
Towards Multi-objective Co-evolutionary
Problem Solving

Anirudh Suresh, Kalyanmoy Deb[0000−0001−7402−9939], and
Vishnu Naresh Boddeti[0000−0002−8918−9385]

Michigan State University, East Lansing, MI, USA
{suresha2,kdeb,vishnu}@msu.edu

Abstract. Co-evolutionary algorithms deal with two co-evolving pop-
ulations, each having its own objectives. The linking of the two pop-
ulations comes from the fact that the evaluation of the objective of a
member of the first population requires a companion member from the
second population, and vice versa. These algorithms are of great interest
in cooperative and competing games and search tasks in which multiple
agents having different interests are in play. While there have been sig-
nificant studies devoted to single-objective co-evolutionary optimization
algorithms and applications, they have not been paid much attention
when each population must be evolved for more than one conflicting
objectives. In this paper, we propose a multi-objective co-evolutionary
(MOCoEv) algorithm and present its working on two interesting prob-
lems. This proof-of-principle study suggests that the presence of multi-
ple Pareto solutions for each population and the ensuing multi-criterion
decision-making complexities make the MOCoEv research and applica-
tion be challenging. This paper should spur immediate further attention
to multi-objective co-evolutionary problem solving studies.

Keywords: Co-evolutionary algorithm ·multi-payoff game ·multi-objective
optimization · multi-criterion decision making.

1 Introduction

Many problems in practice, particularly in secure and trustworthy system de-
sign, must be considered from the point of view of two independent agents who
have either altruistic or adversarial interests [10]. Recent studies in generative
adversarial networks (GANs) [9] in computer vision literature in arriving at
deep neural networks (DNNs) for generating realistic fake images, or the dy-
namics of adversarial attacks [13] and defenses of DNNs are some examples.
Designing power systems, for example, from possible adversarial attacks require
a model of generating plausible attacks so that a better secured system can
be developed. Often, such a consideration leads to an ‘arms race’ in evolving
defender-and-attacker systems simultaneously. Another wide application of such
co-evolutionary system design is in multi-agent games [11].

These problems give rise to two inter-connected sub-problems, each having its
own decision variables (or strategies) which must be searched for a better combi-
nation to maximize a goal. A difficulty arises due to the fact that the evaluation

2 Suresh, Deb, and Boddeti

of the goal (or objective) requires a combination of both sub-problem’s decision
variables. Unfortunately, the second sub-problem’s decision variables cannot be
controlled by the first sub-problem and vice versa. Thus, these problems are usu-
ally posed as co-evolutionary optimization problems and two populations (one
dealing with each sub-problem) are evolved with a close interaction with each
other in an evolutionary framework [14]. Competitive co-evolutionary methods
have been used to solve single objective min-max problems [1]. Some recent
works have focused on finding the objective trade-offs for multi-objective games
(MOGs) and have proposed a new solution concept based on rational strategies
from game theory [6–8, 11]. Eisenstadt et al. [6] used co-evolution to compute
multiple rational strategies in an MOG. No efficient aggregate performance is
computed to reduce the cardinality of the final solution set, but an elaborate
multi-objective decision making (MCDM) approach [5] is used to choose the de-
sired solutions. Żychowski et al. [15] used memetic co-evolution to solve MOGs
using the nadir point (worst case) as the representative vector of rational fronts.

Despite all these studies, co-evolutionary frameworks have not been stud-
ied enough for optimizing multiple conflicting objectives efficiently at each sub-
problem. Considering multiple conflicting objectives in a co-evolutionary frame-
work introduces a number of challenges. First, each sub-problem must find a
set of Pareto-optimal (PO) solutions optimizing its own objectives well. This
requires a widely diverse population to be maintained at each sub-problem
throughout the optimization process. This calls for developing efficient method-
ologies for computing aggregate fitness vectors that would emphasize survival of
a diverse population. Second, the final PO solutions from each sub-population
must be analyzed using a multi-criterion decision-making approach and decision-
makers’ preferences to pick a single preferred solution. We address all the above
concerns in this paper.

