Mitigating Information Leakage in Image Representations: A Maximum Entropy Approach (supplementary Material)

Proteek Chandan Roy and Vishnu Naresh Boddeti
Department of Computer Science and Engineering
Michigan State University, East Lansing MI 48824
{royprote, vishnu}@msu.edu

In this supplementary material we include proof of Theorem 1 in Section 1, Corollary 1.1 in Section 2 and finally provide the numerical values of the trade-off fronts in the CIFAR-10 and CIFAR-100 experiment in Section 3.

1. Proof of Theorem 1

Theorem 1. Given a fixed encoder \(E \), the optimal discriminator is \(q_D(s | E(x; \theta_E); \theta_D^*) = p(s | E(x; \theta_E)) \) and the optimal predictor is \(q_T(t | E(x; \theta_E); \theta_T^*) = p(t | E(x; \theta_E)) \).

Proof. Let, \(z \) be the fixed encoder output from input \(x \) i.e. \(z = E(x; \theta_E) \). Let, \(p(x, t, s) \) be the true joint distribution of the variables, i.e. input \(x \), target label \(t \) and sensitive label \(s \). The fixed encoder is a deterministic transformation of \(x \) and generates an implicit distribution \(p(z, t, s) \).

Discriminator: The objective of the discriminator is,

\[
V_1(\theta_E, \theta_D) = KL(p(s | x)||q_D(s | E(x; \theta_E); \theta_D)) = \mathbb{E}_{(z,t,s) \sim p(z,t,s)} - \log q_D(s | z; \theta_D) \\
= - \sum_x p(x, t, s) \log q_D(s | z; \theta_D) \tag{1}
\]

s.t. \(\sum_s q_D(s | z; \theta_D) = 1, \forall z \)

\(q_D(s | z; \theta_D) \geq 0, \forall z \)

The Lagrangian dual of the problem can be written as

\[
L = V_1(\theta_E, \theta_D) + \sum_z \lambda(z) \left(\sum_s q_D(s | z; \theta_D) - 1 \right)
\]

Now we take partial derivative of \(L \) w.r.t. \(q_D(s | z; \theta_D^*) \), the distribution of optimal discriminator. Therefore, the optimal discriminator satisfies,

\[
\frac{\partial L}{\partial q_D(s | z; \theta_D^*)} = 0 \\
\Rightarrow - \sum_t p(z, t, s) + \lambda(z) = 0 \tag{2}
\]

where we used the fact that, \(\sum_t p(z, t, s) = p(z, s) \). Now summing w.r.t. to variable \(s \) on the both sides of last line and using the fact that \(\sum_s q_D(s | z; \theta_D^*) = 1 \) we get,

\[
\lambda(z) = p(z)
\]

By substituting \(\lambda(z) \) we obtain the solution for the optimal discriminator,

\[
q_D(s | z; \theta_D^*) = \frac{p(z, s)}{p(z)} = p(s | z) \tag{3}
\]

Therefore,

\[
q_D(s | E(x; \theta_E); \theta_D^*) = p(s | E(x; \theta_E))
\]

Target Predictor: The objective of the predictor is,

\[
V_2(\theta_E, \theta_T) = KL(p(t | x)||q_T(t | E(x; \theta_E); \theta_T)) = \mathbb{E}_{(z,t,s) \sim p(z,t,s)} - \log q_T(t | z; \theta_T) \\
= - \sum_x p(x, t, s) \log q_T(t | z; \theta_T) \tag{4}
\]

s.t. \(\sum_t q_T(t | z; \theta_T) = 1, \forall z \)

\(q_T(t | z; \theta_T) \geq 0, \forall z \)

The Lagrangian dual of the problem can be written as

\[
L = V_2(\theta_E, \theta_T) + \sum_z \lambda(z) \left(\sum_t q_T(t | z; \theta_T) - 1 \right)
\]
Now we take partial derivative of L w.r.t. $q_T(t|z; \theta^*_T)$, the distribution of optimal predictor. The optimal predictor satisfies the equation.

$$
\frac{\partial L}{\partial q_T(t|z; \theta^*_T)} = 0
$$

$$
\Rightarrow - \sum_s p(z, t, s) q_T(t|z; \theta^*_T) + \lambda(z) = 0
$$

where we used the fact that, $\sum_s p(z, t, s) = p(z, t)$. Now summing w.r.t. to variable t on the both sides of last line and using the fact that $\sum q_T(t|z; \theta^*_T) = 1$ we get,

$$
\lambda(z) = p(z)
$$

By substituting $\lambda(z)$ we obtain the solution of the optimal discriminator

$$
q_T(t|z; \theta^*_T) = \frac{p(z, t)}{p(z)} = p(t|z)
$$

Therefore,

$$
q_T(t|E(x; \theta_E); \theta^*_T) = p(t|E(x; \theta_E))
$$

The Lagrangian dual of the problem can be written as,

$$
L = V - \lambda \left(\sum_{i=1}^m q_D(s_i|E(x; \theta_E); \theta^*_D) - 1 \right)
$$

