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Abstract

Image recognition systems have demonstrated tremen-

dous progress over the past few decades thanks, in part,

to our ability of learning compact and robust representa-

tions of images. As we witness the wide spread adoption of

these systems, it is imperative to consider the problem of un-

intended leakage of information from an image representa-

tion, which might compromise the privacy of the data owner.

This paper investigates the problem of learning an image

representation that minimizes such leakage of user informa-

tion. We formulate the problem as an adversarial non-zero

sum game of finding a good embedding function with two

competing goals: to retain as much task dependent discrim-

inative image information as possible, while simultaneously

minimizing the amount of information, as measured by en-

tropy, about other sensitive attributes of the user. We ana-

lyze the stability and convergence dynamics of the proposed

formulation using tools from non-linear systems theory and

compare to that of the corresponding adversarial zero-sum

game formulation that optimizes likelihood as a measure of

information content. Numerical experiments on UCI, Ex-

tended Yale B, CIFAR-10 and CIFAR-100 datasets indicate

that our proposed approach is able to learn image represen-

tations that exhibit high task performance while mitigating

leakage of predefined sensitive information.

1. Introduction

Current day machine learning algorithms based on deep

neural networks have demonstrated impressive progress

across multiple domains such as image classification,

speech recognition etc. By stacking together multiple lay-

ers of linear and non-linear operations deep neural networks

have been able to learn and identify complex patterns in

data. As a by-product of these capabilities, deep neural net-

works have also become powerful enough to inadvertently

identify sensitive information or features of data even in the

absence of any additional side information. For example,

consider a scenario where a user enrolls their facial image

in a face recognition system for the purpose of access con-

trol. During enrollment, a feature vector is extracted from

the image and stored in a database. Apart from the identity

of the user, this feature vector potentially contains informa-

tion that is sensitive to the user, such as the age, informa-

tion that the user may never have expressly consented to

provide. More generally, learned data representations could

leak auxiliary information that the participants may never

have intended to release. Information obtained in this man-

ner can be used to compromise the privacy of the user or to

be biased and unfair to the user. Therefore, it is imperative

to develop representation learning algorithms that can in-

tentionally and permanently obscure sensitive information

while retaining task dependent information. Addressing this

problem is the central aim of this paper.

A few recent attempts have been made to study related

problems, such as learning censored [3], fair [14], or invari-

ant [18] representations of data. The central idea of these

approaches, collectively referred to as Adversarial Repre-

sentation Learning (ARL), is to learn a representation of

data in an adversarial setting. These approaches couple to-

gether (i) an adversarial network that seeks to classify and

extract sensitive information from a given representation,

and (ii) an embedding network that is tasked with extract-

ing a compact representation of data while preventing the

adversarial network from succeeding at leaking sensitive in-

formation. To achieve their respective goals, the adversary

is optimized to maximize the likelihood of the sensitive in-

formation, while the encoder is optimized to minimize the

same likelihood i.e., adversary’s likelihood of the sensitive

information, thereby leading to a zero-sum game. We will

henceforth refer to this formulation as Maximum Likelihood

Adversarial Representation Learning (ML-ARL).

The zero-sum game formulation of optimizing the likeli-

hood, however, is practically sub-optimal from the perspec-

tive of preventing information leakage. As an illustration

consider a problem where the sensitive attribute has three



categories. Let there be two instances where the adversary’s

probability distribution of the sensitive label is (0.33, 0.17,

0.5) and (0.33., 0.33., 0.33.) and let the correct label be class

1 for both of them. In each of these cases the likelihood of

the discriminator is the same i.e., log 0.33 but the former in-

stance is more informative than the latter. Moreover, the po-

tential of this formulation to prevent information leakage is

predicated upon: (i) the existence of an equilibrium, and (ii)

the ability of practical optimization procedures to converge

to such an equilibrium. As we will show, in practice, the

conditions necessary for convergence may not be satisfied.

Therefore, when the optimization does not reach the equi-

librium, a probability distribution with the minimum likeli-

hood is the distribution that is most certain with the poten-

tial to leak the most amount of information. In contrast, the

second instance is a uniform distribution over the sensitive

labels and provides no information to the adversary. This

solution corresponds to the maximum entropy distribution

over the sensitive labels.