In the remainder, we define a multi-objective co-evolutionary (MOCoEv)
problem in Section 2 by highlighting the challenges they introduce to any algo-
rithm. Then, in Section 3, we present our proposed MOCoEv algorithm in detail.
Two multi-criterion decision-making (MCDM) approaches are discussed in this
section. Results on two problems are presented in Section 4. Finally, conclusions
are discussed in Section 5.

2 Multi-objective Co-evolutionary Problems
Without loss of generality, we consider two co-evolving problems in this study.
Problems P1 and P2 deal with variable vectors x and y of sizes n1 and n2 ,
respectively. The objective and constraint functions for Pi is given as f (i)(x,y)
of size Mi and g(i)(x,y) ≤ 0 of size Ji. The optimization problem formulation
is given below (for simplicity, we do not consider equality constraints here):

Problem P1 Problem P2

minx

(
f
(1)
1 (x,y), . . . , f

(1)
M1

(x,y)
)
,

s.t. g
(1)
j (x,y) ≤ 0, j = 1, . . . , J1,

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, . . . , n1.

(1)

miny

(
f
(2)
1 (x,y), . . . , f

(2)
M2

(x,y)
)
,

s.t. g
(2)
j (x,y) ≤ 0, j = 1, . . . , J2,

y
(L)
j ≤ yj ≤ y(U)

j , j = 1, . . . , n2.

(2)

Towards Multi-objective Co-evolutionary Problem Solving 3

It is expected that the objectives of each problem are in conflict with each
other, thereby resulting in its own Pareto-optimal (PO) solutions. However, since
each objective function of a Problem depends on a variable vector of the other
Problem, each multi-objective optimization problem cannot be optimized inde-
pendently. In other words, if we ignore P2, and optimize P1 alone by including y
in its variable set, the resulting PO front is expected to be better than the PO
front of the above MOCoEv problem P1. The same is true for the independently
optimized P2 as well. The solution consists of PO front for each problem, with
choices and objective preferences of the other problem unknown. This necessi-
tates the use of a co-evolutionary search and optimization algorithm to solve
such inter-linked problems and find a compromised PO front for each problem
simultaneously, which is the focus of this paper.

2.1 Cooperative and Competing Problems

Let us first consider that there is a single objective function for each prob-
lem. Thus, Problem 1 will correspond to a single optimal solution z(1),∗ =
(x(1),∗,y(1),∗) and Problem 2 will correspond to another optimal solution z(2),∗ =
(x(2),∗,y(2),∗). If these two solutions are exactly the same (or close to each other
in their respective variable spaces), a co-evolutionary framework will work in a
cooperative manner, thereby making the problem relatively easier to solve.

On the other hand, if these two optimal solutions are distant in their respec-
tive variable spaces, a standard co-evolutionary framework (which emphasizes its
own variables only based on its performance on its own objective and constraint
functions) must preserve population members close to each of these optima. Pop-
ulation 1 has no motivation to preserve points close to z(2),∗, since its goal is

to minimize f
(1)
1 with its constraints, and Population 2 has no motivation for

saving solutions close to z(1),∗. It is clear that to solve competing problems, the
survival of solutions in each population must also consider the importance of its
own variables in the other population.

For multi-objective co-evolutionary problems, Population 1 will correspond
to a set of PO solutions (Z(1) = (z(1),i, i = 1, . . . , N1)). Similarly, Population 2

will correspond to another set of PO solutions (Z(2) = (z(2),i, i = 1, . . . , N2)).
In a cooperative MOCoEv problem, these two sets are expected to be close to
each other in their respective variable spaces and in a completely competing
MOCoEv problem, the two sets are expected to be far away from each other.
However, in a generic case, it is expected that the two sets will have some common
solutions and some other solutions that are different from each other. To find and
maintain two sets of solutions, each population must, not only emphasize its own
best solutions, but also must emphasize its own solutions corresponding to good
solutions of the other population. This co-evolutionary problem is different from
a traditional many-objective problem with objectives from both populations.
In the many objective problem, the solution would involve explicit trade-off
between objectives of each population. However, in the co-evolutionary problem,
the objectives of the two populations implicitly reach a compromise that helps in
achieving a selfish trade-off amongst each population’s own objectives. Next, we

4 Suresh, Deb, and Boddeti

present a new multi-objective co-evolutionary algorithm based on a well-known
EMO algorithm – NSGA-II [4].

