
Perturbative Neural Networks

Felix Juefei-Xu
Carnegie Mellon University

felixu@cmu.edu

Vishnu Naresh Boddeti
Michigan State University

vishnu@msu.edu

Marios Savvides
Carnegie Mellon University

msavvid@ri.cmu.edu

Abstract

Convolutional neural networks are witnessing wide adop-
tion in computer vision systems with numerous applications
across a range of visual recognition tasks. Much of this
progress is fueled through advances in convolutional neu-
ral network architectures and learning algorithms even as
the basic premise of a convolutional layer has remained un-
changed. In this paper, we seek to revisit the convolutional
layer that has been the workhorse of state-of-the-art visual
recognition models. We introduce a very simple, yet effective,
module called a perturbation layer as an alternative to a
convolutional layer. The perturbation layer does away with
convolution in the traditional sense and instead computes its
response as a weighted linear combination of non-linearly
activated additive noise perturbed inputs. We demonstrate
both analytically and empirically that this perturbation layer
can be an effective replacement for a standard convolutional
layer. Empirically, deep neural networks with perturba-
tion layers, called Perturbative Neural Networks (PNNs),
in lieu of convolutional layers perform comparably with stan-
dard CNNs on a range of visual datasets (MNIST, CIFAR-10,
PASCAL VOC, and ImageNet) with fewer parameters.

1. Introduction
Deep convolutional neural networks (CNNs) have been

overwhelmingly successful across a variety of visual percep-
tion tasks. The past several years have witnessed the evolu-
tion of many successful CNN architectures such as AlexNet
[14], VGG [27], GoogLeNet [30], ResNet [8, 9], MobileNet
[10], and DenseNet [11], etc. Much of this effort has been
focused on the topology and connectivity between convolu-
tional and other modules while the convolutional layer itself
has continued to remain the backbone of these networks.
Convolutional layers are characterized by two main proper-
ties [17, 5], namely, local connectivity and weight sharing,
both of which afford these layers with significant computa-
tional and statistical efficiency over densely connected layers.
Ever since the introduction of AlexNet [14], there has been
steady refinements to a standard convolutional layer. While

AlexNet utilized convolutional filters with large receptive
fields (11× 11, 5× 5 etc.), the VGG network [27] demon-
strated the utility of using convolutional weights with very
small receptive fields (3× 3) that are both statistically and
computationally efficient for learning deep convolutional
neural networks. As convolutional layers are often the main
computational bottleneck of CNNs, there has been steady
developments in improving the computational efficiency of
convolutional layers. MobileNets [10] introduced efficient
reparameterization of standard 3× 3 convolutional weights,
in terms of depth-wise convolutions and 1× 1 convolutions.
Convolutional networks with binary weights [2, 3, 23] have
been proposed to significantly improve the computational
efficiency of CNNs. Recent work has also demonstrated
that sparse convolutional weights [20, 21, 18] perform com-
parably to dense convolutional weights while also being
computationally efficient. However, across this entire body
of work the basic premise of a convolutional layer itself has
largely remained unchanged.

This paper seeks to rethink the basic premise of the neces-
sity of convolutional layers for the task of image classifica-
tion. The success of a wide range of approaches that utilize
convolutional layers that have, a) very small receptive fields
(3 × 3), b) sparse convolutional weights, and c) convolu-
tional weights with binary weights, motivates our hypothesis
that one can perhaps completely do away with convolutional
layers for learning high performance image classification
models. We propose a novel module, dubbed the perturba-
tion layer1, that conforms to our hypothesis and is devoid
of standard convolutional operations. Given an input, the
perturbation layer first perturbs the input additively through
random, but fixed, noise followed by a weighted combina-
tion of non-linear activations of the input perturbations. The
weighted linear combinations of activated perturbations are
conceptually similar to 1×1 convolutions, but are not strictly
convolutional since their receptive field is just one pixel, as
opposed to the receptive fields of standard convolutional
weights. This layer is thus an extreme version of sparse
convolutional weights with sparsity of one non-zero element

1 Implementation and future updates will be available at http://
xujuefei.com/pnn.

1

http://xujuefei.com/pnn
http://xujuefei.com/pnn

and fixed non-zero support at the center of the filter. Avoid-
ing convolutions with receptive fields larger than one offers
immediate statistical savings in the form of fewer learnable
network parameters, computational savings from more effi-
cient operations (weighted sum vs. convolution) and more
importantly allows us to rethink the premise and utility of
convolutional layers in the context of image classification
models. Our theoretical analysis shows that the perturbation
layer can approximate the response of a standard convolu-
tional layer. In addition, we empirically demonstrate that
deep neural networks with the perturbation layers as replace-
ments for standard convolutional layers perform as well as
an equivalent network with convolutional layers across a
variety of datasets of varying difficulty and scale, MNIST,
CIFAR-10, PASCAL VOC, and ImageNet.

2. Related Work
There is a huge body of work on the design and applica-

tions of CNNs for image classification, the full treatment of
which is beyond the scope of this paper. We will however
note a few major advances that were motivated by improving
the performance of these networks, such as, AlexNet [14],
VGG [27], GoogLeNet [30], Residual Networks [8], etc.

