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Abstract—This paper considers the problem of optimum
reconstruction in generalized sampling-reconstruction processes
(GSRPs). We propose constrained GSRP, a novel framework that
minimizes the reconstruction error for inputs in a subspace,
subject to a constraint on the maximum regret-error for any
other signal in the entire signal space. This framework addresses
the primary limitation of existing GSRPs (consistent, subspace
and minimax regret), namely, the assumption that the a priori
subspace is either fully known or fully ignored. We formulate
constrained GSRP as a constrained optimization problem, the
solution to which turns out to be a convex combination of the
subspace and the minimax regret samplings. Detailed theoretical
analysis on the reconstruction error shows that constrained
sampling achieves a reconstruction that is 1) (sub)optimal for
signals in the input subspace, 2) robust for signals around the
input subspace, and 3) reasonably bounded for any other signals
with a simple choice of the constraint parameter. Experimental
results on sampling-reconstruction of a Gaussian input and
a speech signal demonstrate the effectiveness of the proposed
scheme.

Index Terms—Consistent sampling, constrained optimization,
generalized sampling-reconstruction processes, minimax
regret sampling, oblique projection, orthogonal projection,
reconstruction error, subspace sampling.

I. INTRODUCTION

Sampling is the backbone of many applications in digital

communications and signal processing; for example, sampling

rate conversion for software radio [1], biomedical imaging [2],

image super resolution [3], machine learning and signal

processing on graph [4], [5], etc. Many of the systems involved

in these applications can be modeled as the generalized

sampling-reconstruction process (GSRP) as shown in Fig. 1.

A typical GSRP consists of a sampling operator S∗ associated

with a sampling subspace S in a Hilbert space H, a

reconstruction operator W associated with a reconstruction

subspace W ⊆ H, and a correction digital filter Q. For a
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Fig. 1. A typical GSRP: S∗ is a sampling operator, Q is a linear discrete-time
correction filter, and W a reconstruction operator.

given subspace W , orthogonal projection onto W minimizes

the reconstruction error in W , as measured by the norm of

H. As a result, orthogonal projection is considered to be the

best possible GSRP. However, the orthogonal projection is

not possible unless the reconstruction space is a subspace of

sampling space [6], i.e., W ⊆ S . Therefore, many solutions

have been developed for the GSRP problem under different

assumptions on S , W and the input subspace. These solutions

can be categorized into consistent, subspace, and minimax

regret samplings.

When the inclusion property (W ⊆ S) does not hold, but

one still wants to have the effect of orthogonal projection

for any signals in the reconstruction space, Unser et al [7],

[8] introduced the notion of consistent sampling for shiftable

spaces. This sampling strategy has later been developed and

generalized by Eldar and co-authors [9]–[12]. Common to

this body of work is the assumption that the subspace W
and the orthogonal complement S⊥ of subspace S satisfy

the so-called direct-sum condition, i.e., W ⊕ S⊥ = H. This

implies that W and S⊥ uniquely decompose H. When the

direct-sum condition is relaxed to be a simple sum condition

W + S⊥ = H, the consistent sampling can still be developed

in finite spaces [13], [14]. Further generalization of consistent

sampling where even the sum condition is not satisfied can be

found in [15], [16].

In many instances and for various reasons, the

reconstruction space W can be different from the input

subspace A which models input signals based on a priori

knowledge. On one hand, this may be the case due to

limitation on physical devices. On the other hand, it can also

be advantageous to select suitable reconstruction spaces. For

example, band-limited signals are often used to model natural

signals. In this case, the sinc function as a generator for the

corresponding input space A suffers from slow convergence

in reconstruction; it is preferable to use a different generator

that has short support (thus allowing fast reconstruction)

for the reconstruction space W . Eldar and Dvorkind in [6]

introduced subspace sampling and showed that orthogonal

projection onto the reconstruction space for signals belonging

to a priori subspace is feasible under the direct-sum condition

between A and S⊥ (i.e., A ⊕ S⊥ = H). The subspace A
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can be learned empirically or by a training dataset [17].

Nevertheless, it would still be subject to uncertainties due

to, for example, learning imperfection, noise or hardware

inability to sample at Nyquist rate. Knyazev et al used

a convex combination of consistent and subspace GSRP

to address the uncertainty of the a priori subspace [17].

However, the reconstruction errors of consistent sampling

and subspace sampling can be arbitrarily large if the angle

between reconstruction (or a priori) subspace and sampling

subspace approaches 90◦ [6].

Minimax regret sampling was introduced by Eldar and

Dvorkind [6] to address the possibility of large errors

associated with consistent (and subspace) sampling for signals

away from the sampling subspace. It minimizes the maximum

(worst) regret-error (distance of the reconstructed signal

from orthogonal projection). The minimax regret sampling,

however, is found to be conservative as it ignores the a priori

information on input signals.

In the aforementioned GSRPs the a priori subspace is

assumed to be either fully known or fully ignored, which

is not practically realizable. In addition, the angle between

sampling space and input space cannot be controlled (they

can get arbitrarily close to 90◦). In this paper, we introduce

constrained sampling to address these limitations. We design

a robust (in the sense of angle between sampling and input

spaces) reconstruction for the signals that approximately

lies in the a priori subspace. To this end, we introduce a

new sampling strategy that exploits the a priori subspace

information while enjoying the reasonably bounded error (for

any input) of the minimax regret sampling. This is done by

minimizing the reconstruction error for the signals lying in the

a priori subspace while constraining the minimum regret-error

to be below certain level for any signal in H. The solution is

shown to be a convex combination of minimax regret and

consistent sampling. To be specific, given an input x, the

reconstruction of the proposed constrained sampling is given

as a convex combination

xλ = λxsub + (1− λ)xreg, λ ∈ [0, 1] (1)

where xsub and xreg are the reconstructions of the subspace

and minimax sampling, respectively. The result is illustrated

in Fig. 2 for a simple case where H = R
2 and the a

priori subspace A is equal to the reconstruction subspace

W (therefore, subspace sampling is the same as consistent

sampling). In the figure, x is the input signal; xopt = PWx
is the optimal reconstruction, i.e., the orthogonal projection of

x onto W; xsub = PWS⊥x is the oblique projection onto W
along the orthogonal complement of S; and xreg = PWPSx is

the result of two successive orthogonal projections. The figure

shows that as a combination of xsub and xreg, our constrained

sampling xλ can potentially be very close to orthogonal

projection. This desirable feature will also be demonstrated

in the two examples in Section VI.

The main contributions of this paper can be summarized as

follows:

1) We propose and solve a constrained optimization

problem which yields reconstruction that is (sub)optimal

S⊥

S

A =
W

B
x

PSx
x
reg

x
su

b

x
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Fig. 2. Comparison of several sampling schemes: xopt = PWx is the
orthogonal projection of x onto W ; xsub = PWS⊥x is the oblique projection

onto W along S⊥; and xreg = PWPSx is the orthogonal projection onto
S followed by orthogonal projection onto W . Our constrained reconstruction
xλ is a simple convex combination of xsub and xreg and can be expressed
as PWPBS⊥x for some subspace B given in Section IV. Note that xλ can
potentially get very close to xopt.

for signals in input subspace and robust for any other

input signals.