3 Proposed Multi-Objective Co-evolutionary (MOCoEv)
Algorithm

In an MOCoEv algorithm, there are two interacting populations each containing
its own decision variables. Like in other evolutionary algorithms, initial popu-

lations Pop
(0)
1 and Pop

(0)
2 of two problems can contain random solutions x and

y of sizes N1 and N2, respectively. At iteration t, genetic operations can be

performed on Pop
(t−1)
1 as usual using its own objectives and constraints and a

new population Pop
(t)
1 can be obtained. Here, we follow the NSGA-II’s opera-

tions for this purpose. A total τ1 iterations can be continued as above before the
next population is updated for a consecutive τ2 iterations. Then, again Popula-
tion 1 can be updated for another τ1 iterations. This process can continue until
a termination condition is satisfied. For simplicity, we ignore constraints in pre-
senting our proposed algorithm. A pseudo-algorithm of the MOCoEv procedure
is presented in Algorithm 1.

Algorithm 1: Proposed multi-objective co-evolutionary algorithm.

Input: Population sizes N1 and N2 for Pop1 and Pop2, number of generations
T , number of generations of each population τ1 and τ2

Output: Final populations Pop
(T)
1 and Pop

(T)
2

Initialize populations Pop
(0)
1 and Pop

(0)
2

for gen = 0 to T or another termination condition not satisfied do

Pop
(0)
1 = Pop

(gen)
1 , Pop

(0)
2 = Pop

(gen)
2

for t = 1 to τ1 do

Generate offspring Q
(t)
1 for Pop

(t−1)
1 using selection and variation

operators

Merge and redefine Pop
(t)
1 = Pop

(t−1)
1 ∪Q(t)

1

Evaluate Pop
(t)
1 with all members of Pop

(gen)
2

Survive elite population of Pop
(t)
1 of size N1

end

Pop
(gen)
1 = Pop

(t)
1

for t = 1 to τ2 do

Generate offsprings Q
(t)
2 for Pop

(t−1)
2 using selection and variation

operators

Merge and redefine Pop
(t)
2 = Pop

(t−1)
2 ∪Q(t)

2

Evaluate Pop
(t)
2 with all members of Pop

(gen)
1

Survive elite population of Pop
(t)
2 of size N2

end

Pop
(gen)
2 = Pop

(t)
2

end

Towards Multi-objective Co-evolutionary Problem Solving 5

However, there is a complication in the evaluation process which we discuss

next. For evaluating a single population member x(1),i of P
(t)
1 , we need a spe-

cific variable vector y from the second population. This is where a number of
strategies can be adopted in an MOCoEv algorithm. We consider three ways to
evaluate a solution:

1. Mean Aggregate Fitness: Population member x(1),k is paired with every
member y(2),l of the second population one at a time and objectives are eval-
uated. Then, a mean fitness value of i-th objective function of Population 1
is computed as follows:

Fi(x
(1),k) =

1

N2

N2∑
l=1

fi(x
(1),k,y(2),l). (3)

Figure 1 illustrates the procedure for a specific solution in the first population
for the entire population members of the second population. Similarly, the
fitness of each member of the second population can also be computed by
averaging the respective objective values over all Population 1 members.
Note that instead of considering all N2 population members as above, the
equation can be used for non-dominated solutions of the second population
only. This would be particularly useful for cooperative MOCoEv problems.

2. Best Aggregate Fitness: Instead of the mean value, the best objective
value can be assigned as a fitness: Fi(x

(1),k) = minN2

l=1 fi(x
(1),k,y(2),l). This

is useful for a greedy evaluation of a solution, if desired in a problem. Figure 1
shows the best aggregate fitness value.