The idea of using convolutional weights with small recep-
tive fields is not new. While the VGG [27] network was the
first model to demonstrate the efficacy of small convolutional
weights in deep CNNs, other researchers have explored the
use of small convolutional weights, including 1× 1 convolu-
tional weights. For instance the GoogLeNet [30] architecture
comprises of weights with different receptive fields includ-
ing 1 × 1 weights. The Network in Network architecture
[19] also utilizes 1× 1 convolutions. However, all of these
approaches have used 1×1 convolutions in conjunction with
convolutional filters with larger receptive fields. In contrast
the perturbative layer that we introduce in this paper is de-
void of any convolutional layers with receptive fields larger
than one pixel and combines information from multiple noise
perturbed versions of the input.

Efficient characterization of convolutional layers have
also been proposed from the perspective of computational ef-
ficiency. Networks with binary weights [3, 2, 23], networks
with sparse convolutional weights [20, 21, 18], networks
with efficient factorization of the convolutional weights
[10, 15] and networks with a hybrid of learnable and fixed
weights [12]. While the proposed perturbation layer does
offer computational benefits in terms of fewer parameters
and more efficient inference our aim in this paper is to moti-
vate the need to rethink the premise and utility of a standard
convolutional layer for image classification tasks. The pro-
posed perturbation layer serves as evidence that perhaps
convolutional layers are not very critical to learning image
classification models that can perform as well as, if not better
than, standard convolutional networks.

3. Proposed Method
In this section, we first detail the motivation and formu-

lation of the proposed perturbative neural networks (PNN),
and then discuss its relation to standard CNNs from both
a macro as well as a micro viewpoint. Finally, we discuss
some properties associated with PNN.

3.1. Revisiting LBCNN and an Observation

Recently, local binary convolutional neural networks
(LBCNN) (as in [12]) have been motivated from the local
binary patterns (LBP) descriptor. The basic LBCNN module
is shown in the middle row of Figure 1, where the input
image (or tensor at subsequent layers) is first convolved with
a set of fixed, randomly generated sparse binary filters, and
the resulting response map is propagated through a nonlin-
ear activation, such as ReLU, and then, the ReLU activated
response map is linearly combined to generate an output
feature map that feeds into the next layer. These linear com-
bination weights are the only learnable parameters.

Specifically, let us assume that the input image (or tensor)
xl is filtered by m pre-defined fixed binary filters bi, i ∈
[m], to generate m difference maps that are then activated
through ReLU, resulting in m response maps. The linear
combination weights for the m response maps areWl,i, i ∈
[m] for obtaining one final feature map. The combined set
of feature maps serve as the input xl+1 for the next layer.

Then the transfer function between input and output of
layer l can be expressed as:

xt
l+1 =

m∑
i=1

σrelu

(∑
s

bs
l,i ∗ xs

l

)
· Wt

l,i (1)

where t is the output channel, s is the input channel, and
∗ is the channel-wise convolution operation. Again, linear
weightsW are the only learnable parameters of an LBCNN
layer. In this way, LBCNN can yield much lower model com-
plexity with significant savings in the number of learnable
parameters.

LBCNN’s idea of formulating a deep learning model
with a hybrid of fixed convolutional weights and learnable
linear combination weights in each layer is intriguing. In
Figure 2, we can see that a 3× 3 patch from the kitten image
is extracted, and the pixels are labeled as x1, . . . , x9. This
patch, in LBCNN, will first be convolved with a binary filter,
which is shown on the far right as an example. Since the filter
itself is binary with +1 and −1, the resulting scalar on the
response map will simply be the additions and subtractions
among the 9 neighboring pixels. In this case, it reduces to
y = x1 + x3 + x5 + x7 + x9 − x2 − x4 − x6 − x8. The
same process repeats for the next 3× 3 patch until the entire
response map is generated.

Mathematically, this convolution operation is transform-
ing the patch center pixel xc = x5 to one particular point y

Wl

Vl

CNN

PNN

LBCNN

(a) (b) (c) (d) (e) (f) (g)

Figure 1: Basic modules in CNN, LBCNN [12], and PNN. Wl and Vl are the learnable weights for local binary convolution layer and the proposed
perturbation layer respectively. Inspired by the formulation of LBCNN, the proposed PNN method also uses a set of linear weights to combine various
perturbation maps. For CNN: (a) input, (b) learnable convolutional filter, (c) response map, (d) ReLU, (g) feature map. For LBCNN: (a) input, (b) fixed
non-learnable binary filters, (c) difference maps by convolving with binary filters, (d) ReLU, (e) activated difference maps, (f) learnable linear weights for
combining the activated difference maps, (g) feature map. For PNN: (a) input, (b) fixed non-learnable perturbation masks, (c) response maps by addition with
perturbation masks, (d) ReLU, (e) activated response maps, (f) learnable linear weights for combining the activated response maps, (g) feature map.

x1 x2 x3

x4 x5 x6

x7 x8 x9

+1 -1 +1

-1 +1 -1

+1 -1 +1

Figure 2: Convolving with a binary filter is equivalent to addition and
subtraction among neighbors within the patch. Similarly, convolving with a
real-valued filter is equivalent to the linear combination of the neighbors
using filter weights.

on the response map: y = f(xc), and in this case, the func-
tion f is defined as above by including 8 neighboring pixels
of xc as well as the binary filter itself. which determines the
pixels that are added or subtracted. The same notion can
be easily extended towards standard convolution operations
with real-valued convolutional filters, either learnable or non-
learnable, and then the additions and subtractions among the
neighboring pixels become a linear weighted combinations.

This seemingly simple inner product operation f , whether
it has been efficiently implemented in the frequency do-

main or spatial domain, is a major computational bottle-
neck of deep CNN models. The key takeaway concept from
LBCNN is that the convolutional weights could be made
non-learnable and the learning can be carried out solely
through the linear combination weights, suggesting that there
may be more potential simplifications to the spatial convolu-
tion layer, since the primary network optimization happens
through the linear combination weights. This begs the ques-
tion, can we build upon LBCNN and arrive at a much simpler
function f̂?

