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Abstract—Co-evolutionary algorithms involve two co-evolving
populations, each having its own set of objectives and constraints,
that interact with each other during function evaluation. Co-
evolutionary algorithms are of great interest in cooperative and
competing games and search tasks in which multiple agents
having different interests are in play. Despite a number of single-
objective co-evolutionary studies, there has been limited interest
in multi-objective co-evolutionary algorithms. A recent study has
revealed that in addition to the challenges associated with the
development of an efficient algorithm, a proper understanding
of the conflicting objectives within a single population and their
interaction among objectives of the second population becomes
extremely difficult to comprehend. In this paper, we extend
the previous proof-of-principle multi-objective co-evolutionary
(MOCoEv) study in three important directions. First, we enhance
MOCoEv’s ability to handle mixed cooperating and conflict-
ing scenarios among different players. Second, we propose an
iterative multi-criterion decision-making (MCDM) approach to
demonstrate how, in an arms-race type scenario, the most appro-
priate solution can be selected from the obtained Pareto-optimal
solution set iteratively. Third, we extend the previous MOCoEv
algorithm with a many-objective evolutionary algorithm (NSGA-
III) to make them applicable to three or more objectives for each
player. These three developments reveal better insights about the
intricate issues related to multiple objectives and decision-making
for co-evolutionary optimization and take MOCoEv a step closer
to solving more complex multi-player problems.

Index Terms—Co-evolutionary algorithm, multi-objective
optimization,multi-criterion decision making, cooperative and
competitive co-evolution.

I. INTRODUCTION

Multi-agent games and search problems involve two or

more agents (or players). Computational methods to arrive at

suitable strategy for an agent to solve such tasks intricately

depends on the strategies of other agents. In terms of search

problems involving multiple agents, a solution of one agent

requires solutions of other agents before its objectives and

associated constraints can be evaluated. Thus, an evolution of

a population of solutions of one agent intricately depend on the

evolution of solutions of other populations. One of the ways to

tackle such problems is the use of co-evolutionary algorithms

[1]. We restrict our study here on a two-agent system involving

co-evolution of two interacting populations.

When a single objective (or criterion) is used to evolve

a population for each agent, the task is referred to as

”single-objective co-evolutionary (SoCoEv) algorithm”. The

objectives are usually different for different agents. While a

number of such studies exist [2], [3], consideration of multiple

conflicting objectives for each agent is an important aspect, but

has not been studied much. Some recent studies have focused

on obtaining objective trade-off solutions for multi-objective

games (MOGs) and have proposed solution concepts based

on rationality from game theory [4]–[7]. In these methods,

worst case performance, called anti-optimal fronts, are used

to evaluate and evolve rational strategies. These anti-optimal

fronts are later used for multi-objective decision making

(MCDM) [8]. Eisenstadt et al. proposed a co-evolutionary

method to solve for rational strategies in an MOG. Żychowski

et al. [9] proposed a memetic co-evolutionary method to solve

MOGs with expensive function evaluations using the nadir

point (worst case) as an aggregation method. Though these

methods show promising results, MOCoEv methods have not

been understood enough from the perspective of optimization

or decision making.
In an earlier study [10], we have referred to them as multi-

objective co-evolutionary (MOCoEv) algorithms. In MOCoEv

problems, each agent’s target is to find a set of Pareto-

optimal (PO) solutions, making a trade-off between two or

more conflicting objectives associated with the agent’s own

objectives. Due to linking of multiple populations, the PO

solutions of one agent will intricately depend on the PO

solutions of other populations, thereby making the search for

such PO solutions and clear understanding of their interactions

a challenge.
In this paper, we investigate and extend our earlier MOCoEv

algorithm, developed for two objectives for each agent using

NSGA-II [11], in three directions.

• First, we extend MOCoEv algorithm to tackle mixed

competing and cooperating scenarios. The previous study

considered competing scenario among objectives of both

populations. If one agent minimizes two objectives (f1
and f2), the second agent maximizes the same two

objectives or optimizes other objectives that produces

completely different PO solution set for the the first agent,

thereby creating a competing scenario. Here, we consider978-1-7281-8393-0/21/$31.00 ©2021 IEEE



a competing-cooperating scenario in which the second

agent may be interested in minimizing f1 (the same goal

as the first agent, or a function that requires similar PO

solutions of the first agent as companion PO solutions of

the second agent), but performs in a conflicting sense for

f2. The competing or cooperating scenarios will make a

change in the PO solutions.

