NSGANetV2: Evolutionary Multi-Objective
Surrogate-Assisted Neural Architecture Search

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and
Vishnu Naresh Boddeti

Michigan State University, East Lansing, MI 48824, USA
{luzhicha,kdeb, goodman,banzhafw,vishnu}@msu.edu

Abstract. In this paper, we propose an efficient NAS algorithm for
generating task-specific models that are competitive under multiple com-
peting objectives. It comprises of two surrogates, one at the architecture
level to improve sample efficiency and one at the weights level, through
a supernet, to improve gradient descent training efficiency. On stan-
dard benchmark datasets (C10, C100, ImageNet), the resulting models,
dubbed NSGANetV2, either match or outperform models from existing
approaches with the search being orders of magnitude more sample effi-
cient. Furthermore, we demonstrate the effectiveness and versatility of
the proposed method on six diverse non-standard datasets, e.g. STL-10,
Flowers102, Oxford Pets, FGVC Aircrafts etc. In all cases, NSGANetV2s
improve the state-of-the-art (under mobile setting), suggesting that NAS
can be a viable alternative to conventional transfer learning approaches
in handling diverse scenarios such as small-scale or fine-grained datasets.
Code is available at https://github.com/mikelzc1990/nsganetv2l

Keywords: NAS, Evolutionary Algorithms, Surrogate-Assisted Search

1 Introduction

Neural networks have achieved remarkable performance on large scale supervised
learning tasks in computer vision. A majority of this progress was achieved by
architectures designed manually by skilled practitioners. Neural Architecture
Search (NAS) [38] attempts to automate this process to find good architec-
tures for a given dataset. This promise has led to tremendous improvements in
convolutional neural network architectures, in terms of predictive performance,
computational complexity and model size on standard large-scale image classifi-
cation benchmarks such as ImageNet [27], CIFAR-10 [15], CIFAR-100 [15] etc.
However, the utility of these developments, has so far eluded more widespread
and practical applications. These are cases where one wishes to use NAS to obtain
high-performance models on custom non-standard datasets, optimizing possibly
multiple competing objectives, and to do so without the steep computation
burden of existing NAS methods.

The goal of NAS is to obtain both the optimal architecture and its associated
optimal weights. The key barrier to realizing the full potential of NAS is the

https://github.com/mikelzc1990/nsganetv2

2 Z. Lu et al.

nature of its formulation. NAS is typically treated as a bi-level optimization
problem, where an inner optimization loops over the weights of the network
for a given architecture, while the outer optimization loops over the network
architecture itself. The computational challenge of solving this problem stems
from both the upper and lower level optimization. Learning the optimal weights of
the network in the lower level necessitates costly iterations of stochastic gradient
descent. Similarly, exhaustively searching the optimal architecture is prohibitive
due to the discrete nature of the architecture description, size of search space
and our desire to optimize multiple, possibly competing, objectives. Mitigating
both of these challenges explicitly and simultaneously is the goal of this paper.

Many approaches have been proposed to improve the efficiency of NAS
algorithms, both in terms of the upper level and the lower level. A majority of
them focuses on the lower level, including weight sharing [TI25J18], proxy models
[38126], coarse training [30], etc. But these approaches still have to sample,
explicitly or implicitly, a large number of architectures to evaluate in the upper
level. In contrast, there is relatively little focus on improving the sample efficiency
of the upper level optimization. A few recent approaches [I7l9] adopt surrogates
that predict the lower level performance with the goal of navigating the upper
level search space efficiently. However, these surrogate predictive models are still
very sample inefficient since they are learned in an offline stage by first sampling
a large number of architectures that require full lower level optimization.

In this paper, we propose a practically efficient NAS algorithm, by adopt-
ing explicit surrogate models simultaneously at both the upper and the lower
level. Our lower level surrogate adopts a fine-tuning approach, where the initial
weights for fine-tuning are obtained by a supernet model, such as [14J5]. Our
upper level surrogate adopts an online learning algorithm, that focuses on ar-
chitectures in the search space that are close to the current trade-off front, as
opposed to a random/uniform set of architectures used in the offline surrogate
approaches [QI2/T7]. Our online surrogate significantly improves the sample
efficiency of the upper level optimization problem in comparison to the offline
surrogates. For instance, OnceForAll [5] and PNAS [I7] sample 16,000 and 1,16qz|
architectures, respectively, to learn the upper level surrogate. In contrast, we only
have to sample 350 architectures to obtain a model with similar performance.

An overview of our approach is shown in Figl[l] We refer to the proposed
NAS algorithm as MSuNAS and the resulting architectures as NSGANetV2. Our
method is designed to provide a set of high-performance models on a custom
dataset (large or small scale, multi-class or fine-grained) while optimizing possibly
multiple objectives of interest. Our key contributions are:

- An alternative approach to solve the bi-level NAS problem, i.e., simultaneously
optimizing the architecture and learn the optimal model weights. However, instead
of gradient based relaxations (e.g., DARTS), we advocate for surrogate models.
Overall, given a dataset and a set of objectives to optimize, MSuNAS can design
custom neural network architectures as efficiently as DARTS but with higher
performance and extends to multiple, possibly competing objectives.

! Estimate from # of models evaluated by PNAS, actual sample size is not reported.