3.2. Perturbative Neural Networks Module

The aforementioned observation motivates the formula-
tion of the PNN. The pictorial illustration of the proposed
PNN module is shown in the bottom row of Figure 1. When
the input image comes in, it will be perturbed with a set of
pre-defined random additive noise masks, each with the same
size as the input image, resulting in a set of noise-perturbed
maps. These maps will go through a ReLU non-linearity and
are then linearly combined to form one final feature map.
Again, the random additive noise masks are pre-defined and

non-learnable, and the only learnable parameters are the lin-
ear combination weights. Mathematically, PNN transforms
the input and output of layer l in the following way:

xt
l+1 =

m∑
i=1

σrelu
(
N i

l + xi
l

)
· Vt

l,i (2)

where t is the output channel index, i is the input channel
index, and N i

l is the i-th random additive perturbation mask
in layer l. Similar to LBCNN, the linear weights V are
the only learnable parameters of a perturbation layer. Not
surprisingly, PNN is able to save lots of learnable parameters
as will be discussed in the following sections.

From Eq. 2 we observe that the computationally expen-
sive convolution operation is replaced by an element-wise
noise addition which is significantly more efficient. Recall in
the previous section we ask the question whether it is possi-
ble to arrive at a much simpler function f̂ that transforms the
patch center xc to one point y on the feature map. Now we
can have y = f(xc) = xc + nc, where nc is the added noise
corresponding to xc location. An attractive attribute of the
PNN formulation is that repetitive operation such as the con-
volution (moving from one patch to the other) is no longer
needed. A single pass for adding the noise perturbation mask
to the entire input channel completes the task.

3.3. Relating PNN and CNN: A Macro View

Let x ∈ Rd be a vectorized input image of dimension d
and let y ∈ Rd be a vectorized feature map after convolving
x with a 2D convolutional filter w ∈ Rk×k. We use the
notation vec(·) to represent the vectorization of a matrix
and mat(·) to represent the opposite, which is reshaping the
vector to its original matrix form. The following discussion
will be done by using 2D matrices but the same technique
applies for high-dimensional tensors as practiced in CNN
layers as well. Therefore, the standard CNN convolution
operation is as follows, assuming no bias in the convolution:

CNN : y = vec(mat(x) ∗w) =

k2∑
i

xi,shift · wi (3)

where xi,shift is the i-th spatially shifted version of the in-
put in vectorized form, and wi is the i-th element in the
convolution filter w.

For PNN, the same input x will be perturbed with N
random noise masks ni, and then linearly combined using
weight vector v whose elements are vi’s to form the out-
put response vector ŷ. Therefore, for PNN, the operation
follows:

PNN : ŷ =

N∑
i=1

(x+ ni) · vi (4)

If we arrange x + ni as the columns vectors of a matrix
X̂ ∈ Rd×N , we can rewrite the PNN operation as:

ŷ = X̂v = (X+N)v = (x1> +N)v (5)

where X ∈ Rd×N has vector x repeated in its columns and
N ∈ Rd×N is a perturbation matrix with noise vector ni in
its columns.

Given the CNN output vector y, we can always find the
vector v for PNN such that the PNN output ŷ is equal to or
approximately equal to y. If N = d, X̂ is a full rank square
matrix so an exact solution for v can be found as:

v∗ = X̂−1y = (x1> +N)−1y (6)

=

[
N−1 − N−1x1>N−1

1 + 1>N−1x

]
y (7)

where the last step is due to Sherman–Morrison formula
[25, 26, 22]. If N < d, X̂ is a tall matrix, so a least square
solution can be found for v as:

v∗ = (X̂>X̂)−1X̂>y (8)

Next, we will derive a relationship between the convo-
lutional weights in CNN and the perturbation weights in
PNN assuming ŷ = y. Recall that convolution is a linear
operation that transforms input x to output y and can be
viewed as multiplication of a matrix. So we can rewrite the
convolution operation simply as:

y = Ax (9)

where A is a doubly block circulant matrix which corre-
sponds to convolutional weights w with proper manipulation.
Using the derived optimal linear weights vector v∗, the PNN
reconstruction simplifies to:

ŷr = (x1> +N)v∗ (10)

= (x1> +N)

[
N−1 − N−1x1>N−1

1 + 1>N−1x

]
y (11)

= Ax = y (12)

Therefore, we can establish the following relationship:

⇒ (x1> +N)

[
N−1y − N−1x1>N−1y

1 + 1>N−1x

]
= Ax (13)

⇒ x1>N−1︸ ︷︷ ︸
n>

(Ax)1>N−1︸ ︷︷ ︸
n>

x = x1>N−1︸ ︷︷ ︸
n>

x1>N−1︸ ︷︷ ︸
n>

(Ax)

⇒ xn>(Axn>)x = xn>(xn>A)x (14)

By observation, the following must hold:

Axn> = xn>A (15)

⇒ AXN−1 = XN−1A (16)

⇒ (X+AX)N−1 = N−1A (17)

where X+ is the Moore–Penrose inverse of X. Rearrang-
ing the terms, we can arrive at the Sylvester equation [29]
commonly used in control theory:

(X+AX)︸ ︷︷ ︸
Sa

N−1 +N−1 (−A)︸ ︷︷ ︸
Sb

= 0︸︷︷︸
Sc

(18)

Reformulating in terms of Kronecker tensor product we
have: [

I⊗ Sa + S>b ⊗ I
]
N−1(:) = Sc(:) (19)

in that N−1 will have a unique solution when the eigenvalues
of Sa and−Sb are distinct, meaning the spectra of (X+AX)
and A are disjoint. In this way, given the known input x
and convolution transformation matrix A, we can always
solve for the matching noise perturbation matrix N using
linear algebra toolbox such as the Matlab Sylvester equation
routine.

