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Abstract

Convolutional neural networks have witnessed remark-
able improvements in computational efficiency in recent
years. A key driving force has been the idea of trading-
off model expressivity and efficiency through a combina-
tion of 1×1 and depth-wise separable convolutions in lieu
of a standard convolutional layer. The price of the ef-
ficiency, however, is the sub-optimal flow of information
across space and channels in the network. To overcome this
limitation, we present MUXConv, a layer that is designed
to increase the flow of information by progressively mul-
tiplexing channel and spatial information in the network,
while mitigating computational complexity. Furthermore,
to demonstrate the effectiveness of MUXConv, we integrate
it within an efficient multi-objective evolutionary algorithm
to search for the optimal model hyper-parameters while si-
multaneously optimizing accuracy, compactness, and com-
putational efficiency. On ImageNet, the resulting mod-
els, dubbed MUXNets, match the performance (75.3% top-
1 accuracy) and multiply-add operations (218M) of Mo-
bileNetV3 while being 1.6× more compact, and outperform
other mobile models in all the three criteria. MUXNet also
performs well under transfer learning and when adapted
to object detection. On the ChestX-Ray 14 benchmark, its
accuracy is comparable to the state-of-the-art while being
3.3× more compact and 14× more efficient. Similarly, de-
tection on PASCAL VOC 2007 is 1.2% more accurate, 28%
faster and 6% more compact compared to MobileNetV2.
The code is available from https://github.com/
human-analysis/MUXConv .

1. Introduction
In the span of the last decade, convolutional neural net-

works (CNNs) have undergone a dramatic transformation
in terms of predictive performance, compactness and com-
putational efficiency. The development largely happened
in two phases. Starting from AlexNet [20], the focus of
the first wave of models was on improving the predictive
accuracy of CNNs including VGG [35], GoogleNet [37],
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Figure 1: Accuracy vs. Compactness vs. Efficiency: Existing networks
outperform each other in at most two criteria. MUXNet models are, how-
ever, dominant in all three objectives under mobile settings.

ResNet [11], ResNeXt [43], DenseNet [16] etc. These mod-
els progressively increased the contribution of 3×3 convolu-
tions, both in model size as well as multiply-add operations
(MAdds). The focus of the second wave of models was on
improving their computational efficiency while trading-off
accuracy to a small extent. Models in this category include
ShuffleNet [26], MobileNetV2 [32], MnasNet [38] and Mo-
bileNetV3 [12]. Such solutions sought to improve compu-
tational efficiency by progressively replacing the parameter
and compute intensive standard convolutions by a combina-
tion of 1×1 convolutions and depth-wise separable 3×3 con-
volutions. Figure 2 depicts the trend in the relative contribu-
tions of different layers in terms of parameters and MAdds.

Depth-wise separable convolutions [34, 4] offer signif-
icant computational benefits, both from the perspective of
number of parameters as well as computational complex-
ity. A salient feature of these layers is the lack of interac-
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Figure 2: Relative contribution of different layers in CNN designs in terms
of parameters (top) and MAdds (bottom). Initial models largely relied on
standard convolutional layers. More recent networks, on the other hand,
largely rely on 1×1 convolutions and linear layers. In contrast, MUXNets
reverse this trend to an extent.

tions between information in the channels. This limitation
is overcome through 1×1 convolution, a layer which allows
for interactions and information flow across the channels.
The combination of depth-wise separable and 1×1 convo-
lution fully decouples the task of spatial and channel in-
formation flow, respectively, into two independent and ef-
ficient layers. On the other hand, a standard convolutional
layer couples the spatial and channel information flow into a
single, yet, computationally inefficient layer. Therefore, the
former replaced the latter as the workhorse of CNN designs.

In this paper, we seek an alternative approach to trade-off
the expressivity and efficiency of convolutional layers. We
introduce MUXConv, a layer that leverages the efficiency of
depth-wise or group-wise convolutional layers along with a
mechanism to enhance the flow of information in the net-
work. MUXConv achieves this through two components,
spatial multiplexing and channel multiplexing. Spatial mul-
tiplexing extracts feature information at multiple scales via
spatial shuffling, processes such information through depth-
wise or group-wise convolutions and then unshuffles them
back together. Channel multiplexing is inspired by Shuf-
fleNet [26] and is designed to address the limitation of
depth-wise/group convolutions, namely the lack of informa-
tion flow across channels/groups of channels, by shuffling
the channels. The shuffling procedure and the operations we
perform on the shuffled channels are motivated by compu-
tational efficiency and differ significantly from ShuffleNet.
Collectively, these two components increase the flow of in-
formation, both spatially and across channels, while miti-
gating the computational burden of the layer.