Evolutionary Multi-Obj. Surrogate-Assisted NAS 3

Data Objectives |
(ImageNet, (# MAdds, Upper Level (Architecture)
CIFAR-100, Ox- # Params, Candidate Architecture
ford Flowers etc.) Latency, etc.) Off the shelf Multi-
[—— Objective Algorithm [—— CECTETE CTTTE——

(NSGA-II, MOEA/D)

NSGANetV2 Models [JTrV)

M Directly search on (ours) B Arch. transferred from C10 / ImageNet Ml Semi-/un-supervised learning

CINIC-10 STL-10 Flowers102
o5 NSGANetvE 98 EF,aa NSGANetv2 NSGANetvz
98|
—~ .
X XNAS [13] WideResNet + EnAET [33] A B2, _ ~AFMcentliet-83 (31
9|
g ° WideResnt + Mixtatch (2] &l By A
o 9% 97.5] o
7
] NASNet _DARTS , ResNet-50
< o - o ,
— AmoebaNet-A PNAS 1
1 97, B0 /
a % A
o o VG611 + 11C N
[ResNeXt29_2x64d o NASNet-A
DenseNet-121 o 8 WideResNet + /o
) o 565 mobiidfet v2
a1
400 600 800 1000 1200 1400 2 s 1000 2 s 10k 2 5 100 2 5 1000
#MAdds (M)

Fig. 1: (Top) Overview: Given a dataset and objectives, MSulNAS obtains a
task-specific set of models that are competitive in all objectives with high search
efficiency. It comprises of two surrogates, one at the upper level to improve
sample efficiency and one at the lower level, through a supernet, to improve
weight learning efficiency. (Bottom) Performance of the set of task-specific models,
i.e. NSGANetV2s, on three different types of non-standard datasets, compared
to SOTA from transfer learning [23I31] and semi-/un-supervised learning [2133].

- A simple, yet highly effective, online surrogate model for the upper level
optimization in NAS, resulting in a significant increase in sampling efficiency
over other surrogate-based approaches.

- Scalability and practicality of MSuNAS on many datasets corresponding to
different scenarios. These include standard datasets like ImageNet, CIFAR-10 and
CIFAR-100, and six non-standard datasets like CINIC-10 [I0] (multi-class), STL-
10 [8] (small scale mutli-class), Oxford Flowers102 [24] (small scale fine-grained) etc.
Under mobile settings (< 600M MAdds), MSuNAS leads to SOTA performance.

2 Related Work

Lower Level Surrogate: Existing approaches [25/4[T8)2T] primarily focus on
mitigating the computational overhead induced by SGD-based weight optimiza-
tion in the lower level, as this process needs to be repeated for every architecture
sampled by a NAS method in the upper level. A common theme among these
methods involves training a supernet which contains all searchable architectures
as its sub-networks. During search, accuracy using the weights inherited from
the supernet becomes the metric to select architectures. However, completely
relying on supernet as a substitute of actual weight optimization for evaluating

4 Z. Lu et al.

Table 1: Comparison of Existing NAS methods

Performance Weight Multiple

Methods Search Method Prediction Sharing Objective Dataset Searched
NASNet [38] RL c10
ENAS [25] RL v c10
PNAS [I7] SBMO v C10
DPP-Net [12] SBMO v v c10
DARTS [i8] Gradient v C10
LEMONADE [[3] EA v v C10, C100
ProxylessNAS [6] | RL + gradient v v C10, ImageNet
MnasNet [30] RL v ImageNet
ChamNet [9] EA v v TmageNet,
MobileNetV3 [14] RL + expert v ImageNet

C10, C100, ImageNet,
MSuNAS (ours) EA v v v Pets, STL-10, Aircraft,

DTD, CINIC-10, Flowers102

candidate architectures is unreliable. Numerous studies [T6/35/36] reported a weak
correlation between the performance of the searched architectures (predicted
by weight sharing) and the ones trained from scratch (using SGD) during the
evaluation phase. MSulNAS instead uses the weights inherited from the supernet
only as an initialization to the lower level optimization. Such a fine-tuning process
affords the computation benefit of the supernet, while at the same time improving
the correlation in the performance of the weights initialized from the supernet
and those trained from scratch.

Upper Level Surrogate: MetaQNN [I] uses surrogate models to predict the
final accuracy of candidate architectures (as a time-series prediction) from the first
25% of the learning curve from SGD training. PNAS [I7] uses a surrogate model
to predict the top-1 accuracy of architectures with an additional branch added to
the cell structure that are repeatedly stacked together. Fundamentally, both of
these approaches seek to extrapolate rather than interpolate the performance of
the architecture using the surrogates. Consequently, as we show later in the paper,
the rank-order between the predicted accuracy and the true accuracy is very
lowﬂ (0.476). OnceForAll [5] also uses a surrogate model to predict accuracy from
architecture encoding. However, the surrogate model is trained offline for the entire
search space, thereby needing a large number of samples for learning (16K samples
-> 2 GPU-days -> 2x search cost of DARTS for just constructing the surrogate
model). Instead of using uniformly sampled architectures and their validation
accuracy to train the surrogate model to approximate the entire landscape,
ChamNet [9] trains many architectures through full lower level optimization
and selects only 300 samples with high accuracy with diverse efficiency (FLOPs,
Latency, Energy) to train a surrogate model offline. In contrast, MSuNAS learns
a surrogate model in an online fashion only on the samples that are close to
the current trade-off front as we explore the search space. The online learning
approach significantly improves the sample efficiency of our search, since we only
need lower level optimization (full or surrogate assisted) for the samples near the
current Pareto front.