3.4. Relating PNN and CNN: A Micro View

Now let us consider a single neighborhood (patch) in
the input tensor where the convolution is taking place, and
obtain a relation between PNN and CNN with some mild
assumptions. Let us assume that each pixel xi within this
patch is a random variable and we call the central pixel
xc for simplicity which has a total of card(Nc) neighbors
where Nc is a set containing the indices of the neighboring
pixels of xc. Let us further make assumptions on the first
and second order statistics of xi. In this case, we assume
that E(xi) = 0 and E(x2i) = σ2. Let εi = xi − xc, i ∈ Nc

be the difference between neighbor xi and the central pixel
xc. Next we want to examine the following three quantities,
namely E(εi), E(ε2i), and E(εiεj), which will be used for
the subsequent derivation.

First, it is quite easy to see that: E(εi) = E(xi−xc) = 0.
Next, for the second order statistics E(ε2i), we have:

E(ε2i) = E[(xi − xc)2] = E(x2i + x2c − 2xixc)

= E(x2i) + E(x2c)− 2E(xixc)

= 2σ2 − 2ρσ2 = 2σ2δ (20)

where δ = 1−ρ. In this case, we assume that ρ ≈ 1 because
neighboring pixels usually have high correlations. Therefore,
δ is usually very small meaning that E(ε2i) is very small as
well. Lastly, for E(εiεj), i 6= j we have:

E(εiεj) = E[(xi − xc)(xj − xc)]
= E(x2c)− E(xixc)− E(xjxc) + E(xixi)

= σ2 − ρσ2 − ρσ2 + ρ̂σ2 (assuming ρ̂ ≈ ρ)
= σ2 − ρσ2 = σ2δ = (1/2)E(ε2i) (21)

For CNN, the convolution operation maps the central pixel
xc to one point y on the output feature map with convolu-
tional weights wi’s as follows. Let N = card(Nc) + 1:

y =

N∑
i=1

xiwi = xc +
∑
i∈Nc

xiwi (22)

⇒ xcwc +
∑
i∈Nc

(xc + εi)wi = y (23)

⇒ xc

(
wc +

∑
i∈Nc

wi

)
+
∑
i∈Nc

εiwi = y (24)

⇒ xc +
∑
i∈Nc

εi

(
wi∑N
i wi

)
=

y∑N
i wi

(25)

⇒ xc +
∑
i∈Nc

εiw
′
i︸ ︷︷ ︸

nc

= y′ (26)

Establishing that nc =
∑

i∈Nc
εiw
′
i behaves like additive

perturbation noise, will allows us to relate the CNN forumu-
lation to the PNN formulation.

Next, we will examine E(nc) and E(n2c). First, it can
be easily shown that E(nc) = E

(∑
i∈Nc

εiw
′
i

)
= 0 since

E(εi) = 0. Next, for the second order statistics, we have:

E(n2c) = E

(∑
i∈Nc

εiw
′
i

)2

= E

(
N∑
i=1

εiw
′
i

)2

since εc = 0

= E(ε21w
′2
1 + . . . ε2iw

′2
i + . . .+ ε1ε2w

′
1w
′
2 + . . .︸ ︷︷ ︸

cross−terms

)

= E(ε2i)

N∑
i=1

w′2i + E(εiεj)
∑
i

∑
j 6=i

w′iw
′
j

= (2σ2δ)‖w′‖22 + (σ2δ)
∑
i

∑
j 6=i

w′iw
′
j

= 2σ2δ
[
‖w′‖22 + (1/2)

∑
i

∑
j 6=i

w′iw
′
j

]
= 2σ2δ′ (small) (27)

where δ′ = δ[‖w′‖22 + (1/2)
∑

i

∑
j 6=i w

′
iw
′
j]. Therefore,

this analysis of the CNN operation establishes a relation
between the CNN and the PNN formulation. However, one
may notice that in Eq. 26, the RHS is y′ instead of y. By
allowing multiple perturbation maps to combine using the
linear combination weights as shown before leads to y on
the RHS.

3.5. Properties of PNN

Recall that convolution leverages two important ideas
that can help improve a machine learning system: sparse
interactions and parameter sharing [5]. Not surprisingly, the
proposed PNN also share many of these nice properties.

(a)
(b)

(c)

(d)

Figure 3: Variations in connectivity patterns among commonly practiced
types of convolutional operations such as (a) the regular convolution, (b)
locally connected convolution, (c) tiled convolution, and finally (d) fully
connected layer. For (a-c), top row is a 3× 3 convolution and the bottom
row is a 1× 1 convolution.

Sparse interactions: Firstly, PNN adds perturbation to
the input with perturbation mask of the same size as the input.
Therefore, it is easy to see that it only needs a single element
in the input to contribute to one element in the output per-
turbation map. Hence, sparse interaction. Secondly, PNN
utilizes a set of learnable linear weights, or equivalently 1×1
convolution, to combine various perturbation maps to create
one feature map. When a 1× 1 convolution is applied on the
input map, only one element contributes to the one output
elements, as opposed to a 3× 3 convolution which involve
9 elements of the input as depicted in Figure 3. Therefore,
1× 1 convolution provides the sparsest interactions possible.
Figure 3 shows various commonly practiced convolutions
such as (a) the regular convolution, (b) locally connected
convolution, (c) tiled convolution, and finally (d) fully con-
nected layer. It is important to note that while a perturbation
layer by itself has a receptive field of one pixel, the receptive
field of a PNN would typically cover the entire image with
an appropriate size and number of pooling layers.