To further realize the full potential of MUXConv in
trading-off accuracy and computational efficiency, we pro-
pose a population based evolutionary algorithm to effi-
ciently search for the hyperparameters of each MUXConv

layer in the network. The search simultaneously optimizes
three objectives, namely, prediction accuracy, model com-
pactness and model efficiency in terms of MAdds. To im-
prove the efficiency of the search process we decompose
the multi-objective optimization problem into a collection
of single-objective optimization sub-problems, that are in
turn optimized simultaneously and cooperatively. We refer
to the resulting family of CNNs as MUXNets.

Contributions: We first develop a new layer, called MUX-
Conv, that multiplexes information flow spatially and across
channels while improving the computational efficiency of
equivalent combination of depth-wise separable and 1×1
convolutions. Then, we develop the first multi-objective
neural architecture search (NAS) algorithm to simultane-
ously optimize compactness, efficiency, and accuracy of
MUXNets designed with MUXConv as the basic build-
ing block. We present thorough experimental evaluation
demonstrating the efficacy and value of each component
of MUXNet across multiple tasks including image classifi-
cation (ImageNet), object detection (PASCAL VOC 2007)
and transfer learning (CIFAR-10, CIFAR-100, ChestX-
Ray14). Our results indicate that, unlike the conventional
wisdom in all existing solutions, it is feasible to design
CNNs that do not sacrifice compactness for efficiency or
vice versa in the quest for better predictive performance.

2. Related-work
Many CNN architectures have been developed by opti-

mizing different objectives, such as, model compactness,
computational efficiency, or predictive performance. Be-
low, we categorize the solutions into a few major themes.

Multi-Scale and Shuffling: The notion of multi-scale pro-
cessing in CNNs has been utilized in different forms and
in a variety of contexts. These include explicit processing
of multi-resolution feature maps for object detection [2, 21]
and image classification [14] and computational blocks with
built-in multi-scale processing [3, 9]. The focus of these
methods is predictive performance and hence towards large
scale models. In contrast, multi-scale processing in MUX-
Conv is motivated by enhancing information flow in small
scale models deployed in resource constrained environ-
ments. Notably, MUXConv scales the feature maps through
a pixel shuffling operation that is similar to subpixel convo-
lution in [33]. The channel shuffling component of MUX-
Conv is motivated by [47, 26].

Mobile Architectures: A number of CNN architectures
have been developed for mobile settings. These include
SqueezeNet [18], MobileNet [13], MobileNetV2 [32], Mo-
bileNetV3 [12], ShuffleNet [47], ShuffleNetV2 [26] and
CondenseNet [15]. The focus of this body of work has
largely been to optimize two objectives, either accuracy and
compactness or accuracy and efficiency, thereby resulting



in models that are either efficient or compact but not both.
In contrast, MUXNets are designed to simultaneously op-
timize all three objectives, compactness, efficiency and ac-
curacy, and therefore leads to models that are both compact
and efficient at the same time.

Neural Architecture Search: Automated approaches to
search for good neural architectures have proven to be very
effective in finding computational blocks that not only ex-
hibit high predictive performance but also generalize and
transfer to other tasks. Majority of the approaches in-
cluding, NasNet [48], PNAS [22], DARTS [23], Amoe-
baNet [30] and MixNet [40], are optimized against a sin-
gle objective, namely predictive performance. A couple of
recent approaches, LEMONADE [7], NSGANet [25], si-
multaneously optimize the networks against multiple objec-
tives, including parameters, MAdds, latency, and accuracy.
However, only results on small-scale datasets like CIFAR-
10 are demonstrated in both approaches. Concurrently, a
number of CNN architectures, such as ProxylessNAS [1],
MnasNet [38], ChamNet [5] and FBNet [5], have been de-
signed to target specific computing platforms such as mo-
bile, CPU, and GPU. In contrast to the aforementioned NAS
approaches, we adopt a hybrid search strategy where the
basic computational block, MUXConv, is hand-designed
while the hyper-parameters of each MUXConv layer in the
network are searched through a population based evolution-
ary algorithm directly on a large scale dataset.