Contributions: Building on the observations above, we

propose a framework, dubbed Maximum Entropy Adver-

sarial Representation Learning (MaxEnt-ARL), which op-

timizes an image representation with two major objectives,

(i) maximally retain information pertinent to a given tar-

get attribute, and (ii) minimize information leakage about a

given sensitive attribute. We pose the learning problem in

an adversarial setting as a non-zero sum three player game

between an encoder, a predictor and a discriminator (proxy

adversary) where the encoder tries to maximize the entropy

of the discriminator on the sensitive attribute and maximizes

the likelihood of the predictor on the target attribute.

We analyze the equilibrium and convergence properties

of the ML-ARL as well as the proposed MaxEnt-ARL for-

mulation using tools from non-linear systems theory. We

compare and evaluate the numerical performance of ML-

ARL and MaxEnt-ARL for fair classification tasks on the

UCI dataset, illumination invariant classification on the

Extended Yale B dataset and two fabricated tasks on the

CIFAR-10 and CIFAR-100 datasets. On a majority of these

tasks MaxEnt-ARL outperforms all other baselines.

2. Related Work

Adversarial Representation Learning: In the context of

image classification, adversarial learning has been utilized

to learn representations that are invariant across domains

[4, 5, 17], thereby enabling us to train classifiers on a source

domain and utilize on a target domain.

The entire body of work devoted to learning fair and un-

biased representations of data share many similarities to the

adversarial representation learning problem. Early work on

this topic did not involve an explicit adversary but shared

the goal of learning representations with competing objec-

tives. The concept of learning fair representations was first

introduced by Zemel et al [19], where the goal was to learn

a representation of data by “fair clustering” while maintain-

ing the discriminative features of the prediction task. Build-

ing upon this work many approaches have been proposed

to learn an unbiased representation of data while retaining

its effectiveness for a prediction task. To remove influence

of “nuisance variables” Louizos et al [14] proposed varia-

tional fair autoencoder (VFAE), a joint optimization frame-

work for learning an invariant representation and a predic-

tion task. In order to improve fairness in the representation,

they regularized the marginal distribution p(z|s) through

Maximum Mean Discrepancy (MMD).

More recent approaches [3, 20, 1, 18] have used explicit

adversarial networks to measure information content of sen-

sitive attributes. These problems are set up as a minimax

game between the encoder and the adversary. The encoder

is setup to achieve fairness by maximizing the loss of the ad-

versary i.e. minimizing negative log-likelihood of sensitive

variables as measured by the adversary. Among these ap-

proaches, our proposed MaxEnt-ARL formulation is most

directly related to the Adversarial Invariant Feature Learn-

ing introduced by Xie et al. [18].

Optimization Theory for Adversarial Learning: The

formulation of adversarial representation learning poses

unique challenges from an optimization perspective. The

parameters of the models in ARL are typically optimized

through stochastic gradient descent, either jointly [3, 15]

or alternatively [4]. The former is, however, more com-

monly used in practice and is a generalization of gradient

descent. While the convergence properties of gradient de-

scent and its variants are well understood, there is relatively

little work on the convergence and stability of simultane-

ous gradient descent in adversarial minimax problems. Re-

cently, Mescheder et al. [15] and Nagarajan et al. [16]

both leveraged tools from non-linear systems theory [9] to

analyze the convergence properties of simultaneous gradi-

ent descent in the context of GANs. They show that with-

out the introduction of additional regularization terms to the

objective of the zero-sum game, simultaneous gradient de-

scent does not converge. Our convergence analysis of ML-

ARL and MaxEnt-ARL also leverages the same non-linear

systems theory tools and show the conditions under which

they converge.