2 In the supplementary material we show that better rank-order correlation at the
search stage ultimately leads to finding better performing architectures.

Evolutionary Multi-Obj. Surrogate-Assisted NAS 5

Multi-Objective NAS: Approaches that consider more than one objective to
optimize the architecture can be categorized into two groups: (i) scalarization, and
(ii) population based approaches. The former include, ProxylessNAS [6], MnasNet
[30], FBNet [34], and MobileNetV3 [14] which use a scalarized objective that
encourages high accuracy and penalizes compute inefficiency at the same time,
e.g., maximize Accx (Latency/Target)™ %97, These methods require a pre-defined
preference weighting of the importance of different objectives before the search,
which typically requires a numbers of trials. Methods in the latter category
include [200T3IT2I7/T9] and aim to approximate the entire Pareto-efficient frontier
simultaneously. These approaches rely on heuristics (e.g., EA) to efficiently
navigate the search space, which allows practitioners to visualize the trade-off
between the objectives and to choose a suitable network a posteriori to the
search. MSuNAS falls in the latter category using surrogate models to mitigate
the computational overhead.

3 Proposed Approach

The neural architecture search problem for a target dataset D = {Dyyn, Dotas Dist }
can be formulated as the following bilevel optimization problem [3],

minimize F(a) = (fl(a; w(a)),. .., fruloyw (@), fer1(a),. .., fm(a))T,
subject to w*(a) € argmin L(w;),
acQ,, we,,

(1)
where the upper level variable o defines a candidate CNN architecture, and
the lower level variable w(a) defines the associated weights. £(w;) denotes
the cross-entropy loss on the training data Dj,., for a given architecture c.
F: Q — R™ constitutes m desired objectives. These objectives can be further
divided into two groups, where the first group (f to fx) consists of objectives that
depend on both the architecture and the weights—e.g., predictive performance
on validation data D,;4, robustness to adversarial attack, etc. The other group
(fr+1 to fm) consists of objectives that only depend on the architecture—e.g.,
number of parameters, floating point operations, latency etc.

3.1 Search Space

MSuNAS searches over four important dimensions of convolutional neural net-
works (CNNs), including depth (# of layers), width (# of channels), kernel
size and input resolution. Following previous works [S0JI45], we decompose a
CNN architecture into five sequentially connected blocks, with gradually reduced
feature map size and increased number of channels. In each block, we search over
the number of layers, where only the first layer uses stride 2 if the feature map
size decreases, and we allow each block to have minimum of two and maximum
of four layers. Every layer adopts the inverted bottleneck structure [28] and we
search over the expansion rate in the first 1 x 1 convolution and the kernel size of

6

Layers Kernelsize | _Expan
s fe] i [3sT7]1[5]
3 3

sion rate | Resol
4 [6] | [192]196]200] - [252 256
| 3 | 17

(@) Considered options

[2]-[31s]- [e]e] (2] - [sTsTelo] - [+TeToTo]
[3]-BIsTs]- [31eTe] [31-B[=[3]0] - [3[#]e] o]
(el -[elsTe07] - [elelsTe] [e]-[eTsT]7] - [eleTsT4]

(b) Variable-length encoding (©) Fix-length encoding

Fig. 2: Search Space: A candidate architecture comprises five computational
blocks. Parameters we search for include image resolution, number of layers (L)
in each block and the expansion rate (e) and the kernel size (k) in each layer.

the depth-wise separable convolution. Additionally, we allow the input image size
to range from 192 to 256. We use an integer string to encode these architectural
choices, and we pad zeros to the strings of architectures that have fewer layers so
that we have a fixed-length encoding. A pictorial overview of this search space
and encoding is shown in Fig. 2|

3.2 Overall Algorithm Description

The problem in Eq. [I] poses two main computational bottlenecks for conventional
bi-level optimization methods. First, the lower level problem of learning the
optimal weights w*(a) for a given architecture a involves a prolonged training
process—e.g., one complete SGD training on ImageNet dataset takes two days
on an 8-GPU server. Second, even though there exist techniques like weight-
sharing to bypass the gradient-descent-based weight learning process, extensively
sampling architectures at the upper level can still render the overall process
computationally prohibitive, e.g., 10,000 evaluations on ImageNet take 24 GPU
hours, and for methods like NASNet, AmoebaNet that require more than 20,000
samples, it still requires days to complete the search even with weight-sharing.
Algorithm [I] and Fig. |3| show the pseudocode and corresponding steps from a
sample run of MSuNAS on ImageNet, respectively. To overcome the aforemen-
tioned bottlenecks, we use surrogate models at both upper and lower levels to
make our NAS algorithm practically useful for a variety of datasets and objectives.
At the upper level, we construct a surrogate model that predicts the top-1 accu-
racy from integer strings that encode architectures. Previous approaches [9129//5]
that also used surrogate-modeling of the accuracy follow an offline approach,
where the accuracy predictor is built from samples collected separately prior to
the architecture search and not refined during the search. We argue that such
a process makes the search outcome highly dependent on the initial training
samples. As an alternative, we propose to model and refine the accuracy predictor
iteratively in an online manner during the search. In particular, we start with
an accuracy predictor constructed from only a limited number of architectures
sampled randomly from the search space. We then use a standard multi-objective

Evolutionary Multi-Obj. Surrogate-Assisted NAS 7

. All hect Candidat Selected didat Selected didate
Algorithm 1: MSuNAS ° ovatunted so far ° architectures architectures to evaluate O architactures evaluated
Input :S8S (search space),
Sw (supernet), 2l L .