2) The solution to the optimization problem leads to a

new sampling strategy (i.e., the constrained sampling)

which has consistent (or subspace) and minimax regret

samplings as special cases.

3) We provide detailed analysis of reconstruction errors,

and obtain reconstruction guarantees in the form of

lower and upper bounds of errors.

The organization of this paper is as follows. In Sections II

and III, we provide preliminaries and discuss related work,

respectively. The proposed constrained sampling is described

in Section IV. In Section V, we obtain lower and upper

bounds on the reconstruction error of the constrained GSRP.

We then present two illustrative examples to demonstrate the

effectiveness of the new sampling scheme in Section VI.

Finally, we conclude the paper in Section VII.

II. PRELIMINARIES

A. Notation

We denote the set of real and integer numbers with R and Z

respectively. Let
(
H, 〈 · 〉

)
be a Hilbert space with the norm ‖·‖

induced by the inner product 〈 · 〉. We assume throughout the

paper that H is infinite-dimensional unless otherwise stated.

Vectors in H are represented by lowercase letters (e.g., x, v).

Capital letters are used to represent operators (e.g., S, W ). The

(closed) subspaces of H are denoted by capital calligraphic

letters (e.g., S , W). S⊥ is the orthogonal complement of S in

H. For a linear operator V , its range and nullspace are denoted

by R(V ) (or V) and N (V ) respectively. In particular, the

Hilbert space of continuous-time square-integrable functions

(discrete-time summable sequences, resp) is denoted by L2

(ℓ2, resp). At particular time instant t ∈ R (n ∈ Z, resp), the

value of signal x ∈ L2 (d ∈ ℓ2, resp) is denoted by x(t) (d[n],
resp).
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B. Subspaces and Projections

Given two subspaces V1, V2, if they satisfy the direct-sum

condition, i.e.,

V1 ⊕ V2 = H

we can define an oblique projection onto V1 along V2. Let it

be denoted as PV1V2
. By definition [6], PV1V2

is the unique

operator satisfying

PV1V2
x =

{
x, x ∈ V1

0, x ∈ V2.

As a result, we have

R(PV1V2
) = V1, N (PV1V2

) = V2.

Any projection P can be written, in terms of its range and

nullspace, as

P = PR(P )N (P ).

By exchanging the role of V1 and of V2, we also have the

oblique projection PV2V1
. And

PV1V2
+ PV2V1

= I (2)

where I : H → H is the identity operator. In particular, if

V1 = V⊥
2 = V , then the oblique projections reduce to the

orthogonal ones, and (2) specializes to

PV + PV⊥ = I. (3)

An important characterization of projection is that a linear

operator P : H → H is an oblique projection if and only if

P 2 = P [18]. Note that the sum of two projections is generally

not a projection. Nevertheless, the following result states that

their convex combination remains a projection if both share

the same nullspace. This result will be useful in our study of

constrained sampling.

Proposition 1: Let P1 and P2 be two projections. If

N (P1) = N (P2), then the following statements hold.

1) P1P2 = P1 and P2P1 = P2.

2) P = λP1 + (1− λ)P2 is a projection for any λ ∈ R.

Proof: 1) From (2), it follows

P1P2 = P1(I − PN (P2)R(P2)) = P1 − P1PN (P2)R(P2).

If N (P1) = N (P2), then the last term becomes zero. Hence,

P1P2 = P1. Similarly, we have that P2P1 = P2.

2) It can be readily verified that P 2 = P in view of the

result in 1).

As consequences of Proposition 1, the following equalities

hold, which will be used in Section IV:

PV1
PV2V⊥

1

= PV1
(4)

and

PV1V⊥
2

PV2
= PV1V⊥

2

. (5)

C. Angle between Subspaces

The notion of angles between two subspaces characterizes

how far they are away from each other.

Consider a subspace V ⊂ H and a vector 0 6= x ∈ H. The

angle between x and V , denoted by (x,V), is defined by

cos(x,V) := ‖PVx‖
‖x‖ (6)

or equivalently

sin(x,V) := ‖PV⊥x‖
‖x‖ . (7)

Let V1,V2 ⊂ H be two subspaces, following [6], the

(maximal principal) angle between V1 and V2, denoted by

(V1,V2), is defined by

cos(V1,V2) := inf
0 6=x∈V1

‖PV2
x‖

‖x‖ (8)

or equivalently

sin(V1,V2) := sup
0 6=x∈V1

‖PV⊥
2

x‖
‖x‖ . (9)

This angle can also be characterized via any linear operator

B whose range is equal to V1:

cos(V1,V2) = inf
x 6∈N (B)

‖PV2
Bx‖

‖Bx‖ (10)

or equivalently

sin(V1,V2) = sup
x 6∈N (B)

‖PV⊥
2

Bx‖
‖Bx‖ . (11)

Note that (V1,V2) 6= (V2,V1) in general. However, if their

orthogonal complements are used instead, the order can be

exchanged [6], [7]:

(V1,V2) = (V⊥
2 ,V⊥

1 ). (12)

Moreover, under the direct-sum condition, commutativity

holds [19]:

(V1,V2) = (V2,V1) if V1 ⊕ V⊥
2 = H. (13)

The angle between subspaces allows descriptions of lower

and upper bounds for orthogonal projection of signals in V1:

cos(V1,V2)‖x‖ ≤ ‖PV2
x‖ ≤ sin(V1,V⊥

2 )‖x‖, x ∈ V1

(14)

and for any signal in H, via a linear operator B with R(B) =
V1:

cos(V1,V2)‖Bx‖ ≤ ‖PV2
Bx‖ ≤ sin(V1,V⊥

2 )‖Bx‖, x ∈ H.
(15)

For oblique projection, the following bounds are proven in [6]

‖PV⊥
2

x‖
sin(V1,V2)

≤ ‖PV1V2
x‖ ≤

‖PV⊥
2

x‖
cos(V1,V⊥

2 )
. (16)

III. RELATED WORK

In this Section, we review four important sampling schemes;

namely, orthogonal, consistent, subspace, and minimax regret

samplings. For comparison, some properties of these schemes,

are summarized in Table I, along with the properties of our

constrained sampling framework.
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TABLE I
SAMPLING SCHEMES AND THEIR PROPERTIES

Sampling GSRP Optimal Error

Scheme T in A? bounded?a

Orthogonalb PW optimal bounded

Consistent PWS⊥ optimal unbounded

Subspace PWPAS⊥ optimal unbounded

Regret PWPS non-optimal bounded

Constrained λPWPAS⊥

+(1−λ)PWPS

sub-optimal bounded

aregardless of (A,S).
bThis is the optimal sampling scheme but possible only if W ⊆ S.