Parameter sharing: Although the fixed perturbation
masks are shared among different inputs, they are not learn-
able, and therefore not considered as the parameters in this
context. Here, the parameter sharing is carried out again
by the 1× 1 convolution that linearly combines the various
non-linearly activated perturbation masks.

In addition, PNN has other nice properties such as
multi-scale equivalent convolutions i.e., adding different
amounts of perturbation noise is equivalent to applying con-
volutions at different scales. More specifically, adding small
noise corresponds to applying a small-sized convolutional
filter, and adding larger noise corresponds to convolving
with a larger filter. Without explicitly setting the filter sizes
throughout the network layers, PNN allows the network
to adapt to different filter sizes automatically and optimally.
Please refer to the supplementary materials for more analysis

and discussions. Finally, PNN also has distance preserving
property. Please also see supplementary for more details.

4. Implementation Details
4.1. Parameter Savings

The number of learnable parameters in the perturbation
layer is significantly lower than those of a standard con-
volutional layer for the same number of input and output
channels. Let the number of input and output channels be
p and q respectively. With a convolutional kernel of size of
h×w, a standard convolutional layer consists of p · h ·w · q
learnable parameters. The corresponding perturbation layer
consists of p ·m fixed perturbation masks andm ·q learnable
parameters (corresponding to the 1× 1 convolution), where
m is the number of fan-out channels of the perturbation layer,
and the fan-out ratio (m/p) is essentially the number of per-
turbation masks applied on each input channel. The 1 × 1
convolutions act on the m perturbed maps of the fixed filters
to generate the q-channel output. The ratio of the number of
parameters in CNN and PNN is:

param. in CNN
param. in PNN

=
p · h · w · q
m · q =

p · h · w
m

(28)

For simplicity, assuming fan-out ratio m/p = 1 reduces the
parameter ratio to h · w. Therefore, numerically, PNN saves
k2 parameters during learning for k× k convolutional filters.
Also, PNN allows flexible adjustment of the fan-out ratio to
trade-off between efficiency and accuracy.

4.2. Learning with Perturbation Layers

Training a network end-to-end with perturbation layers
instead of standard convolutional layers is straightforward.
The gradients can be back propagated through the 1 × 1
convolutional layer and the additive perturbation masks in
much the same way as they can be back propagated through
standard convolutional layers. Backpropagation through the
noise perturbation layer is similar in spirit to propagating
gradients through layers without learnable parameters (e.g.,
ReLU, max pooling, etc.). However during learning, only
the learnable 1 × 1 filters are updated while the additive
perturbation masks remain unaffected. For the forward prop-
agation defined in Eq. 4, backpropagation can be computed
as:

∂ŷ

∂x
=

N∑
i=1

vi and
∂ŷ

∂vi
= x+ ni (29)

The perturbation masks are of the same spatial size as the in-
put tensor, and for each input channel, we can generate m/p
masks separately (m/p is the fan-out ratio). Specifically, the
additive noise in the perturbation masks are independently
uniformly distributed. The formulation of PNN does not
require the perturbation noise to be a specific type, as long as

it is zero-mean and has finite variance. Empirically, we have
observed that adding zero-mean Gaussian noise with dif-
ferent variances performs comparably to adding zero-mean
uniform noise with different range levels. Since uniform
distribution provides better control over the energy level of
the noise, our main experiments are carried out by using
uniformly distributed noise in the perturbation masks.

5. Experiments
5.1. ImageNet-1k Classification and Analysis

We evaluate our method on the ImageNet ILSVRC-2012
classification dataset [24] which consists of 1000 classes,
with 1.28 million images in the training set and 50k images
in the validation set, where we use for testing as commonly
practiced. We report the top-1 classification accuracy. All
the images are first resized so that the long edge is 256 pixels,
and then a 224× 224 crop is randomly sampled from an im-
age or its horizontal flip, with the per-pixel mean subtracted.
During testing, we adopt the single center-crop testing pro-
tocol. The network architecture we use for this experiment
is PNN-ResNet-18 [8], where each standard convolutional
layer in a residual unit is replaced by the proposed perturba-
tion layer, as shown in Figure 4.

(a)
(b)

(c)

(d)

Figure 3: Difference of connectivity among various commonly practiced
convolutions such as (a) the regular convolution, (b) locally connected
convolution, (c) tiled convolution, and finally (d) fully connected layer. For
(a-c), top row is a 3× 3 and the bottom row is a 1× 1 convolution.

may notice that in Eq. 26, the RHS is y′ instead of y. By
allowing multiple perturbation maps to combine using the
linear combination weights as shown before leads to y on
the RHS.

3.5. Properties of PNN

It is important to recall that convolution leverages two
important ideas that can help improve a machine learning
system: sparse interactions and parameter sharing [5]. Not
surprisingly, the proposed PNN also share many of these
nice properties.