3. Adversarial Representation Learning

The Adversarial Representation Learning setup involves

observational input x, a target attribute with n classes

Y = {y1, . . . , yn} and a sensitive attribute with m classes

S = {s1, . . . , sm}. In this paper, we restrict ourselves to

attributes over a discrete space with multiple labels. Our

goal is to learn an embedding function that maps x to z
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Figure 1: Adversarial Representation Learning: We consider the problem of learning an embedding function E(·,θE) that

maps a high-dimensional image to a low-dimensional representation z ∈ R
d while satisfying two competing goals: retain as

much image information necessary to accurately predict a target attribute Y = {y1, . . . , yn} while simultaneously minimizing

information leakage about a sensitive attribute S = {s1, . . . , sm} by an unknown adversary A(·,θA). The learning problem

is formulated as a minimax game between {E(·,θE), T (·,θT )} and a proxy adversary D(·,θD).

from which we can predict a target attribute Y , while also

minimizing information leakage about a known sensitive at-

tribute S i.e. class labels of attribute S .

3.1. Problem Setting

The Adversarial Representation Learning problem is for-

mulated as a game among three players, encoder E, a target

predictor T , and a discriminator D that serves as a proxy

for an unknown adversary A. After E is learned and fixed,

we train and evaluate an adversary A with the aim of leak-

ing information of the sensitive attribute that we sought to

protect. Since the adversary A is unknown to encoder at

training, the encoder E is trained against the discriminator

D, which thereby acts as a proxy for the unknown A. An

illustration of this setting is shown in Fig. 1. The encoder

is modeled as a deterministic function, z = E(x;θE), the

target predictor models the conditional distribution p(t|x)
via qT (t|z;θT ) and the discriminator models the condi-

tional distribution p(s|x) via qD(s|z;θD), where p(t|x)
and p(s|x) are the ground truth labels for a given target and

sensitive labels t and s, respectively.

3.2. Background

In existing formulations of ARL, the goal of the encoder

is to maximize the likelihood of the target attribute, as mea-

sured by the target predictor T , while minimizing the likeli-

hood of the sensitive attribute, as measured by the discrimi-

nator D. This problem (henceforth referred to as ML-ARL)

was formally defined by Xie et al. [18] as a three player

zero-sum minimax game:

min
θE ,θT

max
θD

J1(θE ,θT )− αJ2(θE ,θD) (1)

where α is a parameter that allows us to trade-off between

the two competing objectives for the encoder and,

J1(θE ,θT ) = KL (p (t|x) ‖qT (t|E(x;θE);θT ))

J2(θE ,θD) = KL (p (s|x) ‖qD (s|E(x;θE);θD))

where the KL(·‖·) terms reduce to the log-likelihood if the

label distributions are ideal categorical distributions.

3.3. Maximum Entropy Adversarial Representa­
tion Learning

In the MaxEnt-ARL formulation the goal of the encoder

is to maximize the likelihood of the target attribute, as mea-

sured by the target predictor, while maximizing the uncer-

tainty in the sensitive attribute, as measured by the entropy

of the discriminator’s prediction. Formally, we define the

MaxEnt-ARL optimization problem as a three player non-

zero sum game:

min
θD

V1(θE ,θD)

min
θE ,θT

V2(θE ,θT ) + αV3(θE ,θD)
(2)

where α allows us to trade-off between the two competing

objectives for the encoder and,

V1(θE ,θD) = KL (p (s|x) ‖qD (s|E(x;θE);θD))

V2(θE ,θT ) = KL (p (t|x) ‖qT (t|E(x;θE);θT ))

V3(θE ,θD) = KL (qD (s|E(x;θE) ;θD)‖U)

where U is the uniform distribution. The crucial difference

between the MaxEnt-ARL formulation and the ML-ARL

formulation is the fact that while the encoder and the dis-

criminator have competing objectives, in ML-ARL they di-

rectly compete against each other on the same metric (likeli-

hood of sensitive attribute), while in MaxEnt-ARL they are

optimizing competing metrics that are related but not the

exact same metric.

Optimizing the embedding function to maximize the en-

tropy of the discriminator instead of minimizing its likeli-

hood has one crucial practical advantage. Entropy maxi-

mization inherently does not need class labels for training.