3. Worst Aggregate Fitness: The worst objective value can be assigned
as a fitness: Fi(x

(1),k) = maxN2

l=1 fi(x
(1),k,y(2),l). Figure 1 shows the worst

aggregate fitness value. This will be particularly suitable for a pessimistic
(conservative) evaluation of a solution, if suitable for a problem. For example,
in min-max problems, this can be an effective aggregation function.

After the aggregate fitness function for each objective is computed by using one
of the above strategies, they can be used for domination check and other niche-
preserving operator of the EMO algorithm. Consider Figure 2, in which the non-
domination evaluation procedure using the mean aggregate fitness function is
illustrated for Population 1. Every member is evaluated for both F1 and F2 using
member of the second population. Then, the mean fitness vector is computed
(shown with a star) for each member and is used for domination check. For the
shown example, yellow and blue colored points of Population 1 belong to the
first non-dominated (ND) front, followed by the brown point in the second ND
front. The crowding distance values for each member is also computed using
the aggregate fitness values. Thus, the final trade-off set of solutions of each
population (Z(1) and Z(2)) will correspond to non-domination principle of the
chosen aggregate fitness functions.

3.1 Multi-Criterion Decision Making in MOCoEv Problems

The next step in a multi-objective optimization problem solving task is to choose
a single preferred solution based on decision-maker’s preferences. There exist a

6 Suresh, Deb, and Boddeti

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
f1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

f 2

mean

best

worst

Fi(x(1), k, Pop2)

Fig. 1: Three aggregation procedures.

!"#$%&'(")*+

!"#$%&'(")*,

-!
"#$

-#
"#$

./%/0'/1*2&3/1*")*45*3"6'()7*

&)1*06"81()7*1(3'&)0/

Fig. 2: Non-dominated sorting using
mean aggregate fitness values.

number of methods in the multi-criterion decision-making (MCDM) literature
[12] for this purpose. Here, we discuss a few MCDM methods, specifically adapted
for solving MOCoEv problems. Note that a decision-making process for choosing
a preferred solution for Population 1 must now involve likely decision-making in
the second population and vice versa.

Pseudo-weight Approach: From the obtained ND set of i-th population, a
pseudo-weight vector [2] can be computed for k-th member (x(i),k) using the
aggregate fitness function considered during the optimization process:

w(i),k
m =

(
F

(i),max
m − Fm(x(i),k)

)
/
(
F

(i),max
m − F (i),min

m

)
∑Mi

m=1

(
F

(i),max
m − Fm(x(i),k)

)
/
(
F

(i),max
m − F (i),min

m

) , ∀m = 1, . . . ,Mi,

(4)

where F
(i),min
m and F

(i),max
m are the minimum and maximum fitness values of the

final ND members of the i-th population, respectively. The pseudo-weight vec-

tor (w
(i),k
1 , . . . , w

(i),k
Mi

) for k-th member of i-th population indicates the relative
importance of each objective in the span of the entire ND set of the population.
Thereafter, the member (x(i),T) which has the pseudo-weight vector closest to

a desired preference vector d = (f
(i),T
1 , . . . , f

(i),T
Mi

) is chosen for the i-th popula-
tion. For two-population coevolution, the interaction between two populations
in arriving at the final preferred solutions (x(1),T and y(2),T) come from the
aggregation used during the optimization process. The same can also be applied
to Population 2 members.

Minimum Sensitivity Approach: Another pragmatic decision-making (DM)
approach is proposed here. When a specific ND solution is chosen for Popula-
tion 1 for implementation, there is a distribution of the fitness vector caused by
the presence of different ND solutions at the final generation of Population 2.
Thus, one DM idea would be to pick that solution from Population 1 which
makes the tighter distribution in the resulting fitness vectors. One way to com-
pute the extent of distribution would be to compute the normalized average
distance of every objective vector from the mean objective vector:

x(1),∗ = argminN1

k=1

1

N2

N2∑
l=1

‖F(1)
mean(x(1),k),F(x(1),k,y(2),l)‖2, (5)

Towards Multi-objective Co-evolutionary Problem Solving 7

where ‖ · ‖2 is the normalized Euclidean distance measure and F(1)
mean(x(1),k)

is the mean fitness vector of ND solution x(1),k. There are other well-known
DM approaches [12], such as, the trade-off method, compromise programming
approach, which can also be used.