C (complexity obj),
N (initial samples),
K (max. iterations).

Top-1 Validation Error (%)

A« 0;

while ¢ < N do

o < sample(SS) TS T

wo — Sw(a) (@) (e)

acc < SGD(a, wo)

A — AU (a,acc)

end

while j < K do

Sy < construct from A //
(MLP / CART / RBF / GP)

10 & < NSGA-II(Sy, C)

© 0N T A W N

Top-1 Validation Error (%)

o
g o

11 a < subset from & N %o o 19 “ b

12 for o in o do 209 007000 GO0 0800000 a0 300 400 500 600 700 800500
13 Wo — Su(ax) ® @

14 acc < SGD (o, wo)

15 A+ AU (o, acc) £

16 end ;”

17 end

18 Return NDsort(A).

Fig.3: A sample run of MSuNAS on ImageNet: In each iteration, accuracy-
prediction surrogate models Sy are constructed from an archive of previously
evaluated architectures (a). New candidate architectures (brown boxes in (b)) are
obtained by solving the auxiliary single-level multi-objective problem F= {S¢,C}
(line 10 in Algo . A subset of the candidate architectures is chosen to diversify
the Pareto front (c) - (d). The selected candidate architectures are then evaluated
and added to the archive (e). At the conclusion of search, we report the non-
dominated architectures from the archive. The x-axis in all sub-figures is #MAdds.

algorithm (NSGA-II [I1], in our case) to search using the constructed accuracy
predictor along with other objectives that are also of interest to the user. We
then evaluate the outcome architectures from NSGA-IT and refine the accuracy
predictor model with these architectures as new training samples. We repeat this
process for a pre-specified number of iterations and output the non-dominated
solutions from the pool of evaluated architectures.

3.3 Speeding Up Upper Level Optimization

Recall that the nested nature of the bi-level problem makes the upper level
optimization computationally very expensive, as every upper level function
evaluation requires another optimization at the lower level. Hence, to improve the
efficiency of our approach at the upper level, we focus on reducing the number

8 Z. Lu et al.

of architectures that we send to the lower level for learning optimal weights.
To achieve this goal, we need a surrogate model to predict the accuracy of an
architecture before we actually train it. There are two desired properties of
such a predictor: (1) high rank-order correlation between the predicted and the
true performance; and (2) sample efficient such that the required number of
architectures to be trained through SGD are minimized for constructing the
predictor.

We first collected four different surrogate models for accuracy prediction from
the literature, namely, Multi Layer Perceptron (MLP) [I7], Classification And
Regression Trees (CART) [29], Radial Basis Function (RBF) [I] and Gaussian
Process (GP) [9]. From our ablation study, we observed that no one surrogate
model is consistently better than others in terms of the above two criteria on
all datasets (see section . Hence, we propose a selection mechanism, dubbed
Adaptive Switching (AS), which constructs all four types of surrogate models at
every iteration and adaptively selects the best model via cross-validation.

With the accuracy predictor selected by AS, we apply the NSGA-IT algorithm
to simultaneously optimize for both accuracy (predicted) and other objectives of
interest to the user (line 10 in Algorithm . For the purpose of illustration, we
assume that the user is interested in optimizing #MAdds as the second objective.
At the conclusion of the NSGA-II search, a set of non-dominated architectures is
output, see Fig. (b) Often times, we cannot afford to train all architectures in
the set. To select a subset, we first select the architecture with highest predicted
accuracy. Then we project all other architecture candidates to the #MAdds
axis, and pick the remaining architectures from the sparse regions that help in
extending the Pareto frontier to diverse #MAdds regimes, see Fig. [3{c) - (d).
The architectures from the chosen subset are then sent to the lower level for SGD
training. We finally add these architectures to the training samples to refine our
accuracy predictor models and proceed to next iteration, see Fig. e).

3.4 Speeding Up Lower Level Optimization

To further improve the search efficiency of the proposed algorithm, we adopt
the widely-used weight-sharing technique [4I21122]. First, we need a supernet
such that all searchable architectures are sub-networks of it. We construct such a
supernet by taking the searched architectural hyperparameters at their maximum
values, i.e., with four layers in each of the five blocks, with expansion ratio set to
6 and kernel size set to 7 in each layer (See Fig.[2). Then we follow the progressive
shrinking algorithm [5] to train the supernet. This process is executed once before
the architecture search. The weights inherited from the trained supernet are used
as a warm-start for the gradient descent algorithm during architecture search.

4 Experiments and Results

In this section, we evaluate the surrogate predictor, the search efficiency and the
obtained architectures on CIFAR-10 [15], CIFAR-100 [I5], and ImageNet [27].