This is advantageous in settings where it is either, (i) Un-

desirable for the embedding function to have access to the



sensitive label, potentially for privacy reasons., or (ii) Sen-

sitive labels for the data points are unknown. For instance

consider, a semi-supervised scenario where only the desired

label is known while the sensitive label is unknown. The

embedding function can learn from such data by obtaining

gradients from the entropy of the discriminator.

4. Theoretical Analysis

In this section we analyze the properties of the MaxEnt-

ARL formulation and compare it to the ML-ARL formula-

tion, both in terms of equilibrium as well as convergence

dynamics under simultaneous gradient descent.

4.1. Equilibrium

Theorem 1. Given a fixed encoder E, the optimal discrim-

inator is qD(s|E(x;θE);θ
∗

D) = p(s|E(x;θE)) and the op-

timal predictor is qT (t|E(x;θE);θ
∗

T ) = p(t|E(x;θE)).

Proof. The proof uses the fact that, given a fixed encoder

E, the objective is convex w.r.t. each distribution. Thus we

can obtain the stationary point for qD(s|E(x;θE);θD) and

qT (s|E(x;θE);θT ) as a function of p(s|E(x;θE)) and

p(t|E(x;θE)), respectively. The detailed proof is included

in the supplementary material.

Therefore, both the optimal distributions

qD(s|E(x;θE);θ
∗

D) and qT (t|E(x;θE);θ
∗

T ) are functions

of the encoder parameters θE . The objective for optimizing

the encoder now reduces to:

min
θE

Ex,t [− log qT (t|E(x;θE);θ
∗

T )] + logm

+ αEx

[

m
∑

i=1

qD(si|E(x;θE);θ
∗

D) log qD(si|E(x;θE);θ
∗

D)

]

where the first term is minimizing the uncertainty (negative

log-likelihood) of the true target attribute label and the sec-

ond term is maximizing unpredictability (as measured by

entropy) across all the classes in the discriminator distribu-

tion, thereby, preventing leakage of any information about

the sensitive attribute label. In contrast the corresponding

objective of the ML-ARL problem is [18],

min
θE

Ex,t [− log qT (t|E(x;θE);θ
∗

T )]

+ αEx,s [log qD(s|E(x;θE);θ
∗

D)]

where the first term is minimizing the uncertainty (negative

log-likelihood) of the true target attribute label, while the

second term is maximizing uncertainty (log-likelihood) of

only the true sensitive attribute label. However, by doing

so, the encoder inadvertently becomes more certain about

the other labels, and can still be informative to an adversary.

Equilibrium when s ⊥⊥ t: When the target and sensitive

attributes are independent with respect to each other (e.g.,

age and gender), the two terms in the encoder optimization

can both reach their optima simultaneously. Furthermore,

the problem reduces to a non-zero sum two player game

between the encoder and the discriminator in the MaxEnt-

ARL case and to a zero-sum two player game between the

same players in the case of ML-ARL.

Corollary 1.1. When s ⊥⊥ t, let the optimum discrimina-

tor and predictor for an encoder E be qD(s|E(x;θE);θ
∗

D)
and qT (t|E(x;θE);θ

∗

T ) respectively. The optimal encoder

E(·) in the MaxEnt-ARL formulation induces a uniform

distribution in the discriminator qD(s|E(x;θ∗

E);θ
∗

D) over

the classes of the sensitive attribute.

Proof. The proof uses the fact that, given a fixed opti-

mal discriminator D, qT (t|E(x;θE);θ
∗

T ) is independent of

qD(s|E(x;θE);θ
∗

D) when s ⊥⊥ t. The detailed proof is

included in the supplementary material.

Equilibrium when s 6⊥⊥ t: When the target and sensitive

attributes are related to each other (e.g., beard and gender),

the two terms in the encoder optimization cannot reach their

optima simultaneously. In both the formulations, ML-ARL

and MaxEnt-ARL, the relative optimality of the two objec-

tives depends on the trade-off factor α.