Sparse interactions: Firstly, PNN adds perturbation to
the input with perturbation mask of the same size as the input.
Therefore, it is easy to see that it only needs a single element
in the input to contribute to one element in the output per-
turbation map. Hence, sparse interaction. Secondly, PNN
utilizes a set of learnable linear weights, or equivalently 1×1
convolution, to combine various perturbation maps to create
one feature map. When a 1× 1 convolution is applied on the
input map, only one element contributes to the one output
elements, as opposed to a 3× 3 convolution which involve
9 elements of the input as depicted in Figure 3. Therefore,
1× 1 convolution provides the sparsest interactions possible.
Figure 3 displays various commonly practiced convolutions
such as (a) the regular convolution, (b) locally connected
convolution, (c) tiled convolution, and finally (d) fully con-
nected layer. It is important to note that while a perturbation
layer by itself has a receptive field of one pixel, the receptive
field of a PNN would typically cover the entire image with
an appropriate size and number of pooling layers.

Parameter sharing: Although the fixed perturbation
masks are shared among different inputs, they are not learn-
able, and therefore not considered as the parameters in this
context. Here, the parameter sharing is carried out again
by the 1× 1 convolution that linearly combines the various
non-linearly activated perturbation masks.

In addition, PNN has other nice properties such as
multi-scale equivalent convolutions i.e., adding different
amounts of perturbation noise is equivalent to applying con-
volutions at different scales. More specifically, adding small
noise corresponds to applying a small-sized convolutional
filter, and adding larger noise corresponds to convolving
with a larger filter. Without explicitly setting the filter sizes
throughout the network layers, PNN allows the network
to adapt to different filter sizes automatically and optimally.
Please refer to the supplementary materials for more analysis
and discussions. Finally, PNN also has distance preserving
property. See supplementary for more details.

4. Implementation Details
4.1. Parameter Savings

The number of learnable parameters in the perturbation
layer is significantly lower than those of a standard con-
volutional layer for the same number of input and output
channels. Let the number of input and output channels be
p and q respectively. With a convolutional kernel of size of
h×w, a standard convolutional layer consists of p · h ·w · q
learnable parameters. The corresponding perturbation layer
consists of p ·m fixed perturbation masks andm ·q learnable
parameters (corresponding to the 1× 1 convolution), where
m is the number of fan-out channels of the perturbation layer,
and the fan-out ratio (m/p) is essentially the number of per-
turbation masks applied on each input channel. The 1 × 1
convolutions act on the m perturbed maps of the fixed filters
to generate the q-channel output. The ratio of the number of
parameters in CNN and PNN is:

param. in CNN
param. in PNN

=
p · h · w · q
m · q =

p · h · w
m

(28)

For simplicity, assuming fan-out ratio m/p = 1 reduces the
parameter ratio to h · w. Therefore, numerically, PNN saves
k2 parameters during learning for k× k convolutional filters.
Also, PNN allows flexible adjustment of the fan-out ratio to
trade-off between efficiency and accuracy.

4.2. Learning with Perturbation Layers

Pe
rt

ur
ba

tio
n

R
eL

U

1
×
1

C
on

v

B
at

ch
N

or
m

Pe
rt

ur
ba

tio
n

R
eL

U

1
×
1

C
on

v

B
at

ch
N

or
m

+

Figure 4: Perturbation residual module.

Training a network end-to-end with perturbation layers
instead of standard convolutional layers is straightforward.
The gradients can be back propagated through the 1 × 1
convolutional layer and the additive perturbation masks in
much the same way as they can be back propagated through
standard convolutional layers. Backpropagation through the

Figure 4: Perturbation residual module.

We have experimented with various number of perturba-
tion masks per layer (64, 128, and 256) on the same PNN-
ResNet-18 model. The results are consolidated in Table 1
and in Figure 5. As can be seen, compared to the state-of-
the-art ResNet-18 performance (single center-crop protocol)
on a standard CNN [4, 8], the proposed PNN achieves com-
parable classification accuracy on ImageNet-1k. It is worth
noting that the lightweight design in PNN allows significant
parameter savings as well as statistical efficiency compared
to the standard CNNs. We have shown the parameter ratio
of CNN over PNN in the last column in Table 1. We also

Table 1: Classification accuracy (%) on ImageNet-1k (PNN vs. CNN)

#Mask PNN (ResNet-18) ResNet [4] Param. Ratio

256 71.84 73.27 (34) 0.9
128 61.74 69.57 (18) 1.8
64 45.92 69.57 (18) 5.9

present additional experimental results of the PNN-ResNet-
50 (with 256 perturbation masks) on ImageNet-1k. The
results in Table 2 show that PNN-ResNet-50 performs com-
petitively with the corresponding network with CNN layers
[4] on ImageNet-1k.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80
ImageNet-1k Classification Accuracy (PNN)

#Mask=64, Train Accuracy
#Mask=64, Test Accuracy
#Mask=128, Train Accuracy
#Mask=128, Test Accuracy
#Mask=256, Train Accuracy
#Mask=256, Test Accuracy

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

4.5

5
ImageNet-1k Loss (PNN)

#Mask=64, Train Loss
#Mask=64, Test Loss
#Mask=128, Train Loss
#Mask=128, Test Loss
#Mask=256, Train Loss
#Mask=256, Test Loss

Figure 5: Accuracy and loss on ImageNet-1k classification using PNN
(ResNet-18) with various number of perturbation masks per layer.

Table 2: Classification accuracy (%) on ImageNet-1k (PNN vs. CNN)

PNN-ResNet-18 ResNet-18 PNN-ResNet-50 ResNet-50

71.84 69.57 76.23 75.99

5.2. ImageNet-100 Classification and Analysis

In this section, we examine the image classification accu-
racy versus the noise level in the additive perturbation masks.
As discussed in the previous section, we are using zero-mean
uniform random noise in the perturbation masks, and the
noise level ` here refers to the range of the noise and the
PDF is: f(ni) = 1/(`− (−`)) for −` ≤ ni ≤ `.