Evolutionary Multi-Obj. Surrogate-Assisted NAS 9

—%— Adaptive Switching (AS) —&— MLP CART —=— GP —— RBF
A ImageNet | CIFAR-10 | CIFAR-100
c
5 ¥ 3 H 2
= 7 7
5 095 6 6
f- 5 - + 5
£ 1
o Y 4 4
O 09 [i I
o 3 3
Q
2
S 085 2 2
= [
]
o 08 0.1 0.1
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Number of Training Samples
80 80
75 75 . 94 e 94 - \
g % 70 g 92 02 & s > o 75| LTS
8 8 8
< 70 75 70 75 < 92 94 92 94 < 75 80 75 80
- - - 80 80
& 75 75 & 94 > 94 a
;9 . g ~ .Q >
70 70 92 0 75 75
70 75 70 75 92 % 92 94 75 80 75 80
Predicted Top-1 Acc. (%) Predicted Top-1 Acc. (%) Predicted Top-1 Acc. (%)

Fig. 4: Comparing the relative prediction performance of the proposed Adaptive
Switching (AS) method to the existing four surrogate models. Top row compares
Spearman rank-order correlation coefficient as number of training samples in-
creases. Bottom row visualizes the true vs. predicted accuracy under 500 training
samples (RBF method is omitted to conserve space).

4.1 Performance of the Surrogate Predictors

To evaluate the effectiveness of the considered surrogate models, we uniformly
sample 2,000 architectures from our search space, and train them using SGD
for 150 epochs on each of the three datasets and record their accuracy on 5,000
held-out images from the training set. We then fit surrogate models with different
number of samples randomly selected from the 2,000 collected. We repeat the
process for 10 trials to compare the mean and standard deviation of the rank-order
correlation between the predicted and true accuracy, see Fig. [In general, we
observe that no single surrogate model consistently outperforms the others on all
three datasets. Hence, at every iteration, we adopt an Adaptive Switching (AS)
routine that compares the four surrogate models and chooses the best based on
10-fold cross-validation. It is evident from Fig. [] that AS works better than any
one of the four surrogate models alone on all three datasets. The construction
time of the AS is negligible (relatively to the search cost).

4.2 Search Efficiency

In this section, we first compare the search efficiency of MSuNAS to other single-
objective methods on both CIFAR-10 and ImageNet. To quantify the speedup,
we compare the two governing factors, namely, the total number of architectures
evaluated by each method to reach the reported accuracy and the number of
epochs undertaken to train each sampled architecture during search. The results

10 Z. Lu et al.

Table 2: Comparing the relative search efficiency of MSuNAS to other single-
objective methods: “#Model” is the total number of architectures evaluated
during search, “#Epochs” is the number of epochs used to train each architecture
during search. T and ¥ denote training epochs with and without a supernet to
warm-start the weights, respectively.

‘ Method Type ‘ Topl Acc. #MAdds ‘ #Model Speedup ‘ #Epochs Speedup
NASNet-A [38] RL 97.4% 569M 20,000 57x 20 up to 4x
CIFAR-10 AmoebaNet-B [26] EA 97.5% 555M 27,000 TTx 25 up to 5x
" 7|PNASNet-5 [17] SMBO 96.6% 588M 1,160 3.3x 20 up to 4x
MSuNAS(ours) EA 98.4% 468M 350 1x 5t /20 1x
MnasNet-A [30] RL 75.2% 312M 8,000 23x 5 up to 5x
ImageNet |OnceForAll [5] EA 76.0% 230M 16,000 46x 0 -
MSuNAS(ours) EA 75.9% 225M 350 1x of /5% 1x
JAVASAAN A

Rank-order Correlation
Rank-order Correlation

Hypervolume
Hypervolume

RMSError

— NSGANet-v2
— NSGANet
— Random Search

RMSError

Number of architectures sampled

(a) ImageNet (b) CIFAR-10

Fig.5: Comparing the relative search efficiency of MSuNAS to other methods
under bi-objective setup on ImageNet (a) and CIFAR-10 (b). The left plots
in each subfigure compares the hypervolume metric [37], where a larger value
indicates a better Pareto front achieved. The right plots in each subfigure show the
Spearman rank-order correlation (top) and the root mean square error (bottom)
of MSuNAS. All results are averaged over five runs with standard deviation
shown in shaded regions.

are provided in Table 2] We observe that MSuNAS is 20x faster than methods
that use RL or EA. When compared to PNAS [I7], which also utilizes an accuracy
predictor, MSulNAS is still at least 3x faster.

We then compare the search efficiency of MSuNAS to NSGANet [20] and
random search under a bi-objective setup: Top-1 accuracy and #MAdds. To
perform the comparison, we run MSuNAS for 30 iterations, leading to 350
architectures evaluated in total. We record the cumulative hypervolume [37]
achieved against the number of architectures evaluated. We repeat this process
five times on both ImageNet and CIFAR-10 datasets to capture the variance in
performance due to randomness in the search initialization. For a fair comparison
to NSGANet, we apply the search code to our search space and record the number
of architectures evaluated by NSGANet to reach a similar hypervolume than that
achieved by MSulNAS. The random search baseline is performed by uniformly
sampling from our search space. We plot the mean and the standard deviation
of the hypervolume values achieved by each method in Fig. [5| Based on the
incremental rate of hypervolume metric, we observe that MSuNAS is 2 - 5x

Evolutionary Multi-Obj. Surrogate-Assisted NAS 11

Table 3: ImageNet Classification [27]: comparing NSGANetV2 with manual and
automated design of efficient networks. Models are grouped into sections for
better visualization. Our results are underlined and best result in each section
is in bold. CPU latency (batchsize=1) is measured on Intel i7-8700K and GPU
latency (batchsize=64) is measured on 1080Ti. T The search cost excludes the
supernet training cost. ¥ Estimated based on the claim that PNAS is 8x faster
than NASNet from [I7].