4.2. Convergence Dynamics

We analyze the standard algorithm (simultaneous

stochastic gradient descent) for finding the equilibrium so-

lution of such adversarial games. That is, we take simulta-

neous gradient steps in θE , θD and θT , which can be ex-

pressed as differential equations of the form:

˙θD = fD(θ) = ∇θD
V1(θE ,θD)

θ̇T = fT (θ) = ∇θT
V2(θE ,θT )

˙θE = fE(θ) = ∇θE
V2(θE ,θT ) + αV3(θE ,θT )

(3)

where the gradients f(θ) = (fD(θ), fT (θ), fE(θ)) define

a vector field over θ = (θD,θT ,θE).
The qualitative behavior of the aforementioned non-

linear system near any equilibrium point can be determined

via linearization with respect to that point [9]. Restrict-

ing our attention to a sufficiently small neighborhood of the

equilibrium point, the non-linear state equations in (3) can

be approximated by a linear state equation:

θ̇ = Jθ (4)

where, J =









∂fD(θ)
∂θD

∂fD(θ)
∂θT

∂fD(θ)
∂θE

∂fT (θ)
∂θD

∂fT (θ)
∂θT

∂fT (θ)
∂θE

∂fE(θ)
∂θD

∂fE(θ)
∂θT

∂fE(θ)
∂θE









∣

∣

∣

∣

∣

∣

∣

∣

θ=θ∗

is the Ja-

cobian of the vector field evaluated at the chosen equilib-

rium point θ∗ = (θ∗

D,θ∗

T ,θ
∗

E). For small neighborhoods
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Figure 2: Three Player Game: Linear Example

around an equilibrium, the trajectories of the non-linear sys-

tem in (3) is expected to be “close” to the trajectories of the

linear approximate system in (4).

Theorem 2 (Linearization). Let x = 0 be an equilibrium

point for the non-linear system, ẋ = f(x), where f : D →
R

n is continuously differentiable and D is a neighborhood

of the origin. Let, J = ∂f
∂x

∣

∣

∣

x=0

. Then,

• The origin is asymptotically stable if Re(λi) < 0 for

all eigenvalues of J .

• The origin is unstable if Re(λi) ≥ 0 for one or more

of the eigenvalues of J .

Proof. See Theorem 4.7 of [9].

5. Numerical Experiments

In this section we will evaluate the efficacy of the

proposed Maximum Entropy Adversarial Representation

Learning model and compare it with other Adversarial Rep-

resentation Learning baselines.

5.1. Three Player Game: Linear Case

As an illustrative example we analyze the convergence

of both ML-ARL and MaxEnt-ARL under the same setting.

The encoder, discriminator and predictor are linear mod-

els with multiplicative weights w1, w2 and w3, respectively.

We limit our model to this three variable setting for ease of

analysis and visualization. Both predictor and the discrimi-

nator are optimizing cross-entropy loss on binary {0, 1} la-

bels. To observe the game between the three players we

provide same data sample x = 1 yet with different target

and sensitive labels i.e., 4 samples with {00, 01, 10, 11} for

target and sensitive labels. Loss is calculated as the average

over all samples and corresponding vector field values are

also computed. The stationary point of this game, for both

ML-ARL and MaxEnt-ARL, is at (w1 = 0, w2 = 0, w3 =
0) and the gradient of the loss functions are zero at this

point. We consider a small (30 × 30 × 30 grid) neighbor-

hood around the stationary point in the range [−0.01, 0.01]
for weights w1, w2, w3 and visualize trajectories by follow-

ing the vector field of the game.

Figure 3 shows streamline plots of the vector field around

(0, 0, 0) for a point starting at the green location. In the

ML-ARL case, we observe that when the predictor is fixed

at w3 = 0, the trajectory for the encoder and the discrim-

inator does not converge and rotates around the stationary

point. In contrast, for the MaxEnt-ARL method converges

to the stationary point. When w1 = 0, the streamlines for

both ML-ARL and MaxEnt-ARL converge to (0, 0). For

an alternate formulation, where the discriminator is of the

form D = z2 + b2, we found convergent behavior for both

ML-ARL and MaxEnt-ARL.

5.2. Mixture of Gaussians

In this experiment we seek to visualize and compare

the representation learned by MaxEnt-ARL and ML-ARL.