3. Multiplexed Convolutions

The multiplexed convolution layer, called MUXConv, is
a combination of two components: (1) spatial multiplex-
ing which enhances the expressivity and predictive perfor-
mance of the network, and (2) channel multiplexing which
aids in reducing the computational complexity of the model.

3.1. Spatial Multiplexing

The expressivity of a standard convolutional layer stems
from the flow of information spatially and across the chan-
nels. Spatial multiplexing is designed to mimic this prop-
erty while mitigating its computational complexity. The key
idea is to map spatial information at multiple scales into
channels and vice versa. Specifically, given a feature map
x ∈ RC×H×W , where C is the number of channels, H is
the height and W is the width of the feature map, the chan-
nels are grouped into three groups of (C1, C2, C3) channels
such that C = C1 + C2 + C3. The first and third group of
channels are subjected to a subpixel and superpixel multi-
plexing operation, respectively. The multiplexed channels
are then processed through a group-wise convolution oper-
ation defined over each of the three groups. The output fea-
ture maps from the group convolutions are mapped back to
the same dimensions as the input feature maps by reversing
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Figure 3: (a) Overview of spatial multiplexing operation. (b) Subpixel
operation multiplexes spatial information into channels. (c) Superpixel
operation multiplexes channels into spatial information.

the respective subpixel and superpixel operations. An illus-
tration of this process is shown in Fig. 3a. Collectively, the
subpixel and superpixel operations allow multi-scale spatial
information to flow across channels. We note that the stan-
dard idea of multi-scale processing in existing approaches,
multi-scale feature representations or kernels with larger re-
ceptive fields, is typically across different layers. In con-
trast, MUXConv seeks to exploit multi-scale information
within a layer through pixel manipulation. As we show in
Section 6, this operation significantly improves network ac-
curacy especially as they get more compact.

We parameterize the subpixel multiplexing operation
(see Fig. 3b) by r and define a window and stride of
size r×r. The features in the windows are mapped to r2

channels, with each window corresponding to a unique fea-
ture location in the channels. On the whole, the subpixel
operation maps the first group of channel features of size
C1 × H ×W to features of size r2C1 × H

r ×
W
r . There-

fore, the subpixel operation enables down-scaled spatial in-
formation to be multiplexed with channel information and
processed jointly by a standard convolution over the group.
The combination of the two operations effectively increases
the receptive field of the convolution by a factor of r.

We define the superpixel multiplexing operation (see
Fig. 3c) as an inverse of subpixel multiplexing. It is param-
eterized by r2 which corresponds to the number of channels
that will be multiplexed spatially into a single channel. The
feature values at a particular location from the r2 channels
are mapped to a unique window in the output feature map.
On the whole, the superpixel operation maps the third group
of channels features of size C3×H ×W to features of size
C3

r2 × rH × rW . Therefore, the superpixel operation en-
ables channel information to be multiplexed with up-scaled
spatial information and processed jointly by a standard con-
volution over the group. The combination of the two oper-
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Figure 4: Illustration of two channel multiplexing layers. In each layer,
half the channels are propagated as is while the other half are processed
through the spatial multiplexing operation. The channels from the two
groups are then interleaved as denoted by the indices. Color intensity de-
notes number of times that channel is processed.

ations effectively decreases the receptive field of the convo-
lution by a factor of r. Our superpixel operation bears sim-
ilarity to the concept of tiled convolution [27], a particular
realization of locally connected layers. This idea has also
been particularly effective for image super-resolution [33]
in the form of “subpixel" convolution.