, Search Cost S , .| CPU Lat. GPU Lat. | Top-1 Acc. Top-5 Acc.
Model Type (GPU days) #Params #MAdds (ms) (ms) %) %)
NSGANetV2-s | auto 11 6.1M 225M 9.1 30 77.4 93.5
MobileNetV2 [28] | manual 0 3.4M 300M 8.3 23 72.0 91.0
FBNet-C [34] auto 9 5.56M 375M 9.1 31 74.9 -
ProxylessNAS [6] auto 8.3 7.1M 465M 8.5 27 75.1 92.5
MobileNetV3 [I4] |combined - 5.4M 219M 10.0 33 75.2 -
OnceForAll [5] auto 2f 6.1M 230M 9.5 31 76.9
NSGANetV2-m auto 1f 7.T™M 312M 11.4 37 78.3 94.1
EfficientNet-B0 [31}| auto - 5.3M 390M 14.4 46 76.3 93.2
MixNet-M [32] auto - 5.0M 360M 24.3 79 77.0 93.3
AtomNAS-C+ [22] | auto 1f 5.5M 320M - - 77.2 93.5
NSGANetV2-1 auto 1t 8.0M 400M 12.9 52 79.1 94.5
PNASNet-5 [17] auto 250 5.1M 588M 35.6 82 74.2 91.9
NSGANetV2-xl1 auto 1f 8.7TM 593M 16.7 73 80.4 95.2
EfficientNet-B1 [3I}| auto - 7.8M 700M 21.5 78 78.8 94.4
MixNet-L [32] auto - 7.3M 565M 29.4 105 78.9 94.2

faster, on average, in achieving a better Pareto frontier in terms of number of
architectures evaluated.

4.3 Results on Standard Datasets

Prior to the search, we train the supernet following the training hyperparam-
eters setting from [5]. For each dataset, we start MSuNAS with 100 randomly
sampled architectures and run for 30 iterations. In each iteration, we evaluate 8
architectures selected from the candidates recommended by NSGA-II according
to the accuracy predictor. For searching on CIFAR-10 and CIFAR-100, we fine
tune the weights inherited from the supernet for five epochs then evaluate on
5K held-out validation images from the original training set. For searching on
ImageNet, we re-calibrate the running statistics of the BN layers after inheriting
the weights from the supernet, and evaluate on 10K held-out validation images
from the original training set. At the conclusion of the search, we pick the four
architectures from the achieved Pareto front, and further fine-tune for additional
150-300 epochs on the entire training sets. For reference purpose, we name the
obtained architectures as NSGANetV2-s/m/1/xl in ascending #MAdds order.
Architectural details can be found in the supplementary materials.
Table[3]shows the performance of our models on the ImageNet 2012 benchmark
[27]. We compare models in terms of predictive performance on the validation
set, model efficiency (measured by #MAdds and latencies on different hardware),
and associated search cost. Overall, NSGANetV2 consistently either matches or
outperforms other models across different accuracy levels with highly competitive

12 Z. Lu et al.

B NSGANetV2 (ours) —- MUXNet -V~ FairNAS —A- NSGANet DPP-Net O EfficientNet-BO O MixNet-M
X1 Mobilenet v3 PNASNet-5 A NASNet-A MobileNet v2 <& DenseNet-169 ResNet-50 O Inception v3

ImageNet CIFAR-10 CIFAR-100

Top-1 Acc (%)
o]
>

® %100 STt T % %00 : oo ® *100

GPU Latency (ms)

Top-1 Acc (%)
>
o
>
<
D>

T 5000 ER— ECa EREE Ry, ER R R EREE R Ry,

#MAdds (M)

Fig.6: Accuracy vs Efficiency: Top row compares predictive accuracy vs. GPU
latency on a batch of 64 images. Bottom row compares predictive accuracy vs.
number of multi-adds in millions. Models from multi-objective approaches are
joined with lines. Our models are obtained by directly searching on the respective
datasets. In most problems, MSuNAS finds more accurate solutions with fewer
parameters.

search costs. In particular, NSGANetV2-s is 2.2% more accurate than Mo-
bileNetV3 [14] while being equivalent in #MAdds and latencies; NSGANetV2-x1
achieves 80.4% Top-1 accuracy under 600M MAdds, which is 1.5% more
accurate and 1.2x more efficient than EfficientNet-B1 [31]. Additional com-
parisons to models from multi-objective approaches are provided in Fig. [6]

For CIFAR datasets, Fig. [f] compares our models with other approaches in
terms of both predictive performance and computational efficiency. On CIFAR-
10, we observe that NSGANetV2 dominates all previous models including (1)
NASNet-A [38], PNASNet-5 [I7] and NSGANet [20] that search on CIFAR-
10 directly, and (2) EfficientNet [31], MobileNetV3 [14] and MixNet [32] that
fine-tune from ImageNet.

5 Scalability of MSulNAS

5.1 Types of Datasets

Existing NAS approaches are rarely evaluated for their search ability beyond
standard benchmark datasets, i.e., ImageNet, CIFAR-10, and CIFAR-100. Instead,
they follow a conventional transfer learning setup, in which the architectures found
by searching on standard benchmark datasets are transferred, with weights fine-
tuned, to new datasets. We argue that such a process is conceptually contradictory
to the goal of NAS, and the architectures identified under such a process are

Evolutionary Multi-Obj. Surrogate-Assisted NAS 13

sub-optimal. In this section we demonstrate the scalability of MSuNAS to siXE|
additional datasets with various forms of difficulties, in terms of diversity in
classification classes (multi-classes vs. fine-grained) and size of training set (see
Table . We adopt the settings of the CIFAR datasets as outlined in Section
For each dataset, one search takes less than one day on 8 GPU cards.