A. Generalized Sampling-Reconstruction Processes

Consider the GSRP in Fig. 1, where x, xr ∈ H are the input

and output signals, respectively; S∗ and W are the sampling

and reconstruction operators, respectively; and Q : ℓ2 → ℓ2 is

a bounded linear operator which acts as a correction filter.

Sampling and reconstruction spaces are usually restricted

by acquisition and reconstruction devices or algorithms and

are not free to be designed. Therefore, we assume that S∗ and

W are given in terms of sampling space S and reconstruction

space W , respectively. Let W be spanned by a set of vectors

{wn}n∈I , where I ⊆ Z is a set of indexes. Then W : ℓ2(I) →
H can be described by the synthesis operator

W : c 7→ Wc =
∑

n∈I

c[n]wn, c ∈ ℓ2(I).

Note that the range of W is W .

Similarly, let S be spanned by vectors {sn}n∈I . Then

S∗ : H → ℓ2(I) can be described by the adjoint (analysis)

operator

S∗ : x 7→ S∗x = c, c[n] = 〈x, sn〉, n ∈ I, x ∈ H (17)

since by definition of adjoint operator [20]

〈Sa, x〉 = 〈a, S∗x〉ℓ2 for all x ∈ H, a ∈ ℓ2(I).

In (17), c represents a sample sequence due to the sampling

operation on x ∈ H, i.e., c = S∗x. Note that if c = S∗x
then for any input v ∈ S⊥ it holds c = S∗(x + v), since

the orthogonal complement S⊥ is the nullspace of S∗, i.e.,

N (S∗) = S⊥ [20].

We assume throughout the paper that set {wn} constitutes

a frame of W , that is, there exist two constant scalars 0 <
α ≤ β < ∞ such that

α‖x‖2 ≤
∑

n∈I

|〈x,wn〉|2 ≤ β‖x‖2, x ∈ W.

Set {sn} is also assumed to be a frame of S .

The overall GSRP can be described as a linear operator

T : H → H

T : x 7→ xr = WQS∗x, x ∈ H. (18)

The reconstruction quality of the GSRP can be studied via

the error system

E := I − T = I −WQS∗. (19)

For any input x ∈ H, the reconstruction error signal is given

as

Ex = x− xr.

B. Orthogonal Projection

Consider the optimal reconstruction of signal x by the GSRP

in Fig. 1. Since xr ∈ W , the (norm of) error Ex is minimized

by its orthogonal projection on W:

xr = PWx

and therefore, the optimal error system is

Eopt := I − PW = PW⊥ . (20)

For each x ∈ H, the optimal error signal is

Eoptx = PW⊥x. (21)

The orthogonal projection PW can be represented in terms

of analysis and synthesis operators as [6]

PW = W (W ∗W )†W ∗ (22)

where ”†” denotes the Moore-Penrose pseudoinverse.

According to [6], PW is subject to a fundamental limitation

on the GSRP. Specifically, unless the reconstruction subspace

is a subset of the sampling subspace, i.e.,

W ⊆ S (23)

there exists no correction filter Q that renders the GSRP T to

be the orthogonal projection PW .

Acknowledging the optimality as well as the limitation of

the orthogonal projection, we now introduce the difference

between T and PW , which is, in the spirit of [6], referred to

as the regret-error system:

R := PW − T = PW −WQS∗. (24)

Then the regret-error signal is given as

Rx = PWx− xr = (PW −WQS∗)x. (25)

It is important to note that the two error systems are related

as

E = R+ PW⊥ . (26)

As the optimal sampling, orthogonal projection PW enjoys

the following two desirable properties:

1) Error-free in W: i.e., Ex = 0 for any x ∈ W; and

2) Least-error for x ∈ H: i.e., Ex = Eoptx for any x ∈ H .

Consequently, ‖Ex‖ ≤ ‖x‖ for any x ∈ H.
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C. Consistent Sampling

Consistent sampling achieves the property of being

error-free in W without requiring the inclusion condition (23)

for the orthogonal projection.

Under the assumption of the following direct-sum condition

W ⊕S⊥ = H. (27)

it is shown [9] that the correction filter

Qcon := (S∗W )† (28)

leads to an error-free reconstruction for input signals in W .

The resulted GSRP is found to be an oblique projection

Tcon := W (S∗W )†S∗ = PWS⊥ . (29)

As a result, it is sample consistent, i.e.,

S∗(Tconx) = S∗(x− PS⊥W) = S∗x, x ∈ H

where we used (2) and the fact that N (S∗) = S⊥.

The consistent error system is

Econ := I − PWS⊥ = PS⊥W (30)

and the corresponding regret-error system also has a simple

form:

Rcon := PWPS⊥W (31)

since, from (24), (3), and (5), we have

Rcon = PW − Tcon

= PW − PWS⊥

= PW − PWPWS⊥

= PW(I − PWS⊥)

= PWPS⊥W .

Therefore, Econx = Rconx = 0 for any x ∈ W .

The absolute error for any input can be derived as follows:

‖Econx‖2 = ‖PW⊥ x‖2 + ‖PWPS⊥W x‖2, x ∈ H. (32)

And the regret-error is

‖Rconx‖ = ‖PWPS⊥W x‖, x ∈ H. (33)

From [6], the absolute error can be bounded in terms of the

subspace angles as

Eoptx

sin(W⊥,S) ≤ ‖Econx‖ ≤ Eoptx

cos(W,S) . (34)

The regret-error is shown in Section IV to be bounded as

cos(W⊥,S)
sin(W⊥,S) ‖PW⊥x‖ ≤ ‖Rconx‖ ≤ sin(W,S)

cos(W,S)‖PW⊥x‖.
(35)

It is clear from the left-hand sides of (34) and (35) that the

absolute error and regret-error for x ∈ W⊥ can be arbitrarily

large if angle (W⊥,S) approaches to zero.

D. Subspace Sampling

The result on consistent sampling in the preceding section

has been extended in [6] to any input subspace A ⊂ H that

satisfies the direct-sum condition with S⊥, i.e., A⊕S⊥ = H.

Recall that subspace A models the input signals based on

our a priori knowledge. Let {an} be a frame of subspace A.

Denote the corresponding synthesis operator by A. Then the

correction filter

Qsub := (W ∗W )†W ∗A(S∗A)†. (36)

renders the GSRP to be the product of two projection

operators:

Tsub := W (W ∗W )†W ∗A(S∗A)†S∗ = PWPAS⊥ . (37)

The regret-error system now is

Rsub := PW − Tsub = PW − PWPAS⊥ = PWPS⊥A. (38)

And the error system is

Esub := PW⊥ + PWPS⊥A. (39)

Accordingly, the absolute error and the regret-error are

given, respectively, by

‖Esubx‖2 = ‖PW⊥x‖2 + ‖PWPS⊥A x‖2, x ∈ H
and

‖Rsubx‖ = ‖PWPS⊥A x‖, x ∈ H.