• Next, we propose an iterative decision-making strategy

in which agents choose a strategy one after the other

in an iterative manner but strategies are chosen from

PO solutions obtained from the MOCoEv task. This will

simulate the arms race scenario or iterative strategies

usually involved in an attacker-defender system.

• Third, we extend MOCoEv’s ability to handle more than

two objectives for each agent by integrating an evolu-

tionary many-objective optimization algorithm (NSGA-

III [12]) within MOCoEv framework. Each of these

enhancements are demonstrated on a Tug of War problem

introduced in another study [4].

In the remainder of the paper, the two-objective MOCoEv

algorithm is introduced in brief in Section II. Three proposed

extensions of the MOCoEv algorithm and its working are

elaborated in Section III. Results of three extensions are

presented in Section IV. Finally, conclusions and certain future

studies are highlighted in Section V.

II. EXISTING MULTI-OBJECTIVE CO-EVOLUTIONARY

ALGORITHM (MOCOEV)

A typical multi-objective co-evolutionary problem can be

defined as:

Problem P1:

minx

(

f
(1)
1 (x,y), . . . , f

(1)
M1

(x,y)
)

,

s.t. g
(1)
j (x,y) ≤ 0, j = 1, . . . , J1,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , n1.

(1)

Problem P2:

miny

(

f
(2)
1 (x,y), . . . , f

(2)
M2

(x,y)
)

,

s.t. g
(2)
j (x,y) ≤ 0, j = 1, . . . , J2,

y
(L)
j ≤ yj ≤ y

(U)
j , j = 1, . . . , n2.

(2)

where, problems P1 and P2 deal with variable vectors x

and y of sizes n1 and n2, respectively. The objective and

constraint functions for Pi is given as f (i)(x,y) of size Mi

and g(i)(x,y) ≤ 0 of size Ji.
A MOCoEv algorithm consists of two interacting popula-

tions, each involving their own decision variables. This can

be viewed as two evolutionary algorithms running in parallel

where one population is evolved at a time. Each population

selfishly optimizes its own objectives with no control over the

other population’s variables. If the objectives of one population

conflict with each other, each population aims to obtain an

efficient trade-off solution set with best possible variables

which other population’s evolution will allow, thereby making

the multi-objective co-evolutionary algorithm development a

difficult and challenging task.

The populations are evolved one at a time in an iterative

manner. P1 is evolved for τ1 generations with P2 frozen.

Then, P2 is evolved for τ2 generations with P1 frozen. This

cycle continues up to T cycles. Each population’s evolution

process progresses typical to any multi-objective evolutionary

algorithm. Ni population members are initialized at random

and genetic operators are applied at every generation to

improve its own population. Survival operation is performed

based on objective trade-off values and constraints. In this

method, NSGA-II’s procedure was followed for this purpose,

but other EMO procedure can be followed as well.
At every generation, each population member needs a

member from the other population to evaluate any objective

or constraints. To circumvent this issue, every population

member is paired with every member of the other population

and aggregation functions are used to obtain a representative

objective vector for a population member. Once all the pairings

are evaluated, several aggregation methods can be applied.

One of the proposed aggregation methods is mean aggregation

fitness, where the mean function value along each objective

(i = 1, 2) is assigned as fitness for each population, as

described in 3 and 4.

F
(1)
i (x(k)) =

1

N2

N2
∑

l=1

f
(1)
i (x(k),y(l)), (3)

F
(2)
i (y(l)) =

1

N1

N1
∑

k=1

f
(2)
i (x(k),y(l)). (4)

Other aggregation functions, such as the best and the worst

objective value can also be used.
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Fig. 1. Co-evolutionary NSGA-II using aggregate fitness.

These aggregate fitness values can be used akin to a con-

ventional MOEA’s fitness values. NSGA-II based evaluation

procedure is shown in Figure 1. Here, points of each color are

members of P1 evaluated against all members of P2. The stars

represent the aggregate fitness that is used as a representative

vector for non-dominated (ND) sorting and crowding distance

based selection. For the minimization problem, the yellow and

blue stars form the ND front.

III. PROPOSED EXTENSIONS OF MOCOEV

Previous study was restricted to two objectives per popu-

lation and only competing objectives between the two popu-

lations. Moreover, decision-making with aggregation concepts



were used. Here, we propose necessary extensions to evaluate

the MOCoEv algorithm in a more comprehensive manner.