The above approaches can be made more pragmatic by assuming scenarios in
which the DM information for the second population (say, the hacker’s problem)
is guessed from their past practices and are available. We can simulate this
scenario by choosing a specific set of neighboring ND solutions (Z(2),S) from
Population 2’s final ND set. The defender’s (Population 1) DM task will then be
to choose a single preferred solution that is most appropriate to the likely chosen
solutions of Population 2. One of the above procedures can be repeated using the
neighboring ND solutions of Population 2, instead of the entire population. An
advantage of first finding multiple Pareto strategies is that an iterative decision-
making procedure can choose the most appropriate strategy from the obtained
Pareto sets, thereby allowing an online and computationally fast procedure for
choosing multi-objective co-evolutionary results.

4 Results
We consider two example problems to demonstrate the effectiveness of the pro-
posed algorithm. We first consider an existing problem – Tug of War – as a proof-
of-concept result and thereafter apply our MOCoEv algorithm and decision-
making approaches to a numerical problem.

4.1 Tug-of-War Problem

m

!1

!2

F1

x1

x2
F2

Fig. 3: Tug of war problem.

Tug-of-war is a differential game proposed in [6]. It
is a two player, non-cooperative, imperfect infor-
mation game with one decision variable for each
player. The game consists of a mass m placed on a
friction-less horizontal 2-dimensional plane, shown
in Figure 3. Player 1 applies a force F1 at an an-
gle x = θ1 and Player 2 applied F2 at an angle
y = θ2 aiming to move the mass. The players aim
to maximize or minimize the resulting Cartesian
coordinates of the mass, mx and my.

Forces and acceleration are considered constants. Acceleration along axes are:
ẍ1 = F1 cos(θ1) + F2 cos(θ2) and ẍ2 = F1 sin(θ1) + F2 sin(θ2). Final position of
the mass are: x1(t) = x1(0) + ẋ1(0)t+ 1

2 ẍ1t
2 and x2(t) = x2(0) + ẋ2(0)t+ 1

2 ẍ2t
2.

To simplify the problem, initial conditions are assumed as x1(0) = x2(0) = 0 and
ẋ1(0) = ẋ2(0) = 0. F1 = F2 = 1N and m = 1kg are assumed. The position after
tf =

√
2 sec is used to construct the objective functions with x = θ1 and y = θ2,

both in the range [0, 2π]: mx(x, y) = cos(x) + cos(y) and my(x, y) = sin(x) +
sin(y). Thus, according to our MOCoEv problem formulation, the minimization
objectives are given as follows:

f
(1)
1 (x, y) = mx(x, y), f

(1)
2 (x, y) = my(x, y),

f
(2)
1 (x, y) = −mx(x, y), f

(2)
2 (x, y) = −my(x, y).

8 Suresh, Deb, and Boddeti

It is clear that f
(1)
i and f

(2)
i are in conflict with each other. To achieve

minimum coordinate values in Population 1, variable θ1 is expected to lie within
[π, 1.5π], ideally with θ2 values also in the same range. However, variable θ2 lying
in [0, π/2] is expected to be optimal for Population 2, ideally with θ1 values also
in the same range. In these independent cases, θ1 = θ2 for all PO solutions of
each population and the respective PO front will lie on the third quadrant of
a circle of radius 2.0 for Population 1 and on the first quadrant of the same
circle for Population 2. However, since neither of these ranges is optimal for the
other population, the PO front for each population of the MOCoEv problem will
be compromised from these idealized fronts, as we shall demonstrate with our
results.