And the regret-error verifies the following error bounds:

cos(W⊥,S)
sin(A⊥,S) ‖P

⊥
A x‖ ≤ ‖Rsubx‖ ≤ sin(W,S)

cos(A,S) ‖P
⊥
A x‖ (40)

which will be shown in Section V.

For any x ∈ A, it holds PS⊥Ax = 0, thus Esubx = Eoptx
and Rsubx = 0. This implies that the optimum reconstruction

is achieved for any x ∈ A. However, the reconstruction error

of Esubx for x ∈ A⊥ can still be excessively large if angle

(A⊥,S) is very small, which can be seen from (40).

Recall that filter Qsub is the minimizer of the reconstruction

error for any input x ∈ A; it is the solution to the following

optimization problem [6]:

min
Q

‖Ex‖, x ∈ A. (41)

E. Minimax Regret Sampling

Introduced in [6], the minimax regret sampling alleviates

the drawback of large error associated with the consistent

and subspace samplings. This is achieved by minimizing the

maximum regret-error rather than the absolute error.

Consider the optimization problem:

min
Q

max
x∈D

‖Rx‖ (42)

where

D := {x ∈ H : ‖x‖ < L, c = S∗x} (43)

where scalar L > 0 is introduced as a norm bound to

limit contribution of inputs x ∈ S⊥ to ensure that the
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maximum regret error in (42) is bounded, and L should also

be sufficiently large to render D non-empty. Interestingly, the

solution to (42) is shown to be independent of L [6]. And the

minimax regret solution is found to be

Qreg := (W ∗W )†W ∗ S(S∗S)†. (44)

Consequently, the GSRP becomes the product of two

orthogonal projections:

Treg := WQregS
∗ = PWPS . (45)

Hence, the regret-error system is

Rreg := PW − Treg = PWPS⊥ . (46)

And the error system is

Ereg := PW⊥ + PWPS⊥ . (47)

Moreover, the regret-error is shown [6] to be bounded as

cos(W⊥,S)‖PS⊥x‖ ≤ ‖Rregx‖ ≤ sin(W,S)‖PS⊥x‖. (48)

Clearly,

‖Rregx‖ ≤ ‖x‖, x ∈ H. (49)

And

‖Eregx‖ ≤
√
2‖x‖, x ∈ H (50)

since

‖Eregx‖2 ≤
(
1 + sin2(W,S)

)
‖PS⊥x‖2.

The above error estimates imply that Treg results in good

reconstruction for x ∈ H, at the cost of introducing error

for x ∈ W (or A). Since Treg does not differentiate any input

signals, it could be very conservative for signals in the input

subspace.

IV. CONSTRAINED RECONSTRUCTION

Suppose that we know a prior that input signal x is close to

A (i.e., (x,A) is small), but not necessarily lies in A. This is

relevant since in many practical scenarios, input signals cannot

be exactly modeled as elements in A. For example when A is

learned via training set and only approximately described as

an input subspace. It is also technically necessary when, for

example, the sampling hardware is unable to sample at Nyquist

rate or the input signal is only approximately bandlimited. We

can seek a correction filter to improve the conservativeness

of the regret sampling, and in the meantime to achieving

minimum error for each x ∈ A as in the case of subspace

sampling. In other words, we wish to reach a trade-off between

achieving the two properties of orthogonal projection PW . It

should be noted that we assume that the direct sum property

(i.e., A⊕ S⊥ = H) holds throughout the paper.

For this end, we propose the following optimization problem

min
Q

‖Ex‖, x ∈ A ∩ D (51)

s.t. max
x∈D

‖Rx‖ ≤ β0(c)

where D is given in (43), and β0 represents an appropriate

bound that is dependent on the sampling sequence c. By

restricting that x belongs to D, we imply that all such input

signals give the same sequence c which is assumed to be

given (see [6]). Our problem is to find a correction filter Q
that minimizes the reconstruction error subject to the minimax

regret constraint. We note that the union of such D’s for all

c ∈ R(S∗) is equal to the entire signal space H. The above

optimization problem (51) encapsulates two desiderata, (1)

optimum reconstruction in A through the objective, and (2)

minimax recovery for all inputs in H through the constraint.

The regret-error in the above constraint can be relaxed with

the error between the GSRP itself and the minimax regret

reconstruction (rather than the orthogonal projection), i.e.,

max
x∈D

‖PWPSx−WQS∗x‖ = ‖PWS(S∗S)†c−WQc‖.
(52)

Not only would this realization allow a simple and elegant

solution to our search for an alternative sampling scheme, it

is also supported by the following arguments. On one hand,

from triangular inequality, we have

max
x∈D

‖Rx‖ = max
x∈D

‖PWx−WQS∗x‖

≤ max
x∈D

{
‖PWPSx−WQS∗x‖

+‖PWx− PWPSx‖
}

= ‖PWS(S∗S)†c−WQc‖
+max

x∈D
‖PWx− PWPSx‖. (53)

On the other hand, it is shown in Appendix A that

max
x∈D

‖Rx‖ ≥ 1√
2

(
‖PWS(S∗S)†c−WQc‖

+max
x∈D

‖PWx− PWPSx‖
)
. (54)

We complete the argument by noting that the last terms in (53)

and (54) are independent of correction filter Q.

In view of the above discussions, we now present the

constrained optimization problem as follows:

min
Q

‖x−WQc‖, x ∈ A ∩ D (55)

s.t. ‖PWS(S∗S)†c−WQc‖ ≤ β1(c).

which would lead to an adequate approximation of the

optimization problem in (51). The upper bound β1(c) in (55)

needs to be properly chosen. Let us consider two extreme

cases: β1(c) = 0 and β1(c) = ∞. If β1(c) = 0, the strict

constraint implies that the solution to (55) is the standard

minimax regret filter in (44). On the other hand, if β1(c) = ∞
(i.e., the constraint is removed), then the objective function in

(55) is minimized by the correction filter Qsub of the subspace

sampling, which is given in (36). Hence, the upper bound of

the constraint in (55) becomes

β(c) = ‖PWS(S∗S)†c− PWA(S∗A)†c‖. (56)

From the above discussions, we conclude that the upper

bound in (55) can be set to be β1(c) = λβ(c) for some

parameter λ ∈ [0, 1]. Accordingly, we present the constrained

optimization problem (55) and its solution in the next theorem.
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Theorem 1: Consider the constrained sampling problem

min
Q

‖x−WQc‖, x ∈ A ∩ D (57)

s.t. ‖PWS(S∗S)†c−WQc‖ ≤ λβ(c).

A solution to it is given as

Qλ := λQsub + (1− λ)Qreg. (58)

Proof : It is proved in Appendix B.

