mp) =
|(p̂n − p̂m)× (p̂k − p̂m)|

||p̂n − p̂m||2
(9)

Error(C, Ĉ,mp) =

M∑
i=1

Error(pi,mp)

ϕ̂
(10)

where p̂n, p̂m ∈ R2 denote the two landmark points in Ĉ
closest to pk via Euclidean distance and ϕ̂ represents the
true inter-pupillary distance. We use the per-point error
metric in Equation 9 to guide validation training, and the
relative accuracy improvement metric (semantically defined
as the % error reduced after refinement)

Error(Cbefore, Ĉ,mp)− Error(Cafter, Ĉ,mp)

Error(Cbefore, Ĉ,mp)
(11)

and the absolute accuracy improvement metric

Error(Cbefore, Ĉ,mp)− Error(Cafter, Ĉ,mp) (12)

in conjunction with Eq. 11 to evaluate the performance of
our post-processing approach.

5.1. Performance of observation-based refinement

In section 4.1, we described the three major observa-
tions around which our active adjustment algorithm is struc-
tured. Recall that with each major observation, we in-
tuitively modified our adjustment algorithm to reflect that
observation. In this experiment, we demonstrate how the
integration of each modification works to boost the over-
all performance of our refinement approach. We train and
test the complete refinement approach three times while
swapping out the adjustment algorithm each time; once us-
ing Eq. 3 (one incorporated observation), once using Eq.
4 (two incorporated observations), and once using Eq. 7
(all three incorporated observations). Since the training of
the data-driven validation framework learns from the pre-
filtered performance of the active adjustment algorithm over
the training image dataset, the adjustments algorithms are
changed before each training session to reflect the swapped
adjustment equations used respectively during testing. Ad-
ditionally, it is important to note that even though we used

Figure 5: Comparison of different active adjustment algo-
rithms in Equation 3, Equation 4, and Equation 7. Relative
accuracy improvement is based on Equation 11.

the Helen dataset to generate the results of this experiment
in Fig. 5, the results generated by the LFPW and AFW
datasets were consistently similar. For this experiment, as
well as the following experiments, we empirically chose the
active adjustment parameters to be σ = 5, r = ϕ/4 (where
ϕ is the detected inter-pupillary distance) for a good trade-
off between accuracy and computational cost.

Figure 5 illustrates the relative accuracy improvement
(Eq. 11 with Eq. 10) of every test face (sorted by improve-
ment). We see that incorporating the second observation
made in section 4.1 to formulate Eq. 4 worked very well in
reducing the number of cases where the naive implementa-
tion using Eq. 3 would have inaccurately shifted a landmark
point to an outlier edge. Reducing the search space effec-
tively reduced the possibility of misalignment. Addition-
ally, we see that the active adjustment algorithm using Eq.
7 was able to further reduce some of the outlier misalign-
ment cases attributed to the edge direction variation. Note
that incorporating all three observations made in section 4.1
yields the best overall performance.

5.2. Verifying the data-driven validation framework

For this experiment, we verify the effectiveness of the
data-driven validation framework used to reinforce the over-
all performance of the active adjustment algorithm.
Parameter Settings In our experiments, the C-SVC SVM
was trained with the polynomial kernelK(u, v) = (γuT v+
c)d where the parameters were empirically chosen as γ = 2,
c = 1, d = 3 for consistent cross-dataset performance. For
both training and testing, given detected face shape width
w, the size of the localized square patches around each land-
mark point were set at l × l pixels where l = w

10 .
Figure 6 presents a comparison between the refinement

results with and without the data-driven validation frame-
work. We see that although the accuracy improvement of
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Figure 6: Comparison of refinement with and without the
data-driven validation framework described in section 4.2.
Relative accuracy improvement is based on Eq. 11.

some of the face shapes were not as high with the validation
process as they were without it, nonetheless the total num-
ber of erroneous adjustments was significantly reduced with
the validation process. The results of the refinement with
the validation framework are much more desirable since our
objective is to improve alignment accuracy through active
adjustment while reducing the total number of erroneous
adjustments as much as possible.
Visualizing the validation framework

Figure 7 illustrates the localized patches around land-
mark points with the lowest and highest decision values
from the SVM, and their weighted averages. From the vi-
sualization of the averages, we see that the SVM learns
to avoid adjusting landmark points that are already located
near a strong gradient (presumed to be the true facial con-
tour). On the other hand, the SVM also learns to favor ad-
justments to be made for points that are only slightly off
from a strong gradient, since the active adjustment algo-
rithm is more likely to successfully improve the accuracy of
a smaller case of misalignment.

It is also interesting to note that since the patches are lo-
calized such that the right side of the patch is further away
from the face than the left side, the average patches over
the highest decision values seem to imply that better ad-
justments are made for points that located away from the
face, as opposed to points that lie directly on the face. This
makes sense, because an edge detection based adjustment
algorithm is much more likely to fail due to wrinkles, fa-
cial hair, or other similar edge-like facial features. This is
why the validation framework is important and necessary to
minimize the possibility of erroneous adjustments.