A. Mixed Cooperative-Competitive Scenarios

In a truly multi-objective problem, objectives are usually in

conflict, meaning that the optimal solution for one objective

is not usually the optimal solution for any other conflicting

objectives. This will cause a trade-off scenario among the

objectives, thereby leading the problem to have multiple PO

solutions [13], [14].

Careful thinking of our proposed MOCoEv algorithm re-

veals that no change in the algorithm is required, except to set

the objectives accordingly. Since MOCoEv is set to minimize

all objectives, the maximization objectives can be multiplied

by −1 and set as objectives. The rest of the algorithm should

take care of competing or cooperative scenarios and produce

resulting PO solutions. Care should be taken to interpret the

results.

B. Iterative Decision-making Among Two Populations

In the original study, we proposed two decision-making

principles: (i) pseudo-weight approach and (ii) minimum sen-

sitivity approach. In both approaches, a single preferred solu-

tion from each population is chosen based on two principles:

(i) the solution having the closest calculated pseudo-weight

vector from its own PO front to a supplied weight vector, or

(ii) the solution having smallest dispersion of PO solutions due

to all PO solutions of the second population. While many other

such static decision-making principles can be implemented for

the MOCoEv results, here we propose a sequential iterative

multi-criterion decision-making (MCDM) method, which can

be played in a dynamic manner. Similarly, a simultaneous

iterative MCDM method can also be applied.

In certain multi-agent systems, the choice of a solution by

one agent must depend on the solution chosen by the second

agent and this needs to be carried on iteratively. Such an

iterative decision-making (DM) is applicable for arms-race

type of problems or in problems in which each agent gets

multiple chances to control the system. We argue that in such

situations, while the choice by each player must change based

on the solution or strategy chosen by the second agent, the

choice can be restricted to only the obtained PO sets (PO(1)

and PO(2)) found by the MOCoEv algorithm. We describe the

procedure below.

For a given solution (say, θ
(t)
1 ∈ PO(1) of the P1 at iteration

t), the most preferred solution θ
(t)
2 of P2’s PO set can be

chosen at iteration t using any MCDM technique. Here, we

use two such techniques: (i) `2 weighted-metric method from

a supplied aspiration point, and (ii) weighted-sum method for

a given weight vector. The objective vectors f (2) are computed

for (θ
(t)
1 , θ2) vectors for which θ2 ∈ PO(2) and the MCDM

technique is used to choose the most preferred θ2. In the

next iteration (t + 1), this preferred θ
(t)
2 is kept fixed (as if,

the solution θ
(t)
2 is announced by agent 2), and the MCDM

technique is repeated to find the most preferred solution

θ
(t+1)
1 ∈ PO(1) by checking each θ1 solutions and keeping

θ
(t)
2 fixed. Next, we can keep θ

(t+1)
1 fixed and find the most

appropriate solution (θ
(t+1)
2 ) for the second population. The

process of finding preferred agent-wise solutions iteratively

can continue until the process converges to a single stable

solution for each population or a fixed number of iterations

have elapsed. If the process converges to single solution for

each population, the respective solution will be the stable

solution for the chosen MCDM technique.

To start the above iterative MCDM method at iteration 1,

the knowledge of θ
(0)
2 is needed. To simplify matter, we

can choose a random solution from P2’s PO set, or θ
(0)
2 =

random(PO(2)). Alternatively, the best pair for all combina-

tions of θ1-θ2 from both PO sets can be identified for the

chosen MCDM technique and use the respective θ2 as θ
(0)
2 .

C. Three-objective Coevolutionary Algorithm

We extend MOCoEv algorithm to handle three or more

(M ≥ 3) objectives by incorporating NSGA-III’s survival

procedure [12]. The algorithm is similar to the two objective

case except the survival operator. Instead of the crowding

distance metric from NSGA-II, we use the reference-direction

based survival operator of NSGA-III. Other niche preserving

operators (such as that used in MOEA/D [15]) tailored to a co-

evolutionary scenario can also be incorporated here. The rest

of the MOCoEv algorithm can stay the same. This process is

expected to generate a well-distributed set of PO solutions on

M -objective space for both populations.