Following Theorem 1, the constrained GSRP can be

expressed as

Tλ := λTsub + (1− λ)Treg. (59)

The constrained GSRP Tλ can be simplified to have a

simple expression. Define B as the convex combination of

two projections:

B := λPAS⊥ + (1− λ)PS . (60)

In view of (37) and (45), the GSRP can be further expressed

compactly as

Tλ = PWB. (61)

The next result states that B is in fact also an oblique

projection with the nullspace being S⊥.

Proposition 2: The linear operator B defined in (60) is given

as

B = PBS⊥ . (62)

where B = R(B).
Proof : It is proved in Appendix C.

Following Proposition 2, the resulting constrained GSRP

can be nicely described as the product of two projections:

Tλ = PWPBS⊥ . (63)

Then, the regret-error system is

Rλ := PWPS⊥B. (64)

And the error system is given as

Eλ := PW⊥ + PWPS⊥B. (65)

In view of (26), and similar to the case of subspace sampling,

the reconstruction error is given by

‖Eλx‖2 = ‖PW⊥x‖2 + ‖PWPS⊥B x‖2, x ∈ H (66)

and the regret-error is

‖Rλx‖ = ‖PWPS⊥B x‖, x ∈ H. (67)

It is interesting to see that all the GSRPs discussed have

the same expression as in (63). When λ = 0, then B = S and

Tλ = Treg; and when λ = 1, then B = A and Tλ = Tsub,

which becomes Tcon if additionally A = W . This shows

that our constrained sampling generalizes all the other three

samplings. Regarding these two particular values of λ, we

recall that if the input signals can be precisely modelled

by A, then the subspace sampling should be chosen for the

reconstruction. On the other hand, if no a priori information

about the input signal is available, it is better to choose the

minimax regret sampling.

S

W

A PAS⊥x

xopt

x s
u
b

PSx

xreg

PBS⊥x

xλ

0

x

S⊥

Fig. 3. An illustration of sampling schemes: S is the sampling space, W is
the reconstruction space and A is the input space. xopt = PWx, xsub =
PWPAS⊥x, xreg = PWPSx, and xλ = PWPBS⊥x where PBS⊥ =
λPAS⊥ + (1 − λ)PS . Note that the constrained reconstruction xλ has the
potential to approach optimum reconstruction xopt.

The description of Tλ in (63) shows that the constrained

sampling is essentially a subspace sampling with a new

modified subspace B, which is comprised of all the convex

combinations of vectors of A and S according to (60). Thus

B is closer to S than A is, i.e., (B,S) < (A,S), leading

to a more robust sampling strategy (i.e., better reconstruction

for signals not in A; further explanations on this observation

will be given in Section V following the error analysis).

A geometrical illustration of all the sampling schemes is

provided in Fig. 3.

It should be noted that since PS⊥B is still an oblique

projection, the error Ex can still be very large in general.

However, we shall show in the next section that this concern

can be removed by properly choosing the value of parameter

λ, one such choice is λ = cos(A,S).

V. ANALYSIS ON RECONSTRUCTION ERRORS

This Section presents error performance for the proposed

constrained sampling. First, we compare the reconstruction

error of constrained sampling with those of the subspace

sampling and that of minimax regret sampling.

Proposition 3: The reconstruction error of constrained

sampling is upper-bounded by a convex combinations of the

corresponding errors of the subspace and minimax regret

samplings as follows:

‖Eλx‖ ≤ λ‖Esubx‖+ (1− λ)‖Eregx‖, x ∈ H. (68)

The regret error of constrained sampling is similarly

upper-bounded:

‖Rλx‖ ≤ λ‖Rsubx‖+ (1− λ)‖Rregx‖, x ∈ H. (69)

Proof : In view of definitions of the error systems

involved, we have

Eλ = I − Tλ = λEsub + (1− λ)Ereg

and similarly

Rλ = PW − Tλ = λRsub + (1− λ)Rreg.



8 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MONTH 20XX

The results then readily follow from the triangular inequality

of norm.

Proposition 3 implies that the reconstruction error of

constrained sampling can never be larger than the other two

corresponding errors at the same time.

Next, we present bounds on the regret-error of constrained

sampling Tλ by examining regret-error system Rλ.

Theorem 2: For any x ∈ H, the regret-error of constrained

sampling is bounded as

αλ‖PB⊥x‖ ≤ ‖Rλx‖ ≤ βλ‖PB⊥x‖ (70)

where the scalars are

αλ =

(
1 + λ2 cos

2
(
A⊥,S)

sin2
(
A⊥,S)

)1

2

cos(W⊥,S)

and

βλ =

(
1 + λ2 sin

2(A,S)
cos2(A,S)

)1

2

sin(W,S).

Proof : First of all, since R(PS⊥B) = S⊥, it follows

from (67) and (15) that

cos(W⊥,S)‖PS⊥Bx‖ ≤ ‖Rλx‖ ≤ sin
(
W,S

)
‖PS⊥Bx‖.

(71)

Moreover, from (16) and (12), it follows that

‖PB⊥x‖
sin

(
B⊥,S

) ≤ ‖PS⊥Bx‖ ≤ ‖PB⊥x‖
cos

(
B,S

) . (72)

Consequently, the regret-error enjoys the following estimates

cos(W⊥,S)
sin(B⊥,S) ‖PB⊥x‖ ≤ ‖Rλx‖ ≤ sin(W,S)

cos(B,S) ‖PB⊥x‖. (73)

We complete the proof by simplifying the above bounds

using the following estimates of the trigonometrical functions

involving subspace B:

1

1 + λ2 sin2(A,S)
cos2(A,S)

≤ cos2
(
B,S

)
≤ 1

1 + λ2 cos2(A,S⊥)
sin2(A,S⊥)

(74)

and

1

1 + λ2 sin2(A,S)
cos2(A,S)

≤ sin2
(
B⊥,S

)
≤ 1

1 + λ2 cos2(A⊥,S)
sin2(A⊥,S)

(75)

which are proved in Appendices D and E, respectively.

Note that The bounds in Theorem 2 specialize those for

the other sampling schemes if λ = 0 or 1. Furthermore, it is

important to point out that (B,S) ≤ (A,S) for any λ ∈ [0, 1],
since

cos2
(
B,S

)
≥ cos2(A,S)

cos2(A,S) + λ2sin2(A,S) ≥ cos2
(
A,S

)

in view of lower bound of (74) and the inequality cos2(A,S)+
λ2 sin2(A,S) ≤ 1 for λ ∈ [0, 1]. In other words, the modified

subspace B inclines towards S than the input subspace A does.

This explains from another perspective why the constrained

sampling would generally lead smaller maximum possible

error than subspace sampling.