5.3. Quantitative Evaluation

In this experiment, we directly evaluate the absolute con-
tour accuracy improvement of the refinement method over

Helen Dataset

AFW Dataset

LFPW Dataset

Figure 7: For each dataset, the left mosaic presents the top
100 patches around the landmark points with the lowest de-
cision values from the SVM. The patch highlighted in red is
the weighted average over the pixel intensities of all patches
in the left mosaic. Similarly, the right mosaic presents the
top 100 patches around the landmark points with the highest
decision values, and the patch highlighted in green is their
weighted average over pixel intensities.

all three datasets. Fig. 8 illustrates the average absolute
accuracy improvement for each landmark point for every
face in each database after refinement. Refinement does
reasonably well in the Helen dataset where image quality
and ground truth annotation accuracy are both high. Refine-
ment performs quite consistently with the LFPW dataset.
And finally, as expected, refinement did not do so well in
the AFW dataset, where ground truth annotations lacked
sub-pixel accuracy, and image quality was sometimes very
low (featuring some faces with widths < 200 pixels). Rel-
ative differences in accuracy improvement between land-
mark point indices can reflect the structural weaknesses of
the deformable facial models being optimized during face
alignment. Overall, the refinement process generally does
well to improve the accuracy of face alignment [1]. Table
1 summarizes the computed average contour error (Eq. 12)
over every face for each dataset before and after refinement.

5.4. Qualitative Evaluation

It is important to keep in mind though that the quanti-
tative experiments may not be completely representative of
the true performance of the refinement approach. The main
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Figure 8: Comprehensive quantative results over the Helen[11], AFW [16], and LFPW [3] datasets. One the left we show
rhe 17 landmark points from alignment [1]) used to describe the facial contour and the graphs display the average absolute
accuracy improvement (Equation 12) for each landmark point over all test images in each dataset.

Table 1: Mean Contour Error of [1] (in %)

Dataset Before Refinement After Refinement
Helen [11] 3.6639 3.4587
AFW [16] 4.9339 4.8610
LFPW [3] 3.4083 3.2720

motivation behind the construction of this method was, after
all, to improve upon the aesthetic quality of state-of-the-art
face alignment results. Furthermore, the ground truth an-
notations provided by the datasets that we used were built
for the purpose of evaluating face alignment performance,
where sub-pixel accuracy for each and every landmark point
is typically not to be expected, especially for very high res-
olution images. Therefore, our experiments require a quali-
tative evaluation to give a better picture of overall aesthetic
improvement in face alignment results after refinement. For
each test face image across all datasets, we generate a copy
of the face image where the face alignment contour points
before refinement are highlighted in red and the shifted con-
tour points after refinement highlighted in green. See Figure
9. Table 2 summarizes the average results of our question-
naire, where 3 subjects are asked to step through all test face
images of each dataset, and judge whether or not the con-
tour improved after refinement. If no contour change was
observed, or if there was some difficulty in discerning the
state of contour improvement, the subjects were asked to
mark ‘uncertain’ on the questionnaire.

Table 2: Contour Improvement: Qualitative Evaluation (%)

Dataset Yes No Uncertain
Helen [11] 90.2516 5.3459 4.4025
AFW [16] 59.6667 6.3333 34.0000
LFPW [3] 95.8333 2.7778 1.3889

We see that for most test face images from the Helen
and LFPW datasets, the subjects noticed an improvement in

Figure 9: Sample refinement visualization (image from
LFPW) shown to subjects during qualitative evaluation.

the accuracy of the facial contour. However, for the AFW
dataset, the subjects had some difficulty in judging whether
or not there was improvement - this is likely due to the fact
that this dataset contains many images with faces that have
a low resolution. Overall, the qualitative tests overwhelm-
ingly suggest that our refinement approach facilitates an im-
provement in the aesthetic quality of face alignment results.

6. Discussion
We proposed an observation-based active adjustment al-

gorithm to fix the inaccurate landmark points of a given con-
tour from a face shape returned from face alignment. To
reinforce the performance of this algorithm, we introduced
a data-driven validation framework to learn the weaknesses
of the algorithm and to minimize the number of erroneous
adjustments from refinement. Our evaluation demonstrates
that our approach is capable of consistently improving the
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(a) (b) (c)

(d) (e) (f)

Figure 10: A face swapping example where the sample con-
tour refinement result from Figure 1 (a) blends into back-
ground face (b). Raw face swapping using the face align-
ment without refinement (c) and with refinement (d). Pois-
son blending over the face replacement results using face
alignment without refinement (e) and with refinement (f).
The dark regions of the background captured by the mis-
aligned facial contour force the bottom half of the face to
be discolored. Note the difference in illumination between
(e) and (f). Using refinement to reduce facial contour mis-
alignment can effectively reduce the facial boundary noise
that affects face swapping results.

sub-pixel accuracy as well as the aesthetic quality of a given
facial contour. The active adjustment algorithm can also
be applied to other problems like object contour refinement
and structure segmentation boundary refinement.
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