Here λ is a Lagrangian multiplier and is assumed to be a constant in the absence of any further information. Since $s \perp t$, we have $q_T(t|E(x; \theta_E); \theta^*_T)$ is independent of $q_D(s_i|E(x; \theta_E); \theta^*_D)$ given $E(x; \theta_E)$ from Theorem 1. Therefore, if we take derivative of L w.r.t. $q_D(s_i|E(x; \theta_E); \theta^*_D)$ and set it to zero we have:

$$
\frac{\partial L}{\partial q_D(s_i|E(x; \theta_E); \theta^*_D)} = 0
$$

$$
\Rightarrow 1 + \log(q_D(s_i|E(x; \theta_E); \theta^*_D)) - \lambda = 0
$$

$$
\Rightarrow q_D(s_i|E(x; \theta_E); \theta^*_D) = \exp(\lambda - 1)
$$

Using the first (non-trivial) constraint, we have

$$
\sum_{i=1}^m q_D(s_i|E(x; \theta_E); \theta^*_D) = 1
$$

$$
\sum_{i=1}^m \exp(\lambda - 1) = 1
$$

$$
\exp(\lambda - 1) \sum_{i=1}^m 1 = 1
$$

$$
\lambda = \log(1/m) + 1
$$

Hence, the probability distribution of the discriminator after the encoder’s parameters θ_E are optimized is $q_D(s_i|E(x; \theta_E); \theta^*_D) = 1/m$. Thus, when the optimum discriminator parameters are fixed, the encoder optimizes the representation such that the discriminator does not leak any information, i.e., it induces a uniform distribution.

\[\Box\]

2. Proof of Corollary 1.1

Corollary 1.1. When $s \perp t$, let the optimum discriminator and predictor for an encoder E be $q_D(s|E(x; \theta_E); \theta^*_D)$ and $q_T(t|E(x; \theta_E); \theta^*_T)$ respectively. The optimal encoder $E(\cdot)$ in the MaxEnt-ARL formulation induces a uniform distribution in the discriminator $q_D(s_i|E(x; \theta_E); \theta^*_D)$ over the classes of the sensitive attribute.

Proof. Here we will prove that, when discriminator is fixed, then the encoder learns a representation of data x such that $q_D(s_i|E(x; \theta^*_E); \theta^*_D) = 1/m$. First we note that although the discriminator is fixed, the discriminator probability $q_D(s_i|E(x; \theta^*_E); \theta^*_D)$ can change by changing the encoder parameters θ_E. Optimization of the encoder in MaxEnt-ARL is formulated as:

$$
\min V = \min_{\theta_E} \mathbb{E}_{(x, t, s) \sim p(x, t, s)} \left[- \log q_T(t|E(x; \theta_E); \theta^*_T) \right]
$$

$$
+ \alpha \mathbb{E}_x \left[\sum_{i=1}^m q_D(s_i|E(x; \theta_E); \theta^*_D) \log q_D(s_i|E(x; \theta_E); \theta^*_D) \right]
$$

$$
+ \log m
$$

s.t. $\sum_{i=1}^m q_D(s_i|E(x; \theta_E); \theta^*_D) = 1$

$q_D(s_i|E(x; \theta_E); \theta^*_D) \geq 0, \ \forall i$

$$
(7)
$$

3. CIFAR Trade-Off

We report the numerical values of the target accuracy and adversary accuracy trade-off results on the CIFAR-10 and CIFAR-100 experiments in Table 1 and Table 3, respectively. Similarly, we report the numerical values of the target accuracy and adversary entropy trade-off results on the CIFAR-10 and CIFAR-100 experiments in Table 2 and Table 4, respectively.
<table>
<thead>
<tr>
<th>(a) No Privacy</th>
<th>(b) ML-ARL</th>
<th>(c) MaxEnt-ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Accuracy (%)</td>
<td>97.75 97.73 97.68</td>
<td>97.52 97.44 97.35 91.52 91.15 60.00</td>
</tr>
<tr>
<td>Adversary Accuracy (%)</td>
<td>23.44 23.09 22.68</td>
<td>20.83 20.77 20.64 19.68 14.27 10.64</td>
</tr>
</tbody>
</table>

Table 1: CIFAR-10: Target Accuracy (%) vs Adversary Accuracy

<table>
<thead>
<tr>
<th>(a) No Privacy</th>
<th>(b) ML-ARL</th>
<th>(c) MaxEnt-ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Accuracy (%)</td>
<td>97.75 97.73 97.71</td>
<td>97.52 97.50 96.58 95.97 60.00</td>
</tr>
<tr>
<td>Adversary Entropy (nats)</td>
<td>1.65 1.65 1.67</td>
<td>1.65 1.66 1.80 2.16 2.30</td>
</tr>
</tbody>
</table>

Table 2: CIFAR-10: Target Accuracy (%) vs Adversary Entropy

<table>
<thead>
<tr>
<th>(a) No Privacy</th>
<th>(b) ML-ARL</th>
<th>(c) MaxEnt-ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Accuracy (%)</td>
<td>71.99 71.56</td>
<td>71.17 70.80 70.50 67.63 67.38 65.98 60.03 59.11 5.37 5.00</td>
</tr>
<tr>
<td>Adversary Accuracy (%)</td>
<td>30.69 30.59</td>
<td>16.88 16.60 16.43 13.23 8.38 5.02 2.81 1.23 1.00</td>
</tr>
</tbody>
</table>

Table 3: CIFAR-100: Target Accuracy (%) vs Adversary Accuracy

<table>
<thead>
<tr>
<th>(a) No Privacy</th>
<th>(b) ML-ARL</th>
<th>(c) MaxEnt-ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Accuracy (%)</td>
<td>71.99</td>
<td>71.32 64.90 56.99 54.46 24.66 22.22 5.00</td>
</tr>
<tr>
<td>Adversary Entropy (nats)</td>
<td>2.09</td>
<td>2.88 3.88 4.60</td>
</tr>
</tbody>
</table>

Table 4: CIFAR-100: Target Accuracy vs Adversary Entropy