Fig. (BOttom) com- Datasets Type #Classes | #Train #Test
pares the performance CINIC-10 [10] | multi-class 10 90,000 90,000
of NSGANetV2 obtained STL-10 [8] multi-class 10 5,000 8,000
by searching directly on Flowers102 [24]|fine-grained 102 2,040 6,149

the respective datasets to
models from other ap-
proaches that transfer architectures learned from either CIFAR-10 or ImageNet.
Overall, we observe that NSGANetV2 significantly outperforms other models
on all three datasets. In particular, NSGANetV2 achieves a better performance
than the currently known state-of-the-art on CINIC-10 [23] and STL-10 [2].
Furthermore, on Oxford Flowers102, NSGANetV2 achieves better accuracy to
that of EfficientNet-B3 [31] while using 1.4B fewer MAdds.

Table 4: Non-standard Datasets for MSuNAS

5.2 Number of Objectives

Single-objective Formulation: Adding a hardware efficiency target as a
penalty term to the objective of maximizing predictive performance is a common
workaround to handle multiple objectives in the NAS literature [6/30/34]. We
demonstrate that our proposed algorithm can also effectively handle such a
scalarized single-objective search. Following the scalarization method in [30], we
apply MSuNAS to maximize validation accuracy on ImageNet with 600M MAdds
as the targeted efficiency. The accumulative top-1 accuracy achieved and the
performance of the accuracy predictor are provided in Fig. Without further
fine-tuning, the obtained architecture yields 79.56% accuracy with 596M MAdds
on the ImageNet validation set, which is more accurate and 100M fewer MAdds
than EfficientNet-B1 [31].

Many-objective Formulation: Practical deployment of learned models are
rarely driven by a single objective, and most often, seek to trade-off many
different, possibly competing, objectives. As an example of one such scenario, we
use MSuNAS to simultaneously optimize five objectives—namely, the accuracy
on ImageNet, #Params, #MAdds, CPU and GPU latency. We follow the same
search setup as in the main experiments and increase the budget to ensure a
thorough search on the expanded objective space. We show the obtained Pareto-
optimal (to five objectives) architectures in Fig. We use color and marker
size to indicate CPU and GPU latency, respectively. We observe that a Pareto
surface emerges, shown in the left 3D scatter plot, suggesting that trade-offs
exist between objectives, i.e., #Params and #MAdds are not fully correlated.
We then project all architectures to 2D, visualizing accuracy vs. each one of the

3 Due to space constraints, we report results from three datasets in the main paper
and three more in the supplementary material.

14 Z. Lu et al.

ImageNet Top-1 Acc. (%)

79'4 5-Obj. Comparison: Acc. vs #Params #MAdds

79.2 < o~
75 75|

- £z

78.8| 70| 8477 70

0 10 20 30 40 50

Number of iterations + 5 & 7 EETTa

CPU latency GPU latency

g
<
| Rank-order Correlation RMSError z
0.95, 0.3 3
0.9 0.25 < 6 75| 75]
0.85 0.2 * A
0.8] 1 i ~
0.75 0.15 %5 70 70 >
0.7 ! &
T m W T m W ol ot
Number of iterations Number of iterations ° oo AECEEE
(a) Maximize Top-1 Acc. (b) 5-Objective scenario.

O #MAdds [#params [CPU Latency B GPU Latency
Input
Resolution

?

Mean # of Layers Mean Kernel Size

LA

fack Block 3 o o

(c¢) Non-dominated architectures under different efficiency objectives.

Fig. 7: Scalability of MSuNAS to different numbers and types of objectives:
optimizing (a) a scalarized single-objective on ImageNet; (b) five objectives
including accuracy, Params, MAdds, CPU and GPU latency, simultaneously. (c)
Post-optimal analysis on the architectures that are non-dominated according to
different efficiency objectives.

four considered efficiency measurements, and highlight the architectures that
are non-dominated in the corresponding two-objective cases. We observe that
many architectures that are non-dominated in the five-objective case are now
dominated when only considering two objectives. Empirically, we observe that
accuracy is highly correlated with #MAdds, CPU and GPU latency, but not
with #Params, to some extent.

6 Conclusion

This paper introduced MSuNAS, an efficient neural architecture search algorithm
for rapidly designing task-specific models under multiple competing objectives.
The efficiency of our approach stems from (i) online surrogate-modeling at the
level of the architecture to improve the sample efficiency of search, and (ii)
a supernet based surrogate-model to improve the weights learning efficiency
via fine-tuning. On standard datasets (CIFAR-10, CIFAR-100 and ImageNet),
NSGANetV2 matches the state-of-the-art with a search cost of one day. The
utility and versatility of MSuNAS are further demonstrated on non-standard
datasets of various types of difficulties and on different number of objectives.
Improvements beyond the state-on-the-art on STL-10 and Flowers102 (under
mobile setting) suggest that NAS is a more effective alternative to conventional
transfer learning approaches.

Evolutionary Multi-Obj. Surrogate-Assisted NAS 15

References

10.

11.

12.