3.2. Channel Multiplexing

While the spatial multiplexing operation described above
is effective, it still suffers from some limitations. Firstly, the
group convolutions in spatial multiplexing are more com-
putationally expensive than depth-wise separable convolu-
tions that they replace. Secondly, the decoupled nature of
the group convolutions does not allow for flow of informa-
tion across the groups. The channel multiplexing operation
is designed to mitigate these drawbacks by reducing the
computational burden of spatial multiplexing and further
enhancing the flow of information across the feature map
channels. This is achieved in two stages, selective process-
ing and channel shuffling. A illustration of the whole oper-
ation is shown in Fig. 4. Overall, the channel multiplexing
operation is similar in spirit to ShuffleNet [47] and Shuf-
fleNetV2 [26] but with notable variations; (1) ShuffleNet
uses shuffling to share channel information that are pro-
cessed in different groups, while we use shuffling to blend
the raw and processed channel information., (2) While
ShuffleNetV2 always splits the input channels in half, we
treat it as a hyperparameter that is searched for each layer,
and (3) Shuffled channels are processed through an inverted
residual bottleneck block in ShuffleNetV2 as opposed to
spatial multiplexing in our case.

Selective Processing: We process only a part of the in-
put channels by the spatial multiplexing block. Specifically,
the C channels in the input feature maps are split into two
groups with C1 and C2 channels, such that C = C1 + C2.
The first group of channels are propagated as is while the
second group are processed through spatial multiplexing.
This scheme immediately increases the compactness and ef-

ficiency by a factor of
(

C
C2

)2

, which can compensate for the

computational burden of grouped as opposed to depth-wise
separable convolutions.

Channel Shuffling: After the selective processing opera-
tion, we shuffle the channels of the output feature map in a
fixed pattern. Alternative channels selected from the unpro-
cessed and processed channels are interleaved.

4. Tri-Objective Hyperparameter Search
Designing a CNN typically involves many hyperparam-

eters that critically impact the performance of the models.
In order to realize the full potential of MUXNet we seek to
search for the optimal hyperparameters in each layer of the
network. Since the primary design motive of MUXConv
is to increase model expressivity while mitigating compu-
tational complexity, we propose a multi-objective hyperpa-
rameter search algorithm to simultaneously optimize for ac-
curacy, compactness and efficiency. This can be stated as,

minimize F(x) =
(
f1(x), · · · , fm(x)

)T
,

subject to x ∈ Ω,
(1)

where in our context Ω = Πn
i=1[ai, bi] ⊆ Rn is the hy-

perparameter decision space, where ai, bi are the lower and
upper bounds, x = (x1, . . . , xn)T ∈ Ω is a candidate hy-
perparameter setting, F : Ω→ Rm constitutesm competing
objectives, i.e. predictive error, model size, model ineffi-
ciency, etc., and Rm is the objective space.

As the number of objectives increases, the number of
solutions needed to approximate the entire Pareto surface
grows exponentially [6], rendering a global search imprac-
tical in most cases. To overcome this challenge we pro-
pose a reference guided hyperparameter search. Instead
of spanning the entire search space, we focus the hyper-
parameter search to a neighborhood around few desired
user-defined preferences. An illustration of this concept is
shown in Fig. 5a. For instance, in our context, this could
correspond to different desired accuracy targets and hard-
ware specifications. This idea enables us to decompose
the tri-objective problem into multiple single objective sub-
problems. We adopt the penalty-based boundary intersec-
tion (PBI) method [46] to scalarize multiple objectives into
a single objective,

minimize gpbi(x|w, z∗) = d1 + θd2

subject to x ∈ Ω,
(2)

where d2 =

∥∥∥∥F(x) −
(
z∗ + d1

w
||w||

)∥∥∥∥, d1 =

||(F(x)−z∗)Tw||
||w|| , z∗ = (z∗1 , . . . , z

∗
m)T is the ideal objective

vector with z∗i < minx∈Ω fi(x) i ∈ {1, . . . ,m}. θ ≥ 0 is a
trade-off hyperparameter that is set to 5 and w is the refer-
ence direction obtained by connecting the ideal solution to
the desired reference target.
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Figure 5: Tri-Objective Search: (a) We leverage user-defined preferences
to decompose the tri-objective problem into multiple single-objective sub-
problems. By focusing on sub-regions as opposed to the entire Pareto sur-
face, our approach is more efficient. (b) The reference direction is formed
by joining the ideal point and user supplied reference targets. The PBI
method is used to scalarize the objectives based on the projected distance
d2 to the reference target w, and the distance d1 to the ideal point.