IV. RESULTS

We demonstrate the efficacy of our proposed methods on the

Tug of War (ToW) problem [4], which is a highly intuitive

differential game. This two-player game consists of a mass

m placed on a horizontal friction-less plane, as shown in

Figure 2a. The players apply forces F1 and F2 at their

respective chosen angles θ1 and θ2, respectively, aiming to

minimize or maximize the Cartesian coordinates of the final

position of the mass, x1 and x2. Acceleration along axes are:

ẍ1 = [F1 cos(θ1) + F2 cos(θ2)]/m and ẍ2 = [F1 sin(θ1) +
F2 sin(θ2)]/m. Final position of the mass are: x1(t) = x1(0)+
ẋ1(0)t +

1
2 ẍ1t

2 and x2(t) = x2(0) + ẋ2(0)t +
1
2 ẍ2t

2. The

problem is simplified by assuming the forces F1 = F2 = 1N ,

mass m = 1kg and initial conditions x1(0) = x2(0) = 0
and ẋ1(0) = ẋ2(0) = 0. Each player only controls one

of the angles θ1 and θ2. The position after tf =
√
2 sec

is used to construct the objective functions with θ1 and θ2,

both in the range [0, 360]: x1(θ1, θ2) = cos(θ1)+ cos(θ2) and

x2(θ1, θ2) = sin(θ1) + sin(θ2).
Thus, according to our MOCoEv problem formulation, the

minimization objectives are given as follows:

P1 :f
(1)
1 (θ1, θ2) = x1(θ1, θ2), f

(1)
2 (θ1, θ2) = x2(θ1, θ2),

P2 :f
(2)
1 (θ1, θ2) = −x1(θ1, θ2), f

(2)
2 (θ1, θ2) = −x2(θ1, θ2).

(5)A. Cooperative and Competitive Scenarios

With two objectives for each population for the TOW

problem, there can be three scenarios possible. We describe

them and the obtained results in the following subsections.
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Fig. 2. Tug of War problem in 2D and 3D.

1) Competitive-Competitive scenario: Here, while P1 min-

imizes both objectives (x1 and x2), P2 maximizes them. This

competitive scenario described in Equation 5 was solved in the

previous study [10] and are reproduced here for completeness.

In the simulations, we used the population size N1 = 50

for P1 and N2 = 50 for P2, SBX crossover operator [16]

with ηc = 20 and pc = 0.5, and polynomial mutation with

ηm = 50, pm = 0.5 for both populations. The total number of

generations for each population is T = 50, and frequency of

each iteration τ1 = τ2 = 1. The mean aggregation fitness

function is used for both populations. The gray points in

Figures 3a and 3b show all final coordinates (or, objective

vectors) of the mass for all combinations of θ1 and θ2 for two

obtained PO sets Z(1) = PO(1) and Z(2) = PO(2).

The solid circles in Figure 3a are shown for a fixed θ1 and

all θ2 from Z(2). Using the pseudo-weight decision-making

approach for a target weight vector of (0.5, 0.5), we obtain a

specific θ1 = z(1) = 225.71 deg., which is used to mark the

solid circles. This indicates that when θ1 is fixed, the variation

in Z(2) makes the distribution of f
(1)
1 -f

(1)
2 as a concave front

for P1. For P2, we show the variation of θ1 on a fixed θ2 =
46.05 deg. (obtained by pseudo-weight approach) in Figure 3b

in solid triangles. It is clear that the distribution of f
(2)
1 -f

(2)
2

appears as a concave front for P2 as well.

We also presented in the original study an aggregate rep-

resentative PO front (Z(1) and Z(2)) for each population by

computing an average fitness given in Equations 3 and 4. A

pseudo-weight approach is then used to select one specific pair

(θ1 and θ2) with an equal weight vector (0.5, 0.5). The pseudo-

weight solutions are marked in a star and the corresponding

PO fronts for both populations are shown in blue circles and

red triangles, respectively, in Figure 3c. If the two populations

are solved independently (not in a co-evolutionary manner),

we shall obtain two different PO fronts, as shown in the figure

with solid and dashed lines. It is clear from the figure that the

co-evolutionary solutions are inferior and gets dominated by

the respective PO fronts of the individual problems.

2) Cooperative-Cooperative Scenario: In this case, both

agents P1 and P2 minimizes the same two objectives x1 and

x2. This reduces the overall co-evolutionary problem to a

standard two-objective optimization problem, except that two

variables are evolved separately. We are expected to achieve

the same PO fronts (Z(1) = Z(2)) for this case. We ran our

modified MOCoEv for the following problem formulation:

P1 :f
(1)
1 (θ1, θ2) = x1(θ1, θ2), f

(1)
2 (θ1, θ2) = x2(θ1, θ2),

P2 :f
(2)
1 (θ1, θ2) = x1(θ1, θ2), f

(2)
2 (θ1, θ2) = x2(θ1, θ2).