It is pointed out that with a simple choice of parameter

0 ≤ λ ≤ cos(A,S) (76)

the reconstruction error in (70) is seen to be bounded as below:

‖Rλx‖ ≤
√
2‖x‖, x ∈ H. (77)

Then, the absolute error is bounded as

‖Eλx‖ ≤
√
3‖x‖, x ∈ H. (78)

Finally, we turn to bounds on reconstruction errors for signal

in input subspace A. If x ∈ A, then

‖Rλx‖ = ‖PWPS⊥Bx‖
= ‖PW [λPS⊥A + (1− λ)PS⊥ ]x‖
= (1− λ)‖PWPS⊥x‖
≤ (1− λ) sin(S⊥,W⊥)‖PS⊥x‖

where the first step is from (67) and the second step is

from (60). Thus, using (12) and (14), we obtain an upper

bound on regret-error

‖Rλx‖ ≤ (1− λ) sin(A,S) sin(W,S)‖x‖, x ∈ A. (79)

Similarly, we can also obtain a lower bound on regret-error:

‖Rλx‖ ≥ (1− λ) cos(A,S⊥) cos(W⊥,S)‖x‖, x ∈ A. (80)

It then follows, from (26), (66), and (14), that the absolute

error are bounded as

αA‖x‖ ≤ ‖Eλx‖ ≤ βA‖x‖, x ∈ A (81)

where the scalars are

αA =
(
cos2(A,W⊥) + (1− λ)2 cos(A,S⊥) cos(W⊥,S)

)1

2

and

βA =
(
sin2(A,W) + (1− λ)2 sin(A,S) sin(W,S)

)1

2 .

Table II summaries key results on all the sampling schemes

considered in this paper.

VI. EXAMPLES

We now provide two illustrative examples which consider

reconstruction of a typical Gaussian signal and a speech signal.

These examples demonstrate the effectiveness of the proposed

constrained sampling.

A. Gaussian Signal

Most natural signals are approximately band-limited and can

be adequately modelled as Gaussian signals. We now consider

reconstruction of a Gaussian signal of unit energy:

x =
( 1

πσ

)1/4

exp(
−t2

2σ
), (82)

where σ = 0.09.

Assume that sampling period T is one (i.e., the Nyquist

radian frequency is π) and the sampling space S is the shiftable

subspace generated by the B-spline of order zero:

s(t) = β0(t) =

{
1, t ∈ [−0.5, 0.5)

0, otherwise.
(83)
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TABLE II
SAMPLING STRATEGIES AND THEIR REGRET-ERRORS

Sampling GSRP Correction Filter Regret Error ‖Rx‖ = ‖PWx− Tx‖a

Scheme T Q Expression Lower Bound Upper Bound

Orthogonalb PW (W ∗W )†W ∗S(S∗S)† 0 0 0

Consistent PWS⊥ (S∗W )† ‖PWPS⊥Wx‖
cos(W⊥,S)

sin(W⊥,S)
‖PW⊥x‖

sin(W,S)
cos(W,S)

‖PW⊥x‖

Subspace PWPAS⊥ (W ∗W )†W ∗A(S∗A)† ‖PWPS⊥Ax‖
cos(W⊥,S)

sin(A⊥,S)
‖PA⊥x‖

sin(W,S)
cos(A,S)

‖PA⊥x‖

Regret PWPS (W ∗W )†W ∗S(S∗S)† ‖PWPS⊥x‖ cos(W⊥,S) ‖PS⊥x‖ sin(W,S) ‖PS⊥x‖

Constrainedc PWPBS⊥ λ(W ∗W )†W ∗A(S∗A)†

+(1− λ)(W ∗W )†W ∗S(S∗S)†
‖PWPS⊥Bx‖

(

1 + λ2 cos2(A⊥,S)

sin2(A⊥,S)

)1

2

× cos(W⊥,S) ‖PB⊥x‖

(

1 + λ2 sin2(A,S)

cos2(A,S)

)1

2

× sin(W,S) ‖PB⊥x‖

Constrained
x ∈ A

PW − (1− λ)PWPS⊥ λ(W ∗W )†W ∗A(S∗A)†

+(1− λ)(W ∗W )†W ∗S(S∗S)†
(1− λ)

×‖PWPS⊥ x‖

(1− λ) cos(A,S⊥)
× cos(W⊥,S) ‖x‖

(1− λ) sin(A,S)
× sin(W,S) ‖x‖

aThe absolute error is given by ‖Ex‖2 = ‖x− Tx‖2 = ‖PW⊥x‖2 + ‖Rx‖2.
bThis is the optimal sampling scheme but possible only if W ⊆ S. The corresponding reconstruction error is ‖Ex‖ = ‖P⊥

Wx‖.
cThe modified subspace is B = R

(

λPAS⊥ + (1− λ)PS

)

, λ ∈ [0, 1].

In other words, S is spanned by frame vectors {β0(t−n)}n∈Z.

Since x has its 94% of its energy in the content of frequencies

up to π, it is reasonable to assume that A is the subspace of

π-bandlimited signals. In this situation, we have cos(A,S) =
0.64, which can be calculated by [7]

cos2(A,S) =inf
ω∈[0,2π)

∣∣∑
n∈Z

ŝ ∗(ω + 2πn) â(ω + 2πn)
∣∣2

∑
n∈Z

|ŝ(ω + 2πn)|2 ∑
n∈Z

|â(ω + 2πn)|2

where “ ·̂ ” represents the Fourier transform, and a(t) =
sinc(t). We further assume that the reconstruction space W is

the shiftable subspace generated by the cubic B-splines [21]

w(t) = β3(t) = [β0 ∗ β0 ∗ β0 ∗ β0](t) (84)

where “ ∗ ” is the convolution operator.

Fig. 4 presents the signal-to-noise ratio (SNR) in dB1 of

the reconstruction error Ex for the three sampling schemes.

We can observe from Fig. 4 that 1) the performance of the

constrained sampling is never below that of the minimax

regret regardless of the value of λ, demonstrating the

conservativeness of the regret sampling for inputs close to

A; 2) the constrained sampling achieves better reconstruction

than the subspace sampling for any λ ∈ (0.20, 1); 3) with

the simple choice of λ = cos(A,S) = 0.64, the improvement

of the constrained sampling over the subspace and minimax

regret samplings are 1.26dB and 2.40dB, respectively.

We recall that the Gaussian signal in (82) is quite close

to the π-bandlimited subspace A since (x,A) = 14.2◦. This

closeness explains the worst performance of the minimax

regret sampling which does not take advantage of any a priori

information on input x. The SNR of minimax sampling is

1SNR= 20 log
(

‖x‖/‖Ex‖
)

dB

0 0.2 0.4 0.6 0.8 1
14

14.5

15

15.5

16

16.5

17

S
N

R
 [
d
B

]

optimum

constrained

subspace

regret

Fig. 4. Reconstruction error ‖Ex‖ of a Gaussian signal for all four sampling
schemes (S and W are generated by β0 and β3, respectively, and A is the
π-bandlimited subspace).

less than the SNR of subspace by 1.14dB. On the other hand,

since x does not completely belong to A, the performance of

subspace sampling has also been improved by our constrained

sampling which is capable of limiting the reconstruction

error due to the content of frequencies beyond π. The

improvement can be significant if parameter λ is properly

selected. Furthermore, it is worth pointing out the existence

of the optimal value (i.e., λ = 0.60 ≈ cos(A,S)) such that

‖Eλx‖ is very close to (less than by 0.08dB) the optimal

error ‖Eoptx‖, demonstrating high potential of constrained
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Fig. 5. Reconstruction error ‖Ex‖ of a speech signal for all four sampling
schemes (S is generated by β0(t/T ), W is generated by a non-ideal low-pass
filter associated with a time-support of [−4T, 4T ], T = 4000−1s, and A is
the 8kHz-bandlimited subspace).

sampling in approaching the orthogonal projection.