Conceptually, the PBI method constructs a composite
measure of the convergence (d1) of the solution to the given
reference targets and diversity (d2) of the solutions itself.
See Fig.5b for an illustration. In our context, d1 (distance
between current projected solution and ideal solution) seeks
to push the solution to the boundary of attainable objective
space and d2 measures how close the solution is to the user’s
preference. Finally, we adopt a multi-objective evolution-
ary algorithm based on decomposition (MOEA/D [46]), to
simultaneously solve the decomposed sub-problems while
optimizing the scalarized objective.

5. Experiments
We evaluate the efficacy of MUXNets on three tasks; im-

age classification, object detection, and transfer learning.

5.1. Hyperparameter Search Details

Search Space: To compensate for the extra hyperparam-
eters introduced by spatial and channel multiplexing, we
constrain the commonly adopted layer-wise search space [1,
38, 12] to a stage-wise search space, where layers within
the same stage share the same hyperparameters. MUXNets
consist of four stages, where each stage begins with a re-
duction block and is followed by a series of normal blocks.
In each stage, we search for kernel size, expansion ra-
tio, repetitions of normal blocks, leave-out ratio for chan-
nel multiplexing and the spatial multiplexing settings (see
supplementary for details). To further reduce the search
space, we always adopt squeeze-and-excitation [18] and use
swish [29] non-linearity for activation at each stage except
the first stage, where a ReLU is used.
Search: Following previous work [1, 38], we conduct the
search directly on ImageNet and estimate model accuracy
on a subset consisting of 50K randomly sampled images
from the training set. As a common practice, during search,
the number of training epochs are reduced to 5. We select

four reference points with preferences on model size rang-
ing from 1.5M to 5M, MAdds ranging from 60M to 300M,
and predictive accuracy fixed at 1. The compactness and
efficiency objectives are normalized between [0, 1] before
aggregation. Search is initialized with a global population
size of 40 and evolved for 100 iterations, which takes about
11 days on sixteen 2080Ti GPUs. At the end of evolution,
we pick the top 5 (based on PBI aggregated function values)
models from each of the four subproblems, and retrain them
thoroughly from scratch on ImageNet. The four resulting
models are named as MUXNet-xs/s/m/l. Architectural de-
tails can be found in the supplementary material.

5.2. ImageNet Classification

For training on ImageNet, we follow the procedure
outlined in [38]. Specifically, we adopt Inception pre-
processing with image size 224×224 [36], batch size of 256,
RMSProp optimizer with decay 0.9, momentum 0.9, and
weight decay 1e-5. A Dropout layer of rate 0.2 is added be-
fore the last linear layer. Learning rate is linearly increased
to 0.016 in the initial 5 epochs [10], it then decays every 3
epochs at a rate of 0.03. We further complement the training
with exponential moving average with decay rate of 0.9998.

Table 1 shows the performance of baselines and
MUXNets on ImageNet 2012 benchmark [31]. We compare
them in terms of accuracy on validation set, model compact-
ness (parameter size), model efficiency (MAdds) and infer-
ence latency on CPU and GPU. Overall, MUXNets consis-
tently either match or outperform other models across dif-
ferent accuracy levels. In particular, MUXNet-m achieves
75.3% accuracy with 3.4M parameters and 218M MAdds,
which is 1.4× more efficient and 1.6× more compact when
compared to MnasNet-A1 [38] and MobileNetV3 [12], re-
spectively. Figures 1 and 6 visualize the trade-off ob-
tained by MUXNet and previous models. In terms of ac-
curacy and compactness, MUXNet clearly dominates all
previous models including MnasNet [38], FBNet [42], Mo-
bileNetV3 [12], and MixNet [40]. In terms of accuracy and
efficiency, MUXNets are on par with current state-of-the-art
models, i.e. MobileNetV3 and MixNet.

In terms of latency, the performance of MUXNet models
is mixed since they, (i) use non-standard primitives that do
not have readily available efficient low-level implementa-
tions, and (ii) are not explicitly optimized for latency. Com-
pared to methods that use optimized convolutional prim-
itives but do not directly optimize for latency (Efficient-
Net/MixNet), MUXNet’s latency is competitive despite us-
ing unoptimized spatial and channel multiplexing primi-
tives. MUXNet’s limitations due to unoptimized implemen-
tation can be offset, to an extent, by its inherent FLOPs
and parameter efficiency. MUXNet is not as competitive
as methods that directly use CPU or GPU latency on Pixel
phones as a search objective (MobileNetV3, MnasNet).