(6)

Figure 4 shows the obtained results. Here, z(i) represents a

specific solution from the PO front (Z(i)), where, i describes

the population at hand. As shown in Figure 4a, we observe

that the extent of objective values are identical to the individual

optimization case. The aggregate objective values are slightly

inferior to the individual fronts due to the averaging of

objectives according to Equations 3 and 4. Both individual PO

fronts are identical in this case due to the cooperative nature

of the two populations. Interestingly, for a fixed θ1 from P1,

the distribution of f
(1)
1 and f

(1)
2 for different θ2 points is now

convex, similar in nature to the PO front of P1. Recall that in

the competing-competing scenario, we achieved an opposite

relationship between Figures 3a and 3b.

The aggregate fronts and the pseudo-weight solutions

(points marked with stars) are slightly different for two popu-

lations, owing to finite generations of evolution. Ideally, they

are expected to be identical.
3) Competitive-Cooperative Scenario: In this scenario, the

second agent P2 is interested in minimizing x2 (the same goal

as the first agent P1) but maximizes x1 (conflicting with the

first agent):

P1 :f
(1)
1 (θ1, θ2) = x1(θ1, θ2), f

(1)
2 (θ1, θ2) = x2(θ1, θ2),

P2 :f
(2)
1 (θ1, θ2) = −x1(θ1, θ2), f

(2)
2 (θ1, θ2) = x2(θ1, θ2).

(7)

Figure 5 shows the two plots for this scenario. Figure 5a shows

all the combinations of θ1-θ2 solutions from two PO sets Z(1)

and Z(2). For a fixed θ1 from Z(1), the distribution of f
(1)
1

and f
(1)
2 for different θ2 points is different from the previous

two scenarios and is similar in nature to Z(2). A similar

observation can also be made from Figure 5a regarding a fixed

θ2 against all θ1. Figure 5b shows the aggregate PO fronts of

both populations and their individual fronts. The respective

pseudo-weight solutions for target weight vector of (0.5, 0.5)

are marked on this figure.

For the sake of brevity, we restrict the study to only a

few representative combinations of minimization and max-

imization objectives and expect similar solutions for other

combinations as well.

B. Iterative Decision-making on Tug-of-War Problem

Here, we consider the competing-competing scenario for

this study, however, the procedure can be repeated for any

other scenarios as well. We assume here that the PO sets Z(1)

and Z(2) are known before the decision-making task and we

use our proposed iterative DM method to pick solutions from

these two sets one by one.
1) Aspiration Points Approach: In this approach, each

agent chooses a solution closest to a supplied aspiration point

at the start of the decision-making process. For Case 1, we

use following aspiration points (−1,−1) and (1, 1) for P1 and

P2, respectively. At the first iteration (t = 1), we start with
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Fig. 3. Competing-competing scenario for TOW problem.

−2.0 −1.5 −1.0 −0.5 0.0

−2.0

−1.5

−1.0

−0.5

0.0
F(Z(1),Z(2))
F(z(1),Z(2))
F(Z(1), z(2))

(a) P1 and 2.

−2.0 −1.5 −1.0 −0.5 0.0

−2.0

−1.5

−1.0

−0.5

0.0
Z(1)

Z(2)

Indep. Z(1)

Indep. Z(2)

(b) Aggregate fronts for both populations.

Fig. 4. Cooperative-cooperative scenario for TOW problem.
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Fig. 5. Cooperative-competitive scenario for TOW problem.

the best θ
(0)
2 of all θ1-θ2 combinations corresponding to the

minimum Euclidean distance from P2’s given preferred point

(1, 1). Keeping this θ
(0)
2 fixed, we find the best θ

(1)
1 = 217.1

deg. that makes the respective objective vector closest to P1’s

preference point. Figure 6a shows this point as “P1 iter=1”

with a star. For keeping this θ
(1)
1 fixed, the respective variation

of θ2 from Z(2) causes the f
(2)
1 -f

(2)
2 distribution, as shown in

the figure in red triangles. The closest point to P2’s aspiration

point (1, 1) is the point marked as “P2 iter=1” in the figure.

The respective θ
(1)
2 = 41.5 deg. This completes the first

iteration of the proposed DM procedure.