B. Speech Signal

In this example, the input signal is chosen to be a speech

signal2 which is sampled at the rate of 16kHz. Since the

sampling rate is sufficiently high, the discrete-time speech

signal x[n] can accurately approximate the continuous-time

signal x(t) on the fine grid. We assume that the sampling

process S∗ is an integration over one sampling duration T :

c[n] =
1

T

∫ nT+T/2

nT−T/2

x(t)dt,

where T = 4000−1sec. This is equivalent to assuming s(t) =
(1/T )β0(t/T ) or discrete-time filtering on the fine grid with

filter whose impulse response is

s[k] =

{
1
3 , k = −1, 0, 1

0, otherwise.

Since the original continuous-time signal is sampled at 16kHz,

we assume that subspace A is the space of 8kHz-bandlimited

signals. For calculation, we use a zero-phase discrete-time

FIR low pass filter with cutoff frequency at 1/2 and of

order 100 to simulate A on the fine grid. The selected A
is equivalent to continuous-time low-pass filter with support

t ∈ [−25T, 25T ] which approximates sinc(4t/T ). For the

synthesis, we let wn(t) = w(t−nT ), where w(t) is chosen to

have a time-support of t ∈ [−4T, 4T ] and to render a low pass

filter with cutoff frequency (i.e., Nyquist frequency) 1/(2T ).
On the fine grid, this synthesis process is implemented via a

discrete-time low-pass FIR filter of order 16 and with cutoff

frequency 1/8.

2downloaded from https://catalog.ldc.upenn.edu/

In the experiment, following [6], we randomly chose 5000
segments (each with 400 consecutive samples) of the speech

signal. The segments are found to be far away from the a priori

A since the angles between them and A are found to be around

47.9◦. Fig. 5 shows the reconstruction errors (averaged over all

the segments) of the three sampling schemes. As expected, the

minimax regret sampling outperforms the subspace sampling

(by 0.73dB); and accordingly our constrained sampling always

outperforms the subspace sampling (see also Proposition 3).

Moreover, when λ ∈ [0, 0.85], the constrained sampling also

outperforms the minimax regret sampling. For example, with a

simple choice of λ = cos(A, S) = 0.55, the improvement over

the minimax regret and subspace samplings are 1.37dB and

2.10dB, respectively. Also note that at the optimum value of

λ = 0.42, the reconstruction error of the constrained sampling

is only 0.78dB away from that of the orthogonal projection.

This result again shows the potential of the constrained

sampling in approaching the optimal reconstruction.

The two examples above clearly demonstrate the

effectiveness of the proposed constrained sampling over

the minimax regret and subspace samplings when all input

signals can be modelled (properly to some extent but

not precisely) by a subspace. The results show that the

constrained sampling is robust to model uncertainties and that

it can potentially approach the optimal reconstruction when

parameter λ is made adaptive to input characteristics even if

the input is away from the input subspace.

VII. CONCLUSIONS

This paper re-examined the sampling schemes for

generalized sampling-reconstruction processes (GSRPs).

Existing GSRP, namely, consistent, subspace, and minimax

regret GSRPs, either assume that the input subspace is fully

known or it is completely ignored. To address this limitation,

we proposed, constrained sampling, a new sampling scheme

that is designed to minimize the reconstruction error for

inputs that lie within a known subspace while simultaneously

bounding the maximum regret error for all other signals.

The constrained sampling formulation leads to a convex

combination of the subspace and the minimax regret

samplings. It also yields an equivalent subspace sampling

process with a modified input subspace. The constrained

sampling is shown to be 1) (sub)optimal for signals in

the input subspace, 2) robust for signals around the input

subspace, 3) reasonably bounded for any signal in the

entire space, and 4) flexible and easy to be implemented as

combination of the subspace and regret samplings. We also

presented a detailed theoretical analysis of reconstruction error

of the proposed sampling. Additionally, we demonstrated the

efficiency of constrained sampling through two illustrative

examples. Our results suggest that the proposed sampling

could potentially approach the optimum reconstruction (i.e.,

the orthogonal projection). It would be intriguing to study the

optimal selection of the parameter in the convex combination

when more a priori information about input signals become

available.
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APPENDIX A

PROOF OF INEQUALITY (54)

As in the proof in [6, theorem 3], we represent any x in

D = {x : ‖x‖ ≤ L, c = S∗x} as

x = PSx+ PS⊥x

= S(S∗S)†c+ v

for some v in G := {v ∈ S⊥ : ‖v‖2 ≤ L2 − ‖S(S∗S)†c‖2 }.

Let ac := WQc− PWS(S∗S)†c. Then

‖Rx‖2 = ‖PWx−WQS∗x‖2
= ‖PWS(S∗S)†c+ PWv −WQc‖2
= ‖PWv − ac‖2
= ‖PWv‖2 − 2Re{〈PWv, ac〉}+ ‖ac‖2.

Let

v1 := − 〈PWv, ac〉∣∣〈PWv, ac〉
∣∣v.

Clearly, ‖v1‖ = ‖v‖ and v1 ∈ G if and only if v ∈ G.

Consequently

max
x∈D

‖Rx‖2

= max
v∈G

{
‖PWv‖2 + 2

∣∣〈PWv, ac〉
∣∣+ ‖ac‖2

}

≥ ‖ac‖2 +max
v∈G

‖PWv‖2

= ‖ac‖2 +max
x∈D

‖PW(x− PSx)‖2

= ‖WQc− PWS(S∗S)†c‖2 +max
x∈D

‖PWx− PWPSx‖2.

On the other hand, since for any complex numbers z1 and z2,

|z1|2 + |z2|2 ≥ 1

2

(
|z1|+ |z2|

)2
,

we get

max
x∈D

‖Rx‖ ≥ 1√
2

(
‖WQc− PWS(S∗S)†c‖

+max
x∈D

‖PWx− PWPSx‖
)
.

The proof is complete.

APPENDIX B

PROOF OF THEOREM 1

Let c ∈ R(S∗) be any given sample sequence. We first

show that A ∩ D (in the objective function) contains only

one element. If x ∈ A, then under the direct-sum property

A⊕ S⊥ = H, we have

x = PAS⊥x = A(S∗A)†S∗x.