In our simulations, we use a population size of N1 = N2 = 50, SBX crossover
operator [3] with ηc = 20 and pc = 0.5, and polynomial mutation with ηm = 50,
pm = 0.5 and T = 50 generations for each population. Frequency of each iteration
τ1 = τ2 = 1 is used here. We use the mean aggregation fitness function for both
populations. The gray points in Figure 4a show all final x-y positions of mass for
each solution of Z(1) evaluated with every solution from Z(2). The distribution
of the mass position for a specific solution (θ1 = 225.71 deg), lying in the middle
of the PO front of Population 1, occurs due to a spread in the second population
θ2 solutions, as shown by the dark colored circles. For this specific θ1 in the third
quadrant, several θ2 values in the first quadrant creates a range of PO solutions.
Similarly, in Figure 4b, we show distributions of each θ2 from Population 2 for
every θ1 from Population 1. For a specific θ2 = 46.05 deg, the respective PO
front is shown in dark color. These two figures make it clear that by keeping a
good distribution of θ1 values in the third quadrant and θ2 values in the first
quadrant, both populations can achieve a compromise PO front for each player.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
f1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

f 2

F(Z(1),Z(2))
F1(z(1),Z(2))

(a) Population 1.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
f1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

f 2

F(Z(1),Z(2))
F(Z(1), z(2))

(b) Population 2.

Fig. 4: Final positions of mass for PO solutions of two populations.

Figure 5a shows the θ1 and θ2 of the final populations. It can be seen that
they lie in third and first quadrant, respectively, with a good uniform spread. Fig-
ure 5b shows the PO front with the mean fitness values for each population. The
compromise of these two fronts from their idealized independent fronts (shown
in red and blue colors) to achieve each population’s effect on each other is very

Towards Multi-objective Co-evolutionary Problem Solving 9

clear from this figure. Population 1 mean fitness values are worse than the in-
dependent P1 PO front, as a co-evolutionary P2 optimization does not allow
independent P1 front to survive. These results are similar to that in [6].

1θ

2θ

 0

 250

 300

 50

V
ar

ia
b

le
 V

al
u

es
 (

d
eg

)

Pop Member

 1 10 5 15 20 25 35 30 40 45

 150

 100

 50

 200

(a) PO solutions in x and y space.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
f1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

f 2

A

B

Z(1)

Z(2)

Indep. Z(1)

Indep. Z(2)

(b) PO fronts of both populations with mean ag-
gregate fitness.

Fig. 5: Final solutions for the tug-of-war problem.

4.2 Decision-making for Tug-of-war Problem

Figure 5b represents the PO front with respect to the mean performance. These
points can be used to choose a preferred point when the opponent’s choice is
unknown. If we desire to choose a point from the PO front that has pseudo-
weight (according to Equation 4) close to (0.5, 0.5) (having equal importance to
both objectives) for both the populations, points marked with a star are points
in Populations 1 and 2, respectively: θ1 = 225.71 deg, θ2 = 46.05 deg. They
seem to lie in the middle of each PO front, ensuring an equal importance to each
objective. The dark colored points used in Figure 4 used these points as well.

4.3 Numerical Problem NP

Next, we design a two-objective numerical problem for each of two populations
which must be solved in a co-evolutionary manner. Problem 1 involves three
variables and Problem 2 involves two variables: For P1:

f
(1)
1 (x,y) = x21 + x22 + x23 + y21 , f

(1)
2 (x,y) = −(x1 + x2)y1 + 10y2 + x23,

f
(2)
1 (x,y) = x21 + x22 − x23 + y21 , f

(2)
2 (x,y) = −(x1 + x2)y1 + 10y2 − x23,

where, −20 ≤ (x1, x2, x3) ≤ 20; 0.5 ≤ (y1, y2) ≤ 4. The objectives of P1 needs to
be minimized and P2 needs to be maximized. Identical parameter setting to that
in the tug-of-war problem is used here. One aspect is clear: since x3 comes as a
positive quadratic form in P1 and in negative quadratic form in P2, it is intuitive

that x3 = 0 will for all PO solutions. With x3 = 0, f
(1)
i = f

(2)
i (for i = 1, 2), but

since P1 and P2 objectives are to minimized and maximized, respectively, they
will provide a competing scenario within the MOCoEv optimization. Moreover,

smaller absolute values of x1 and x2 will be better for f
(1)
1 , but worse for f

(1)
2 ,

thereby indicating that each problem will constitute a PO front.