In the second iteration, we keep θ
(1)
2 = 41.5 deg. fixed and

find the respective distribution of f
(1)
1 -f

(1)
2 points with Z(1)

points in Figure 6b, shown in blue circles. The closest θ
(2)
1 to

P1’s aspiration point (−1,−1) is shown as “P1 iter=2” in the

figure. Similarly, given P1’s most preferred point, P2’s most

preferred is found from the red triangles. The preferred point is

marked as “P2 iter=2” in the figure. It is interesting to note that

these two preferred points are closer together than they were in

Iteration 1. When one more iteration is executed, as shown in

Figure 6c, the two preferred points marked as “P1 iter=3” and

“P2 iter=3” correspond to the same θ1 and θ2 values, thereby

indicating a convergence has occurred and further iterations

will not change these solutions. Table I shows the progress

of iterative decision-making for this case, indicating that the

iterative process terminates after three iterations.
TABLE I
θ
(t)
1 AND θ

(t)
2 VALUES SELECTED AT EACH ITERATION OF PROPOSED

DECISION-MAKING METHOD. ALL ANGLES ARE IN DEGREES.

Iter Aspiration Method
Case 1 Case 2

P1’s Decision P2’s Decision P1’s Decision P2’s Decision

t θ
(t)
1 θ

(t−1)
2 θ

(t)
1 θ

(t)
2 θ

(t)
1 θ

(t−1)
2 θ

(t)
1 θ

(t)
2

1 217.1 26.2 217.1 41.5 212.6 29.3 212.6 47.4
2 223.5 41.5 223.5 42.7 221.5 47.4 221.5 51.4
3 223.5 42.7 223.5 42.7 223.5 51.4 223.5 52.6
4 – – – – 224.8 52.6 224.8 52.6

Iter Weighted-sum Method
Case 1 Case 2

P1’s Decision P2’s Decision P1’s Decision P2’s Decision

t θ
(t)
1 θ

(t−1)
2 θ

(t)
1 θ

(t)
2 θ

(t)
1 θ

(t−1)
2 θ

(t)
1 θ

(t)
2

1 198.2 0.0 198.2 70.7 214.3 90.0 214.3 20.0
2 198.2 70.7 198.2 70.7 214.3 20.0 214.3 20.0

In Case 2, we repeat the aspiration point method for another

pair of aspiration points for two populations: (-0.75, -0.55),

and (0.4, 0.8), respectively. This requires four iterations for

both populations’ decision-making to converge to an identical

stable solution. The progress is shown in Table I.
2) Weighted-sum Approach: Next, we use the well-known

weight-sum approach in which a solution from a PO set is

chosen using the minimum weight-sum of objectives for a

given weight vector. In Case 1, we use vectors (0.75, 0.25)
and (0.25, 0.75) for P1 and P2, respectively. Figures 7a and 7b

show the respective chosen solutions for each population and

Table I presents the θ1 and θ2 values. The process converges

to a set of stable weights in just two iterations.
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Fig. 6. Aspiration point based iterative decision-making method – Case 1.
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Fig. 7. Weighted-sum based iterative DM method – Case 1.

In Case 2, two different weight vectors (0.4, 0.6) and

(0.8, 0.2), for P1 and P2, respectively, are considered. Table

I show the progress and respective chosen solutions. It is

interesting that two iterations are enough for this case as well.

The iterative decision-making procedure proposed here for

multi-objective co-evolutionary optimization is generic and

can be aided with other MCDM approaches (such as, Tcheby-

shev or ASF metrics). Whether the problem allows an iterative

decision-making process in which each player changes its

solution like a two-player game or requires a solution to

be chosen upfront for implementation, the above iterative

procedure can be played and the final stable solution can be

chosen. For the chosen MCDM approach, when the agents

reach the stable solutions, they will have no further motivation

to change their solutions. Though the proposed method arrived

at stable solutions for the TOW problem, this may not be the

case with other complex problems. More analysis is necessary

to understand the dynamics of this method. One drawback of

this method is that the existing PO solutions cannot be used

for choosing solutions iteratively if the configuration of the

game changes.

C. Three-objective Co-evolutionary Optimization

Next, we apply our extended MOCoEv algorithm for a

three-objective problem by extending the 2-D Tug of War

game to have three-dimensional forces. The players aim to

minimize or maximize the final Cartesian coordinates of a

mass m by applying forces F1 and F2, as shown in Figure 2b.