13.

14.

15.

16.

17.

Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating neural architecture search
using performance prediction. arXiv preprint arXiv:1705.10823 (2017)

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.:
Mixmatch: A holistic approach to semi-supervised learning. In: Advances in Neural
Information Processing Systems (NeurIPS) (2019)

Bracken, J., McGill, J.T.: Mathematical programs with optimization problems in
the constraints. Operations Research 21(1), 37-44 (1973), http://wuw. jstor.org/
stable/169087

Brock, A., Lim, T., Ritchie, J., Weston, N.: SMASH: One-shot model architecture
search through hypernetworks. In: International Conference on Learning Represen-
tations (ICLR) (2018)

Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once for all: Train one network
and specialize it for efficient deployment. In: International Conference on Learning
Representations (ICLR) (2020)

Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct neural architecture search on
target task and hardware. In: International Conference on Learning Representations
(ICLR) (2019)

Chu, X., Zhang, B., Xu, R., Li, J.: Fairnas: Rethinking evaluation fairness of weight
sharing neural architecture search. arXiv preprint arXiv:1907.01845 (2019)
Coates, A., Ng, A.) Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (2011)

Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu, Y.,
Jia, Y., et al.: Chamnet: Towards efficient network design through platform-aware
model adaptation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2019)

Darlow, L.N., Crowley, E.J., Antoniou, A., Storkey, A.J.: Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505 (2018)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182-197 (2002). |https://doi.org/10.1109/4235.996017

Dong, J.D., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Dpp-net: Device-aware
progressive search for pareto-optimal neural architectures. In: European Conference
on Computer Vision (ECCV) (2018)

Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architec-
ture search via lamarckian evolution. In: International Conference on Learning
Representations (ICLR) (2019)

Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., Le, Q.V., Adam, H.: Searching for mobilenetv3. In:
International Conference on Computer Vision (ICCV) (2019)

Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep., Citeseer (2009)

Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture
search. arXiv preprint arXiv:1902.07638 (2019)

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille,
A., Huang, J., Murphy, K.: Progressive neural architecture search. In: European
Conference on Computer Vision (ECCV) (2018)

http://www.jstor.org/stable/169087
http://www.jstor.org/stable/169087
https://doi.org/10.1109/4235.996017

16

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Z. Lu et al.

Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture search. In:
International Conference on Learning Representations (ICLR) (2019)

Lu, Z., Deb, K., Boddeti, V.N.: Muxconv: Information multiplexing in convolutional
neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2020)

Lu, Z., Whalen, 1., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W.:
Nsga-net: Neural architecture search using multi-objective genetic algorithm. In:
Genetic and Evolutionary Computation Conference (GECCO) (2019)

Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.Y.: Neural architecture optimization.
In: Advances in Neural Information Processing Systems (NeurIPS) (2018)

Mei, J., Li, Y., Lian, X., Jin, X., Yang, L., Yuille, A., Yang, J.: Atom{nas}: Fine-
grained end-to-end neural architecture search. In: International Conference on
Learning Representations (ICLR) (2020)

Nayman, N., Noy, A., Ridnik, T., Friedman, I., Jin, R., Zelnik, L.: Xnas: Neural ar-
chitecture search with expert advice. In: Advances in Neural Information Processing
Systems (NeurIPS) (2019)

Nilsback, M., Zisserman, A.: Automated flower classification over a large number
of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics Image
Processing (2008)

Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search
via parameters sharing. In: International Conference on Machine Learning (ICML)
(2018)

Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: AAATI Conference on Artificial Intelligence Conference
on Artificial Intelligence (2019)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-
thy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition
challenge. International journal of computer vision 115(3), 211-252 (2015)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L..C.: Mobilenetv2: Inverted
residuals and linear bottlenecks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018)

Sun, Y., Wang, H., Xue, B., Jin, Y., Yen, G.G., Zhang, M.: Surrogate-assisted
evolutionary deep learning using an end-to-end random forest-based perfor-
mance predictor. IEEE Transactions on Evolutionary Computation (2019).
https://doi.org/10.1109/TEVC.2019.2924461

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
Mnasnet: Platform-aware neural architecture search for mobile. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2019)

Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning (ICML) (2019)

Tan, M., Le, Q.V.: Mixconv: Mixed depthwise convolutional kernels. In: British
Machine Vision Conference (BMVC) (2019)

Wang, X., Kihara, D., Luo, J., Qi, G.J.: Enaet: Self-trained ensemble autoencoding
transformations for semi-supervised learning. arXiv preprint arXiv:1911.09265
(2019)

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y.,
Keutzer, K.: Fbnet: Hardware-aware efficient convnet design via differentiable neural
architecture search. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2019)

https://doi.org/10.1109/TEVC.2019.2924461

35.

36.

37.

38.

Evolutionary Multi-Obj. Surrogate-Assisted NAS 17

Xie, S., Kirillov, A., Girshick, R., He, K.: Exploring randomly wired neural networks
for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2019)

Yu, K., Sciuto, C., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the search
phase of neural architecture search. In: International Conference on Learning
Representations (ICLR) (2020)

Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms —
a comparative case study. In: Eiben, A.E., Bick, T., Schoenauer, M., Schwefel, H.P.
(eds.) Parallel Problem Solving from Nature — PPSN V. pp. 292-301. Springer
Berlin Heidelberg, Berlin, Heidelberg (1998)

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018)

	NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search