Table 1: ImageNet Classification [31]: MUXNet comparison with manual and automated design of efficient convolutional neural networks. Models are
grouped into sections for better visualization. Our results are underlined and the best result in each section is in bold. CPU latency (batchsize=1) is measured
on Intel i7-8700K and GPU latency (batchsize=64) is measured on 1080Ti. ‡ indicates the objective (in addition to predictive performance) that the method
explicitly optimizes through NAS.

Model Type #MAdds Ratio #Params Ratio CPU(ms) GPU(ms) Top-1 (%) Top-5 (%)

MUXNet-xs (ours) auto 66M‡ 1.0x 1.8M‡ 1.0x 6.8 18 66.7 86.8
MobileNetV2_0.5 [32] manual 97M 1.5x 2.0M 1.1x 6.2 17 65.4 86.4
MobileNetV3 small [12] combined 66M 1.0x 2.9M 1.6x 6.2‡ 14 67.4 -

MUXNet-s (ours) auto 117M‡ 1.0x 2.4M‡ 1.0x 9.5 25 71.6 90.3
MobileNetV1 [13] manual 575M 4.9x 4.2M 1.8x 7.3 20 70.6 89.5
ShuffleNetV2 [26] manual 146M 1.3x - - 6.8 11‡ 69.4 -
ChamNet-C [5] auto 212M 1.8x 3.4M 1.4x - - 71.6 -

MUXNet-m (ours) auto 218M‡ 1.0x 3.4M‡ 1.0x 14.7 42 75.3 92.5
MobileNetV2 [32] manual 300M 1.4x 3.4M 1.0x 8.3‡ 23 72.0 91.0
ShuffleNetV2 2× [26] manual 591M 2.7x 7.4M 2.2x 11.0 22‡ 74.9 -
MnasNet-A1 [38] auto 312M 1.4x 3.9M 1.1x 9.3‡ 32 75.2 92.5
MobileNetV3 large [12] combined 219M 1.0x 5.4M 1.6x 10.0‡ 33 75.2 -

MUXNet-l (ours) auto 318M‡ 1.0x 4.0M‡ 1.0x 19.2 74 76.6 93.2
MnasNet-A2 [38] auto 340M 1.1x 4.8M 1.2x - - 75.6 92.7
FBNet-C [42] auto 375M 1.2x 5.5M 1.4x 9.1‡ 31 74.9 -
EfficientNet-B0 [39] auto 390M‡ 1.2x 5.3M 1.3x 14.4 46 76.3 93.2
MixNet-M [40] auto 360M‡ 1.1x 5.0M 1.2x 24.3 79 77.0 93.3
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Figure 6: The trade-off between model complexity and top-1 accuracy on ImageNet. This allows us to compare models designed for different computation
requirements in number of parameters or number of multi-adds. All our models use input resolution of 224× 224. We use dash line to denote models from
channel width multipliers or with different input resolutions.

5.3. Object Detection

Table 2: PASCAL VOC2007 [8] Detection

Network #MAdds #Params mAP (%)

VGG16 + SSD [24] 35B 26.3M 74.3
MobileNet + SSD [17] 1.6B 9.5M 67.6
MobileNetV2 + SSDLite [32] 0.7B 3.4M 67.4
MobileNetV2 + SSD [32] 1.4B 8.9M 73.2

MUXNet-m + SSDLite (ours) 0.5B 3.2M 68.6
MUXNet-l + SSD (ours) 1.4B 9.9M 73.8

We evaluate and compare the generalization ability of
MUXNet and other peer models on the PASCAL VOC de-

tection benchmark [8]. Our experiments use both the Single
Shot Detector (SSD) [24] and the Single Shot Detector Lite
(SSDLite) [32] as the detection frameworks, with MUXNet
as the feature extraction backbone. We follow the procedure
in [32] to setup the additional prediction layers, i.e. location
of detection heads in the backbone, size of corresponding
boxes, etc. The combined trainval sets of PASCAL VOC
2007 and 2012 are used for training. Other details include,
SGD optimizer with momentum 0.9 and weight decay 5e-
4, batch size of 32, input image resized to 300×300 and
learning rate of 0.01 with cosine annealing to 0.0 in 200
epochs. Table 2 reports the mean Average Precision (mAP)
on the PASCAL VOC 2007 test set. When paired with the
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Figure 7: Transfer Learning on CIFAR: Trade-off between Top-1 accuracy and #Params / #MAdds.

same detector framework SSDLite, our MUXNet-m model
achieves 1.2% higher mAP than MobileNetV2 [32] while
being 6% more compact and 1.4× more efficient.