The i-th player decides on the angles θ
(i)
1 – the angle the

force Fi makes from the x-axis while projected onto the x-y

plane, and θ
(i)
2 – the angle made by the force when measured

from the x-y-plane. The first angle is in the range [0, 360]
degrees and the second angle lies in [−90, 90] degrees. Similar

to the two-dimensional case, the forces are resolved along each

axis and final positions are computed. Forces are considered

constant with F1 = F2 = 1 N and mass m = 1 kg. The

problem is further simplified by assuming initial conditions

x1(0) = x2(0) = x3(0) = 0, ẋ1(0) = ẋ2(0) = ẋ3(0) = 0, and

total time tf =
√
2. Hence, objective functions are formulated

as follows:

x1(θ
(1),θ(2)) = cos θ

(1)
2 cos θ

(1)
1 + cos θ

(2)
2 cos θ

(2)
1 , (8)

x2(θ
(1),θ(2)) = cos θ

(1)
2 sin θ

(1)
1 + cos θ

(2)
2 sin θ

(2)
1 , (9)

x3(θ
(1),θ(2)) = sin θ

(1)
2 + sin θ

(2)
2 . (10)

Ideally, in a pure evolution of combined θ
(1) and θ

(2),

the minimization solutions of (x1, x2, x3) should satisfy

θ
(1)
1 ∈ [180, 270] deg and θ

(1)
2 ∈ [0,−90] deg. The respective

θ
(2) also would be in the same range. The final position of

the mass would be uniformly distributed in the negative octant

at a radius of 2 units. Similarly, for the maximization of (x1,

x2, x3), the final positions would be evenly distributed in the

positive octant at a radius of 2 units with θ
(2)
1 ∈ [0, 90] and

θ
(2)
2 ∈ [0, 90] and θ

(1) will also be in the same range. However,

due to co-evolutionary nature of the problem, in a competitive

setting, these final positions can never be achieved. Apart

from finding the locations for the competitive setting, we also

evaluate several combinations of cooperative and competitive

environments along with a fully cooperative environment.

In our simulations, we use a population size of N1 = N2 =
192, SBX crossover operator [16] with ηc = 20 and pc =
0.5, and polynomial mutation with ηm = 50, pm = 0.5 and

T = 150 generations for each population. Frequency of each

iteration τ1 = τ2 = 1 is used here. Das and Dennis method is

used for generating reference directions with 18 divisions. We

use pseudo-weight method to choose a solution from the PO

front similar to the 2D case [10]. All simulations are performed



with mean fitness aggregation. Similar study can be performed

with alternate aggregation functions as well.
1) All Competitive Environment: We first consider a fully

competitive environment, where P1 minimizes all three Carte-

sian coordinates, while P2 maximizes them.
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Fig. 8. Mean aggregation fitness PO solutions of two populations for all
competitive case.

PO front of mean aggregate fitness is shown in Figure 8.

We clearly see that the achieved solution is in compromise

between the two populations. PO front of each population

makes a clear trade-off in each objective. Similar to the 2D

case, the two PO fronts (surfaces here instead of curves)

overlap each other close to the origin. Both surfaces form

a convex front with respect to their objectives. Figure 11a

shows the final achieved θ
(1) and θ

(2) values. P1 achieves

θ
(1)
1 values roughly bounded between [180, 270] deg and θ

(1)
2

values roughly bounded between [−90, 0] deg, whereas P2

achieves θ
(2)
1 and θ

(2)
2 values bounded roughly between [0, 90]

and [0, 90] deg, respectively, as expected.
Decision making based on pseudo-weights with a target

weight vector of ([ 13 ,
1
3 ,

1
3 ]) yielded θ

(1) = [225.44,−33.59]

deg. for P1 and θ
(2) = [44.74, 37.18] deg. for P2. These points

are marked with green stars in Figure 8, which can be finally

selected as two compromise solutions for both populations.

The proposed iterative DM approach can also be used here.
2) Cooperative-Competitive Environments: Next, we con-

sider two cases for combined cooperative-competitive envi-

ronments. First, we consider a scenario where two objectives

(f2 and f3) are competitive and objective f1 is cooperative

between the two populations. The PO front of aggregate fitness

of this cooperative-competitive-competitive case is shown in

Figure 9. The PO front clearly shows that there is no com-

petition between the two population in x1 direction, leading

to identical range in f1. Both populations achieve minimum

values (−x1 direction) while x2 and x3 show a compromise.