For faster roll-out, we randomly select 100 classes with
the largest number of images (1300 training images in each
class, with a total of 130k training images and 5k testing
images), and report top-1 accuracy on this ImageNet-100
subset. The network architecture we use for this experiment
is PNN-ResNet-50 with 256 perturbation masks per layer.
The experimental results are shown in Table 3 as well as
in Figure 6. As we observe, adding different amount of
perturbation noise does affect classification performance.
Moreover, the proposed PNN’s performance is similar when
the noise level is low, say less than 1. As the noise levels
increase, the performance begins to deteriorate. This is
expected, as adding too much noise will suppress the useful
information carried by the signal itself.

Table 3: Classification accuracy (%) on 100-class ImageNet with varying
perturbation noise levels. (PNN: ResNet-50, 256 perturbation masks)

Noise 0.01 0.05 0.1 0.5 1 5

PNN 81.09 81.19 81.41 81.96 76.84 60.90

5.3. CIFAR-10, MNIST Classification and Analysis

In this section, we carry out further classification exper-
iments on CIFAR-10 [13] and MNIST [16] datasets. For
both datasets, the initial learning rate is set to 10−3 and is re-
duced by a factor of 10 at epoch 60, and then again at epoch
90. The best performing PNN models for each dataset are
detailed as follows. For CIFAR-10: PNN-ResNet-50, 64 per-
turbation masks per layer, and batch size of 10. For MNIST:

0 20 40 60 80 100 120
20

30

40

50

60

70

80

90
ImageNet-100 Classification Accuracy (Noise)

Noise=0.01, Test Accuracy
Noise=0.05, Test Accuracy
Noise=0.1, Test Accuracy
Noise=0.5, Test Accuracy
Noise=1, Test Accuracy
Noise=5, Test Accuracy

Figure 6: Accuracy on ImageNet-100 classification using PNN (ResNet-50,
256 perturbation masks) with various noise levels.

PNN-ResNet-50, 32 perturbation masks per layer, and batch
size of 10. Table 4 consolidates the image classification
accuracy from our experiments. The best performing PNNs
are compared to the state-of-the-art methods as listed in the
curated leader board on various image classification tasks
[1], as well as several other leading methods such as ResNet
[8], Maxout Network [6], Network in Network (NIN) [19],
and LBCNN [12]. Our results indicate that PNN is highly
competitive with the state-of-the-art results on CIFAR-10.

Table 4: Classification accuracy (%) on CIFAR-10 and MNIST. PNN
columns only show the best performing model.

PNN SoTA [1] LBCNN ResNet Maxout NIN

CIFAR-10 94.05 96.53 92.99 93.57 90.65 91.19
MNIST 99.39 99.79 99.51 - 99.55 99.53

In addition, Table 5 shows the CIFAR-10 performance on
PNN-ResNet-18 model with different number of perturba-
tion masks per layer. As long as the number of perturbation
masks is not too few, the network is able to converge and
provide competitive classification performance.

Table 5: Classification accuracy (%) and ratio of parameters on CIFAR-
10 with varying number of perturbation masks. (PNN: ResNet-18, CNN:
standard ResNet-18)

#Mask 160 128 96 64 32 16 8

PNN 90.43 89.48 90.25 89.99 93.08 87.16 79.98
Ratio 1.3 2.0 3.5 7.9 31.0 120.1 451.1

The other factor we want to examine is the learning rate.
Since we know that learning rate is tightly connected to the
batch size from recent findings [7, 28], we vary the batch
size as we fix the initial learning rate to be 10−3. Table 6
shows the CIFAR-10 classification performance with vary-
ing batch size as well as varying number of perturbation
masks. For this dataset, smaller batch size seems to always
work better. This could be due to a batch size of 10 corre-
sponds to the optimal initial learning rate in this case. Also,
PNN does not require lots of perturbation masks per layer.
Usually, the optimal range is around 48-80 masks per layer
for this dataset, and doubling the number of masks from

64 to 128 does not seem to help improve the performance.
PNN achieves its best performance on CIFAR-10 with 64
perturbation masks with a ResNet-50 architecture, while the
best results for ResNet architecture are obtained with 110
layers, resulting in a 3.1× reduction in parameters while
achieving similar performance.
Table 6: Classification accuracy (%) on CIFAR-10 with varying batch size
and number of perturbation masks. (PNN: ResNet-50)

#Mask\ Batch Size 10 20 40 80

32 90.23 87.29 83.96 79.16
64 94.05 90.93 88.36 85.29

128 93.71 90.05 88.63 85.14

5.4. Object Detection and Analysis

For this task, we look at the Faster R-CNN model [31]
whose region proposal network and detector network both
share a common pretrained (on ImageNet) CNN. We study
both CNN architectures (VGG-16, ResNet-50) by replac-
ing the convolution layers with the proposed PNN modules.
Table 7 shows the mean average precision (mAP) on PAS-
CAL VOC’07 testing set (trained on VOC’07 train+val set,
scale=600, batchsize=1, and with ROI align). We observe
that PNN-VGG-16 and PNN-ResNet-50 perform compa-
rably to the corresponding network with conv layers [31].

Table 7: Detection results (mAP) on PASCAL VOC 2007 testing set.