10 Suresh, Deb, and Boddeti

First, the mean fitness aggregation is used for both populations. Figure 6a
displays mean fitness values of each population computed with all members
of the other population. The distribution of mean fitness values of a specific
x(1) = (12.6201, 12.2150, 0.0230) due to variation in Z(2) is marked with dark
colored circles. A similar plot is shown in Figure 6b with y(2) = (2.5714, 3.9999).
In Figure 6a, every near-vertical line describes evaluation of a specific member

0 100 200 300 400 500 600 700 800
f(1)1

−120

−100

−80

−60

−40

−20

0

20

40

f(1
)

2

F1(Z(1),Z(2))
F1(z(1),Z(2))

(a) Population 1.

0 100 200 300 400 500 600 700 800
f(2)1

−120

−100

−80

−60

−40

−20

0

20

40

f(2
)

2

F2(Z(1),Z(2))
F2(Z(1), z(2))

(b) Population 2.

Fig. 6: Evaluation score of middle point of Pareto front and all evaluations of
Generation 50. Optimized using mean performance.

of Population 1 and all members of Population 2. It is observed that all PO
solutions of both populations, y2 = 4 (upper bound). This variable is directly

controlled by P2. Since a higher value of y2 makes f
(2)
2 better and y2 does not

appear in f
(2)
1 , our MOCoEv decides to fix y2 at its maximum allowable value. We

also observe that y1 values are distributed among population members within

its entire range [0.5, 4.0]. Since y1 makes a trade-off between f
(2)
1 and f

(2)
2 as

shown in their expressions, it is also expected, provided the term (x1 + x2) is
non-negative. Since P1 controls the x-vector, it is clear that a positive value of
(x1 +x2) will dominate a negative value. we observe that both x1 and x2 is well
distributed within [0, 20]. With the above details, it is clear that the limits of

f
(1)
1 on the PO front will be [0.52, 202 + 202 + 42] or [0.25, 816], which matches

with the figure. On a similar effort, f
(1)
2 lies in [−120, 40].

The PO front with the mean aggregation fitness functions is shown in Fig-
ure 7a. The respective PO front for Population 2 is shown in Figure 7b with
black circles. Despite a near-vertical nature of the fitness values, there exists a
trade-off in these points.

To compare the PO fronts with the best and worst fitness aggregation func-
tions, we rerun MOCoEv algorithm with identical parameter setting and present
the final points in Figure 7. It is clear that the mean aggregation fitness vec-
tors are sandwiched in between the best and worst aggregation fitness vectors.
It is interesting that when best case aggregation fitness is used, Population 2
converges to a single solution. It can be seen from Figure 6b that the maximum

f
(2)
2 is always 40 for all y-vectors. The value comes from 10y2 term only in f

(2)
2 ,

thereby choosing the x1 = x2 = 0 solution from P1 and by forcing y1 = 4 to

maximize f
(2)
1 .

Towards Multi-objective Co-evolutionary Problem Solving 11

0 100 200 300 400 500 600 700 800
f(1)
1

−120

−100

−80

−60

−40

−20

0

20

40

f(1
)

2
A

B

Mean aggregate fitness
Best aggregate fitness
Worst aggregate fitness

(a) Population 1 PO fronts.

0 100 200 300 400 500 600 700 800
f(2)
1

−120

−100

−80

−60

−40

−20

0

20

40

f(2
)

2

C

D

Mean aggregate fitness
Best aggregate fitness
Worst aggregate fitness

(b) Population 2 PO fronts.

Fig. 7: PO fronts for the numerical problem NP.

4.4 Decision-making for Problem NP

First, we apply the pseudo-weight approach to a single preferred solution from
both populations. Equation 4 is used to compute pseudo-weight vector and
compared with a desired weight vector of (0.5,0.5). The process finds the fol-
lowing ND solutions from two populations: x(1) = (12.6201, 12.2150, 0.0230),
y(2) = (2.5714, 3.9999). This point is marked as A and C on the mean aggrega-
tion fitness plots in Figure 7.