5.4. Transfer Learning

To further explore the efficacy of MUXNet we evaluate
it under the transfer learning setup in [19] on three different
datasets; CIFAR-10, CIFAR-100 and ChestX-Ray14 [41].

5.4.1 CIFAR-10 and CIFAR-100

Both CIFAR-10 and -100 datasets have 50,000 and 10,000
images for training and testing, respectively. CIFAR-100
extends CIFAR-10 by adding 90 more classes resulting in
10× fewer training examples per class. For training on both
datasets, the models are initialized with weights pre-trained
on ImageNet. The model is then fine-tuned using SGD with
momemtum 0.9, weight decay 4e-5 and gradients clipped to
a magnitude of 5. Learning rate is set to 0.01 with cosine
annealing to 0.0 in 150 epochs. For data augmentation, im-
ages are up-sampled via bicubic interpolation to 224×224
and horizontally fliped at random. Table 3 and Figure 7 re-
ports the accuracy, compactness and efficiency of MUXNet
and other baselines. Overall, MUXNet significantly out-
performs previous methods on both CIFAR-10 and -100
datasets, indicating that our models also transfer well to
other similar tasks. In particular, MUXNet-m achieves 1%
higher accuracy than NASNet-A mobile with 3× fewer pa-
rameters while being 2× more efficient in MAdds.

5.4.2 ChestX-Ray14

The ChestX-Ray14 benchmark was recently introduced
in [41]. The dataset consists of 112,120 high resolution
frontal-view chest X-ray images from 30,805 patients. Each
image is labeled with one or multiple common thorax dis-
eases, or “Normal”, otherwise. Due to the multi-label na-
ture of the dataset, we use a multitask learning setup where
each disease is treated as an individual binary classification
problem. We define a 14-dimensional label vector of binary
values indicating the presence of one or more diseases, and
optimize a regression loss as opposed to cross-entropy in

Table 3: Transfer Learning: Top-1 accuracy on CIFAR-10 (C-10) and
CIFAR-100 (C-100). ResNet, DenseNet, MobileNetV2, and NASNet-A
results are from [19].

Model #MAdds #Params C-10 (%) C-100 (%)

ResNet-50 [11] 4.1B 23.5M 96.77 84.50
DenseNet-169 [16] 3.4B 12.5M 97.40 85.00
MobileNetV2 [32] 0.3B 2.2M 95.74 80.80
NASNet-A mobile [48] 0.6B 4.2M 96.83 83.90
EfficientNet-B0 [39] 0.4B 4.0M 98.10 88.10
MixNet-M [40] 0.4B 3.5M 97.92 -

MUXNet-m (ours) 0.2B 2.1M 98.00 86.11

Table 4: Transfer Learning on ChestX-Ray14 [41]

Method #MAdds #Params Test AUROC (%)

Wang et al. (2017) [41] - - 73.8
Yao et al. (2017) [44] - - 79.8
CheXNet (2017) [28] 2.8B 7.0M 84.4

MUXNet-m (ours) 0.2B 2.1M 84.1

single-label cases. The training procedure is similar to the
CIFAR experiments for transfering pre-trained models. Ta-
ble 4 compares the performance of MUXNet-m with previ-
ous approaches, including CheXNet [28] which represents
the state-of-the-art on this dataset. Evidently, MUXNet-m’s
performance in terms of area under the receiver operating
characteristic (AUROC) curve on the test set is comparable
(84.1% vs 84.4%) to CheXNet while being 3× more com-
pact and 14× more efficient.