We consider a mixture of 4 Gaussians with means µ at

((1, 1), (2, 1.5), (1.5, 2.5), (2.5, 3)) and variance σ = 0.3
in each case. Our model is a neural network with 2 hidden

layer with 2 neuron in each layer. Each data sample has

two attributes, color and shape. We setup the ARL problem

with shape as the target attribute and color as the sensitive

attribute. The encoder is a neural network with one hidden

layer, mapping the 2-D shape into another 2-D embedding,

and both the predictor and discriminator are logistic regres-

sion classifiers. The trade-off parameter is set to α = 0.1
and the parameters are learned using the Adam optimizer

with learning rate of 10−4. After learning the embedding

function, we freeze its parameters and learn a logistic clas-

sifier as the adversary. The test accuracy of the adversary

is 63% for MaxEnt-ARL and 70% for ML-ARL. Therefore,

by optimizing the entropy instead of the likelihood MaxEnt-

ARL is able to leak less information about the sensitive la-

bel compared to ML-ARL. Figure 4 shows the data and the

learned embeddings.

5.3. Fair Classification

We consider the setting of fair classification on two

datasets from the UCI ML-repository [2], (a) The German

credit dataset with 20 attributes for 1000 instances with tar-

get label being classifying bank account holders with good

or bad credit and gender being the sensitive attribute, (b)

The Adult income dataset has 45,222 instances with 14

attributes. The target is a binary label of annual income

more or less than $50, 000, while gender is the sensitive at-

tribute. For both ML-ARL and MaxEnt-ARL, the encoder

is a NN with one hidden layer, discriminator is a NN with

2 hidden layers, and target predictor is linear logistic re-

gression. Following ML-ARL [18] we choose 64 units in

each hidden layer. We compare both ARL formulations

with state-of-the-art baselines LFR (Learning Fair Repre-

sentations [19]), VAE (Variational Auto-encoder [11]) and

VFAE (Variational Fair Auto-encoder [14]). For MaxEnt-

ARL, after learning the embedding, we again learn an ad-

versary to extract the sensitive attribute.

Figure 5 show the results for the German and Adult

datasets, for both the target and sensitive attributes. For Ger-
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Figure 3: Streamline plots for linear three-player game near stationary point (0,0,0). Trajectories start at the green point

and converge to the red point by following the vector field. (a) and (e) shows the top-view of the 3-D trajectories. When

w1 = 0 the trajectories suggest that both ML-ARL and MaxEnt-ARL converge to the local optima, (w1 = w2 = w3 = 0).

When w2 = 0, the MaxEnt-ARL trajectories converge to the local optima. The ML-ARL trajectories converge to the optima

only when they start far away from 0 along w3. The trajectories starting closer to w3 = 0, however, do not converge to

w1 = 0. When w3 = 0, the game reduces to a two-player adversarial game (akin to a GAN[7]), where ML-ARL shows

non-convergent cyclic behavior while MaxEnt-ARL converges.

(a) Input (b) ML-ARL (c) MaxEnt-ARL

Figure 4: Samples from four Gaussians with target (shape) and sensitive attributes (color). (a) input space, (b) learned

embedding z for ML-ARL, (c) learned embedding for MaxEnt-ARL. We can now notice that ML-ARL has some isolated

samples with different colors (sensitive label), while MaxEnt-ARL results in slightly better mixing of the colors.

man data, MaxEnt-ARL’s prediction accuracy is 86.33%

which is close to that of the original data (87%). Other

models such as, LFR, VAE, VFAE and ML-ARL have tar-

get accuracies of 72.3%, 72.5%, 72.7% and 74.4% respec-

tively. On the other hand, for the sensitive attribute, the

MaxEnt-ARL adversary’s accuracy is 72.7%. Other models

reveal much more information with adversary accuracies of

80%, 80.5%, 79.5%, 79.7% and 80.2% for the original data,

LFR, VAE, VFAE and ML-ARL, respectively. For the adult

income dataset, the target accuracy for original data, ML-

ARL and MaxEnt-ARL is 85%, 84.4% and 84.6%, respec-

tively, while the adversary’s performance on the sensitive

attribute is 67.7% and 65.5% for ML-ARL and MaxEnt-

ARL, respectively.