Next, we follow the minimum sensitivity approach and finds solutions B and
D as the most preferred ones for two problems. The solutions are given as:
x(1) = (−0.2155,−0.1699, 0.0231), y(2) = (0.5003, 3.9999). and also marked in
mean aggregate fitness plot in Figure 6a. It is clear that this happens for the

minimum f
(1)
1 solution.

The above shows how a systematic approach of starting with finding a num-
ber of PO solutions using the proposed MOCoEv algorithm and then using a
decision-making strategy to choose a single preferred solution can be obtained
in a multi-objective co-evolutionary problem.

5 Conclusions
This paper has dealt with developing a multi-objective co-evolutionary (MO-
CoEv) optimization algorithm involving two interacting populations co-evolving
for more than one conflicting objectives of their own. The motivation for pursu-
ing this study has stemmed from recent surge in interests in solving adversarial
network design problems and ‘arms-race’ problems which involve a defender and
an attacker who clearly have more than one goals of protecting and harming a
system. The proposed MOCoEv algorithm is applied on two proof-of-principle
problems. The first problem is an existing two-player game with a clear idea of
compromised strategies. The second problem is a numerical problem, developed
in this study, to also test proposed MOCoEv algorithm’s performance on ex-
plainable outcomes. In addition, we have proposed two multi-criterion decision-
making principles which can be applied to a MOCoEv problem to eventually
choose a single preferred solution for each population. Extended methods have
also been suggested to demonstrate how a preferred solution can be chosen when
some knowledge of decision-making of the second population is available, to
make the approach more pragmatic. Future research could investigate scalable
test problems and potential performance metrics for this class of problems.

12 Suresh, Deb, and Boddeti

To the best of our knowledge, this study stays as one of the few studies on
simultaneous multi-objective solution of co-evolutionary problems. Our results in
this paper have shown that MOCoEv problem solving is quite a challenging task,
but extensions of evolutionary multi-objective optimization methods may make
MOCoEv problem solving tractable and attractive. The proposed algorithm can
now be applied to GAN, MOGs, and other co-evolutionary problems.

References

1. Barbosa, H.J.C.: A genetic algorithm for min-max problems. In: Proceedings of the
First International Conference on Evolutionary Computation and Its Application
(EvCA’96). pp. 99–109 (1996)

2. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chich-
ester, UK (2001)

3. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Systems 9(2), 115–148 (1995)

4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (2002)

5. Eisenstadt, E., Moshaiov, A.: Decision-making in non-cooperative games with con-
flicting self-objectives. Journal of Multi-Criteria Decision Analysis 25(5-6), 130–
141 (2018)

6. Eisenstadt, E., Moshaiov, A., Avigad, G.: Co-evolution of strategies for multi-
objective games under postponed objective preferences. In: 2015 IEEE conference
on computational intelligence and games (CIG). pp. 461–468. IEEE (2015)

7. Eisenstadt-Matalon, E., Avigad, G., Moshaiov, A., Branke, J.: Rationalizable
strategies in multi-objective games under undecided objective preferences (2016)

8. Eisenstadt-Matalon, E., Moshaiov, A.: Mutual rationalizability in vector-payoff
games. In: International Conference on Evolutionary Multi-Criterion Optimization.
pp. 593–604. Springer (2019)

9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems 27, pp. 2672–2680. Curran Asso. (2014)

10. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimiza-
tion. IEEE Transactions on Evolutionary Computation 16(2), 210–224 (2012)

11. Matalon-Eisenstadt, E., Moshaiov, A., Avigad, G.: The competing travelling sales-
persons problem under multi-criteria. In: International Conference on Parallel
Problem Solving from Nature. pp. 463–472. Springer (2016)

12. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
13. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High

confidence predictions for unrecognizable images. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (2015)

14. Paredis, J.: Coevolutionary constraint satisfaction. In: Parallel Problem Solving
from Nature III (PPSN-III). pp. 46–55 (1994)

15. Żychowski, A., Gupta, A., Mańdziuk, J., Ong, Y.S.: Addressing expensive multi-
objective games with postponed preference articulation via memetic co-evolution.
Knowledge-Based Systems 154, 17–31 (2018)