Figure 11b shows the final achieved θ
(1) and θ

(2) values. For

P1, the obtained θ
(1)
1 values are bounded in the same range

as in the previous case (as P1 functions are not different form

previous case), but for P2, the obtained θ
(2)
1 values are now

bounded roughly in [90, 180] deg and θ
(2)
2 values are bounded

roughly in [0, 90] deg, due to the minimization of f
(2)
1 .

We apply the pseudo-weight approach with a target of

([ 13 ,
1
3 ,

1
3 ]) to choose a single solution from the mean aggrega-

tion PO front. The process finds the following ND solutions:

θ
(1) = [228.15,−34.75] deg for P1 and θ

(2) = [134.14, 34.02]
deg for P2. These points are marked on the PO fronts with

green stars. They seem to lie on the middle of the PO fronts,

ensuring equal priority for all three objectives. Importantly, a

cooperation of f1 between two populations increases θ
(2)
1 by

around 90 deg.

As the second case, we consider a cooperative-cooperative-

competitive environment where x1 and x2 are cooperative and

x3 is competitive between the two populations. We do not

show the PO fronts here for brevity, but the obtained solutions

are shown in Figure 11c.
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Fig. 9. Mean aggregation fitness PO solutions of two populations for
cooperative-competitive-competitive case.

3) All Cooperative Environment: Finally, we evaluate the

proposed method on a completely cooperative environment.

Here, both populations are aiming to minimize the coordinates

of the final position of the mass. Since there is no competition

here, the populations need to help each other to achieve their

respective optima. The mean aggregate fitness PO front is

shown in Figure 10. We can clearly see that both the PO fronts

are entirely in negative octant. Similar to 2D Tug of War case,

the two PO fronts are nearly identical to each other, supporting

the argument above. Both populations yield similar solutions:

θ
(i)
1 values bounded between [180, 270] deg and θ

(i)
2 values

bounded between [−90, 0] deg, as shown in Figure 11d.

The pseudo-weight solution with equal importance results

in a solution for P1 and P2 as [227.78,−32.46] deg and

[229.02,−36.92] deg, respectively. They are almost identical,

cooperating with each other to trying the take the mass towards

the negative octant. These points are marked on Figure 10 with

green stars.

It is also important to note that though this is a two-

variable problem, NSGA-III based MOCoEv does not yield

well distributed PO fronts. We believe this is due to the

pathology of co-evolution itself. At every evolution step,

the opponent has evolved and fitness values have changed

from previous generation. Previous fitness values close to the

reference line that were chosen may not lie close to the same

reference line now. With this ever-changing fitness landscape

and finite evolution steps, the points do not converge to their

respective reference lines. Further analysis of the convergence

of many-objective co-evolutionary methods is left for future

studies.
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Fig. 10. Mean aggregation fitness PO solutions of two populations for all
cooperative case.
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(c) Coop-coop-comp scenario.
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Fig. 11. θ values (in deg) of P1 and P2 for 3-D TOW problem.

V. CONCLUSIONS AND FUTURE STUDIES

In this paper, we have extended a previously proposed

multi-objective co-evolutionary (MOCoEv) algorithm in three

directions to make the approach more generic and applicable in

practice. First, we have proposed to handle mixed competing

and cooperative scenarios of objectives between two agents,

which may occur in a real-world scenario in which agents

may agree with each other on some objectives but differ on

others. We show that the co-evolutionary method is agnostic

to either cooperative or competing relationship between the

populations. Second, we have proposed an iterative decision-

making procedure in which agents restrict their choice from

the obtained PO solutions, but chooses one’s preference it-

eratively by knowing the solution chosen by the other. This

simulates the arms race or a game-playing scenario and the

goal is to arrive at a stable solution from which no agent is

interested in switching to any other solution. Third, we have

extended the MOCoEv approach to handle more then two

objectives by replacing the niche-preservation operator with

a recently-proposed many-objective EA (NSGA-III). Results

on different versions of the Tug of War problem show the

efficacy of each extension with illustrative figures and tables.

The originally proposed MOCoEv is now ready for appli-

cation to different multi-agent scenarios (i.e., two or more

objectives, mixed competing-cooperative scenarios, and static

or iterative decision-making strategies). The study now must

be extended to solve more complex multi-objective multi-

agent problems such as generative adversarial network (GAN)

design and other game and control system problems and be

compared to alternate methods like reinforcement learning.
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