5.4. Illumination Invariant Face Classification

We consider the task of face classification under differ-

ent illumination conditions. We used the Extended Yale B

dataset [6] comprising of face images of 38 people under

different lighting conditions (directions of the light source)

: upper right, lower right, lower left, upper left, or the front.

Our target task is to identify one of the 38 people in the
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Figure 5: Representation Learning for Fair Classification

Table 1: Illumination Invariant Face Classification (%)

Method s (lighting) t (identity)

LR 96 78

NN + MMD [13] - 82

VFAE [14] 57 85

ML-ARL [18] 57 89

Maxent-ARL 40 89

dataset with the direction of the light source being the sen-

sitive attribute. We follow the experimental setup of Xie

et al. [18] and Louizos et al. [14] using the same train/test

split strategy and no validation set. 38 × 5 = 190 samples

are used for training and the rest of the 1,096 data samples

are used for testing. Following the model setup in [18],

the encoder is a one layer neural network, target predictor

is a linear layer and the discriminator has two hidden layers

where each hidden layer consists of 100 units. The param-

eters are trained using Adam [10] with a learning rate of

10−4 and weight decay of 5× 10−2.

We report baseline [13, 14, 18] results for this experi-

ment in Table 1 and compare with the proposed MaxEnt-

ARL framework. Louizos et al. [14] regularize their neural

networks via Maximum Mean Discrepancy to remove light-

ing conditions from data whereas Xie et al. [18] use the ML-

ARL framework. The MaxEnt-ARL achieves an accuracy

of 89% for identity classification (same as ML-ARL) while

outperforming MMD (82%) and VFAE (85%). In terms of

protecting sensitive attribute i..e, illumination direction, ad-

versary’s classification accuracy reduces from 57% for ML-

ARL to 40.2% for MaxEnt-ARL. It is clear from the table

that, MaxEnt-ARL is able to remove more information from

the image compared to the baselines.

5.5. CIFAR­10

We create a new binary target classification problem on

the CIFAR-10 dataset[12]. The CIFAR-10 dataset con-

sists of 10 basic classes, namely, (‘airplane’, ‘automobile’,

‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’).

We divide the classes into two groups: living and non-

living objects. We expect the living objects to have visu-

ally discriminative properties like smooth shapes compared

to regular geometric shapes of non-living objects. The tar-

get task is binary classification of an image into these two

supersets with the underlying class label being the sensi-

tive attribute. For example, the task of classifying an object

as living (‘dog’ or ‘cat’) or non-living (‘ship’ or ‘truck’)

should not reveal any information about its underlying iden-

tity (‘dog’, ‘cat’, ‘truck’ or ‘ship’). But as we will see, this is

a challenging problem and the image representation might

not be able to prevent leakage of the sensitive label.

Implementation Details: We adopt the ResNet-18 [8] ar-

chitecture as the encoder, and the discriminator and adver-

sary are 2-layered neural networks with 256 and 64 neu-

rons, respectively. The encoder and the target predictor

are trained using SGD with momentum of 0.9, learning

rate of 10−3 and weight-decay of 10−3 for the prediction

task. Both the discriminator and the adversary, however,

are trained using Adam with a learning rate of 10−4 and

weight-decay of 10−3 for 300 epochs.

Experimental Results: We evaluate performance of the

predictor and adversary as we vary the trade-off parameter

α. We first note that, ideally, the desired predictor accuracy

is 100%, adversary accuracy is 10% (random chance for 10

classes) and adversary entropy is 2.3 nats (uniform distri-

bution for 10 classes). Figure 6 (a)-(b) shows the trade-off

achieved between predictor and adversary along with the

corresponding normalized hyper-volume (HV). For the pre-

dictor and adversary accuracy, the HV corresponds to area

above the trade-off curve, while for the predictor accuracy

and adversary entropy the HV is the area under the curve.

We obtain these results by repeating all the experiments

five times and retaining the non-dominated solutions i.e.,

a solution that is no worse than any other solution in both

the objectives. From these results, we observe that without

privacy considerations, the representation achieves the best

target accuracy but also leaks significant information. In

contrast adversarial learning of the representation achieves

a better trade-off between utility and information leakage.