PNN-VGG-16 VGG-16 PNN-ResNet-50 ResNet-101

69.6 70.2 72.8 75.2

6. Conclusions
Convolutional layers have become the mainstay of state-

of-the-art image classification tasks. Many different deep
neural network architectures have been proposed building
upon convolutional layers, including convolutional layers
with small receptive fields, sparse convolutional weights,
binary convolutional weights, factorizations of convolutional
weights etc. However, the basic premise of a convolutional
layer has remained the same through these developments.
In this paper, we sought to validate the utility of convolu-
tional layers through a module that is devoid of convolutional
weights and only computes weighted linear combinations
of non-linear activations of additive noise perturbations of
the input. Our experimental evaluations yielded a surprising
result, deep neural networks with the perturbation layers per-
form as well as networks with standard convolutional layers
across different scales and difficulty of image classification
and detection datasets. Our findings suggest that perhaps
high performance deep neural networks for image classifi-
cation and detection can be designed without convolutional
layers.

References
[1] R. Benenson. Are We There Yet? Classification Datasets

Results. http://rodrigob.github.io/are_we_
there_yet/build/classification_datasets_
results.html. Accessed: 2017-11-15. 8

[2] M. Courbariaux and Y. Bengio. BinaryNet: Training Deep
Neural Networks with Weights and Activations Constrained
to +1 or -1. arXiv preprint arXiv:1602.02830, 2016. 1, 2

[3] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect:
Training Deep Neural Networks with Binary Weights During
Propagations. In Advances in Neural Information Processing
Systems (NIPS), pages 3105–3113, 2015. 1, 2

[4] Facebook. ResNet training in Torch by Facebook. https:
//github.com/facebook/fb.resnet.torch. Ac-
cessed: 2017-11-15. 7

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
MIT press, 2016. 1, 5

[6] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. Maxout Networks. In 30th International
Conference on Machine Learning (ICML), 2013. 8

[7] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677, 2017. 8

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. 1, 2, 7, 8

[9] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings
in Deep Residual Networks. In European Conference on
Computer Vision (ECCV), pages 630–645, 2016. 1

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. MobileNets: Ef-
ficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv preprint arXiv:1704.04861, 2017. 1, 2

[11] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.
Densely Connected Convolutional Networks. arXiv preprint
arXiv:1608.06993, 2016. 1

[12] F. Juefei-Xu, V. N. Boddeti, and M. Savvides. Local Bi-
nary Convolutional Neural Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), volume 1, 2017. 2, 3, 8

[13] A. Krizhevsky and G. Hinton. Learning Multiple Layers of
Features from Tiny Images. CIFAR, 2009. 7

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems (NIPS),
pages 1097–1105, 2012. 1, 2

[15] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and
V. Lempitsky. Speeding-up Convolutional Neural Net-
works Using Fine-tuned CP-Decomposition. arXiv preprint
arXiv:1412.6553, 2014. 2

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based Learning Applied to Document Recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 7

[17] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.
Jackel. Optimal Brain Damage. In Advances in Neural Infor-
mation Processing Systems (NIPS), volume 2, pages 598–605,
1989. 1

[18] S. Li, J. Park, and P. T. P. Tang. Enabling Sparse
Winograd Convolution by Native Pruning. arXiv preprint
arXiv:1702.08597, 2017. 1, 2

[19] M. Lin, Q. Chen, and S. Yan. Network in Network. In In-
ternational Conference on Learning Representations (ICLR),
2014. 2, 8

[20] J. Park, S. Li, W. Wen, H. Li, Y. Chen, and P. Dubey. Holistic
SparseCNN: Forging the Trident of Accuracy, Speed, and
Size. arXiv preprint arXiv:1608.01409, 2016. 1, 2

[21] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and
P. Dubey. Faster cnns with direct sparse convolutions and
guided pruning. arXiv preprint arXiv:1608.01409, 2016. 1, 2

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Section 2.7.1 Sherman–Morrison Formula. In
Numerical Recipes: The Art of Scientific Computing (3rd ed.).
Cambridge University Press, New York, 2007. 4

[23] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-
Net: ImageNet Classification Using Binary Convolutional
Neural Networks. In European Conference on Computer
Vision (ECCV), pages 525–542, 2016. 1, 2

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Im-
ageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252,
2015. 7

[25] J. Sherman and W. J. Morrison. Adjustment of an Inverse
Matrix Corresponding to Changes in the Elements of a Given
Column or a Given Row of the Original Matrix (abstract).
Annals of Mathematical Statistics, 20:621, 1949. 4

[26] J. Sherman and W. J. Morrison. Adjustment of an Inverse
Matrix Corresponding to a Change in One Element of a Given
Matrix. Annals of Mathematical Statistics, 21(1):124–127,
1950. 4

[27] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-scale Image Recognition. In Interna-
tional Conference on Learning Representations (ICLR), 2015.
1, 2

[28] S. L. Smith, P.-J. Kindermans, and Q. V. Le. Don’t Decay
the Learning Rate, Increase the Batch Size. arXiv preprint
arXiv:1711.00489, 2017. 8

[29] J. Sylvester. Sur l’equations en matrices px = xq. C. R. Acad.
Sci. Paris, 99(2):67–71,115–116, 1884. 5

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going Deeper
with Convolutions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1–9, 2015. 1, 2

[31] J. Yang. A Faster Pytorch Implementation of Faster R-CNN.
https://github.com/jwyang/faster-rcnn.
pytorch. 8

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch
https://github.com/jwyang/faster-rcnn.pytorch
https://github.com/jwyang/faster-rcnn.pytorch