6. Ablation Study

Spatial Multiplexing: We incorporate the spatial multi-
plexing operation within the 3×3 depth-wise separable con-
volution layers of MobileNetV2. As we do in our main
experiments, we do not apply spatial multiplexing to the
reduction blocks. We manually fix the multiplexing hyper-
parameters to C1 = C3 = C

4 , C2 = C
2 i.e., 1/4 channels are

processed by subpixeling, 1/4 of the channels are processed
by superpixeling, and the remaining channels are processed
without modification. Figure 8a shows the effect of spatial
multiplexing on MobileNetV2 [32] at different width multi-
pliers. Spatial multiplexing consistently improves accuracy
over the original depth-wise separable convolution at fixed
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(b) Channel Multiplexing
Figure 8: Multiplexed Convolution Ablation Study: (a) Results correspond to width multiplier of 0.1, 0.25, 0.5, 0.75, and 1.0. (b) w, r and l are width
multiplier, input resolution and leave-out ratio, respectively. When l = 0.25, 75% of the input information is processed at each normal block.

spatial resolution. In particular, spatial multiplexing boosts
accuracy by 5.8% in low MAdds regime. The results sug-
gest that per MAdd, spatial multiplexing (groups+full conv)
has better information flow than dep-sep+1 × 1 conv. This
is more apparent in small models which have less channels,
so 1× 1 conv cannot effectively mix channel information.

Channel Multiplexing: To make models more efficient,
methods such as scaling down the number of channels by
a factor (named width multiplier), or scaling down the in-
put resolution have been proposed. Here we investigate the
impact of channel multiplexing as an alternative to reduce
model complexity. To be consistent with the main exper-
iments we only apply channel multiplexing to the normal
blocks. In MobileNetV2 [32] we gradually increase the
number of input channels that are left unprocessed in each
normal block. We use l to denote the leave-out ratio, where
a high value corresponds to less channels being processed
and hence more efficiency. The resulting trade-off with ac-
curacy is shown in Figure 8b. Evidently, reducing the reso-
lutions of input images provides a better trade-off between
accuracy and MAdds than reducing the channels. However,
reducing the input resolution provides no benefit to model
size. On the other hand, channel multiplexing offers com-
petitive trade-off in both cases; MAdds and model size. In
particular, leaving out 25% of the input channels at every
normal block appears to affect the predictive accuracy min-
imally, while simultaneously saving 13% in parameters and
20% in multiply-adds.

Search Efficiency: To thoroughly and efficiently evalu-
ate the effectiveness of the PBI decomposition technique
and the search efficiency of our proposed NAS algorithm,
we adopt the NASBench101 [45] benchmark. It contains
more than 400K unique models pre-trained on CIFAR-10,
whose Pareto-optimal solutions and predictive performance
are readily available without expensive training. In this
case, we aim to minimize the number of parameters, the
training time and maximize the accuracy. We also adopt the
regularized evolution [30] approach as a baseline for com-
parison. Figure 9 shows the search effectiveness for three
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Figure 9: Performance comparison between our approach and regularized
evolution (RE) [30] on NASBench101 [45]. Both methods are subject to
the same search budget of 1,000 maximum models sampled. We distribute
the search budget across three executions of RE for each one of the three
reference points. Our approach simultaneously targets all three reference
points in one run using all available budget.

reference points under a fixed computational budget. The
PBI scalarization is effective in directing the search towards
pre-defined target regions as the obtained solutions from
both methods are centered around the three provided target
points. In addition, we observe that by collectively solving
the sub-problems, we achieve better results under the same
search budget as opposed to solving the sub-problem one at
a time, as in case of regularized evolution.

7. Conclusion
This paper introduced MUXConv, an efficient alterna-

tive to a standard convolutional layer that is designed to
progressively multiplex channel and spatial information in
the network. Furthermore, we coupled it with an efficient
multi-objective evolutionary algorithm based hyperparam-
eter search to trade-off predictive accuracy, model com-
pactness and computational efficiency. Experimental results
on image classification, object detection and transfer learn-
ing suggest that MUXNets are able to match the predictive
accuracy and efficiency of current state-of-the-art models
while be more compact.
Acknowledgements: We gratefully acknowledge Dr. Erik
Goodman and Dr. Wolfgang Banzhaf for partially support-
ing the computational requirements of this work.
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