On the other hand, if x ∈ D, then S∗x = c according to the

definition of D (43). Therefore,

x = A(S∗A)†c. (85)

For the constraint, we denote the set of admissible correction

filters that satisfy the regret constraint as

DQ := {Q : ‖PWS(S∗S)†c−WQc‖ ≤ λβ(c)}

where β(c) is given in (56), λ ∈ [0, 1]. The optimization

problem in (57) now becomes

min
Q∈DQ

‖A(S∗A)†c−WQc‖2. (86)

Invoking orthogonal decomposition of A(S∗A)†c − WQc
onto W and W⊥ and using the triangular inequality, we have

for any Q ∈ DQ, the objective function in (86) satisfy

‖A(S∗A)†c−WQc‖2
= ‖PWA(S∗A)†c−WQc‖2 + ‖PW⊥A(S∗A)†c‖2

≥ ‖PW⊥A(S∗A)†c‖2 +
∣∣∣‖PWS(S∗S)†c−WQc‖

−‖PWS(S∗S)†c− PWA(S∗A)†c‖
∣∣∣
2

=
∣∣∣‖PWS(S∗S)†c−WQc‖ − β(c)

∣∣∣
2

+ ‖PW⊥A(S∗A)†c‖2

≥ (1− λ)2β2(c) + ‖PW⊥A(S∗A)†c‖2. (87)

Substituting

Q = λQsub + (1− λ)Qreg

into (86), we see that the lower bound in (87) is reached. That

completes the proof.

APPENDIX C

PROOF OF PROPOSITION 2

Since PAS⊥ and PS have the same nullspace S⊥, applying

Proposition 1 on B in (60) concludes B is also an projection.

It remains to be shown that N (B) = S⊥. It suffices if we

show that Bx = 0 if and only if PSx = 0, which can be

proved by an alternative expression of B (in terms of PS and

PS⊥A):

B = λPAS⊥ + (1− λ)PS

= λPAS⊥ + (1− λ)PSPAS⊥

= [λI + (1− λ)PS ]PAS⊥

= [PS + λ(I − PS)]PAS⊥

= [PS + λPS⊥ ]PAS⊥

= PS + λPS⊥PAS⊥ (88)

where the second step is from (4), the second to the last step

is due to (2), and the last step is from (4). For any x ∈ H,

since PSx and PS⊥PAS⊥x are perpendicular to each other, the

statement then follows immediately. The proof is complete.

APPENDIX D

PROOF OF BOUNDS OF cos(B,S) IN (74)

Since N (B) = S⊥, we have from (10) that

cos2
(
B,S

)
= inf

x 6∈S⊥

f(x) (89)

where

f(x) :=
‖PSBx‖2
‖Bx‖2 . (90)
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Since B = PS + λPS⊥PAS⊥ (see (88)), thus

f(x) =
‖PS(PS + λPS⊥PAS⊥)x‖2
‖PSx+ λPS⊥PAS⊥x‖2

=
‖PSx‖2

‖PSx‖2 + λ2‖PS⊥PAS⊥x‖2

=
1

1 + λ2 ‖P
S⊥P

AS⊥x‖2

‖PSx‖2

(91)

where the second step for the denominator is due to the

orthogonality of PS⊥PAS⊥x to PSx. From (14), it holds

cos(A,S⊥)‖PAS⊥x‖ ≤ ‖PS⊥PAS⊥x‖ ≤ sin(A,S)‖PAS⊥x‖.
(92)

Then, from (16), it follows that PAS⊥x satisfies

‖PSx‖
sin(A,S⊥)

≤ ‖PAS⊥x‖ ≤ ‖PSx‖
cos

(
A,S

) . (93)

Combining (92) and (93) yields

cos(A,S⊥)

sin(A,S⊥)
‖PSx‖ ≤ ‖PS⊥PAS⊥x‖ ≤ sin(A,S)

cos
(
A,S

)‖PSx‖.
(94)

As a result, we have from (91) that

1

1 + λ2 sin2(A,S)
cos2(A,S)

≤ f(x) ≤ 1

1 + λ2 cos2(A,S⊥)
sin2(A,S⊥)

. (95)

Then (74) follows immediately from (89) and (95).

APPENDIX E

PROOF BOUNDS OF sin(B⊥,S) IN (75)

Since N (PB⊥S) = S , we have from (11) that

sin2
(
B⊥,S

)
= sup

x 6∈S
g(x) (96)

where

g(x) :=
‖PS⊥PB⊥Sx‖2
‖PB⊥Sx‖2

. (97)

According to [18], the adjoint operator of any projection PV1V2

is also a projection and further we have

P ∗
V1V2

= PV⊥
2
V⊥

1

. (98)

Hence,

PB⊥S = I − PSB⊥

= I −B∗

= I −
(
λPAS⊥ + (1− λ)PS)

∗

= I −
(
λPSA⊥ + (1− λ)PS

)

= λPA⊥S + (1− λ)PS⊥

= λPA⊥S + (1− λ)PS⊥PA⊥S

= [λI + (1− λ)PS⊥ ]PA⊥S

= [PS⊥ + λPS ]PA⊥S

= PS⊥ + λPSPA⊥S .

Note that g(x) in (97) has the same form as f(x) in (90),

except that all the subspaces involved are replaced by their

respective orthogonal complements. Using (95) and noting

(A⊥,S⊥) = (S,A) = (S,A). We finally obtain

1

1 + λ2 sin2(A,S)
cos2(A,S)

≤ g(x) ≤ 1

1 + λ2 cos2(A⊥,S)
sin2(A⊥,S)

.

Then, inequality (75) follows immediately.
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[32] T. Košir and M. Omladič, “Normalized tight vs. general frames in
sampling problems,” Adv. Oper. Theory, vol. 2, no. 2, pp. 114–125,
2017.

[33] B. Sadeghi and R. Yu, “Shift-variance and cyclostationarity of linear
periodically shift-variant systems,” in 10th Int. Conf. Sampling Process.

Theory Appl., Bremen, 2013.
[34] B. Sadeghi and R. Yu, “Shift-variance and nonstationarity of linear

periodically shift-variant systems and applications to generalized
sampling-reconstruction processes,” IEEE Trans. Signal Process.,
vol. 64, no. 6, pp. 1493–1506, 2016.

[35] B. Sadeghi, R. Yu, and R. Wang, “Shifting interpolation kernel toward
orthogonal projection,” IEEE Trans. Signal Process., vol. 66, no. 1,
pp. 101–112, 2018.

[36] J. Shi, X. Liu, L. He, M. Han, Q. Li, and N. Zhang, “Sampling
and reconstruction in arbitrary measurement and approximation spaces
associated with linear canonical transform,” IEEE Trans. Signal Process.,
vol. 64, no. 24, pp. 6379–6391, 2016.

[37] M. Unser, “Sampling—50 years after Shannon,” Proc. IEEE, vol. 88,
pp. 569–587, 2000.
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