Among ARL approaches, we observe that MaxEnt-ARL

is able to obtain a better trade-off compared to ML-ARL.

Furthermore, among all possible solutions, MaxEnt-ARL

achieves the solution closest to the ideal desired point.



(a) (b) (c) (d)

Figure 6: Adversary Representation Learning on CIFAR Datasets: Trade-off fronts for two different ARL approaches,

ML-ARL and MaxEnt-ARL, in comparison to standard no privacy representation learning. Plots (a)-(b) and (c)-(d) corre-

spond to CIFAR-10 and CIFAR-100 experiments, respectively. In (a) and (c) the ideal desired solution is the bottom right

corner, while in (b) and (d) it is the top right corner. HV in the legend corresponds to normalized hyper-volume. Exact

numerical values are available in the supplementary material.

Table 2: Main classes and Superclasses in CIFAR-100

Superclass Main Class

aquatic mammals beaver, dolphin, otter, seal, whale

fish aquarium fish, flatfish, ray, shark, trout

flowers orchids, poppies, roses, sunflowers, tulips

food containers bottles, bowls, cans, cups, plates

fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers

household electrical devices clock, computer keyboard, lamp, telephone, television

household furniture bed, chair, couch, table, wardrobe

insects bee, beetle, butterfly, caterpillar, cockroach

large carnivores bear, leopard, lion, tiger, wolf

large man-made outdoor things bridge, castle, house, road, skyscraper

large natural outdoor scenes cloud, forest, mountain, plain, sea

large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

medium-sized mammals fox, porcupine, possum, raccoon, skunk

non-insect invertebrates crab, lobster, snail, spider, worm

people baby, boy, girl, man, woman

reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel

trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train

vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

5.6. CIFAR­100

We formulate a new privacy problem on the CIFAR-100

dataset. The dataset consists of 100 classes and are grouped

into 20 superclasses (Table 2). Each image has a “fine” (the

class to which it belongs) and a “coarse” (the superclass to

which it belongs) label. We treat the “coarse” (superclass)

and “fine” (class) labels as the target and sensitive attribute,

respectively. So the encoder is tasked to learn features of the

super-classes while not revealing the information of the un-

derlying classes. We adopt ResNet-18 as the encoder while

the predictor, discriminator and adversary are all 2-layered

fully connected networks. The adversarial game is trained

for 150 epochs, followed by training the adversary for 100

epochs while the parameters of the encoder are frozen.

Just as in the case of CIFAR-10, we report the trade-

off achieved between predictor and adversary along with

the corresponding normalized hyper-volume (HV) in Fig.

6 (c)-(d). Here we note that, ideally, we desire predictor ac-

curacy of 100%, adversary accuracy of 1% (random chance

for 100 classes) and adversary entropy of ln 100 = 4.61
nats (uniform distribution for 100 classes). We make the

following observations from the results. Firstly, the per-

formance of the different approaches suggest that this task

is significantly harder than the CIFAR-10 task, with much

lower achievable target accuracy and much higher adver-

sary accuracy. Secondly, representation learning without

privacy considerations leaks significant amount of informa-

tion. Thirdly, MaxEnt-ARL is able to significantly outper-

form ML-ARL on this task, achieving trade-off solutions

that are far better, both in terms of adversary accuracy and

entropy of adversary.

6. Conclusion

This paper introduced a new formulation of Adversarial

Representation Learning called Maximum Entropy Adver-

sarial Representation Learning (MaxEnt-ARL) for mitigat-

ing information leakage from learned representations un-

der an adversarial setting. In this model, the encoder is

optimized to maximize the entropy of the adversary’s dis-

tribution of a sensitive attribute as opposed to minimiz-

ing the likelihood (ML-ARL) of the true sensitive label.

We analyzed the equilibrium and convergence properties of

the ML-ARL and MaxEnt-ARL. Numerical experiments on

multiple datasets suggests that MaxEnt-ARL is a promising

framework for preventing information leakage from image

representations, outperforming the baseline minimum like-

lihood objective.
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