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Abstract

We present a general learning-based solution for restor-
ing images suffering from spatially-varying degrada-
tions. Prior approaches are typically degradation-specific
and employ the same processing across different images
and different pixels within. However, we hypothesize
that such spatially rigid processing is suboptimal for si-
multaneously restoring the degraded pixels as well as re-
constructing the clean regions of the image. To overcome
this limitation, we propose SPAIR, a network design that
harnesses distortion-localization information and dynami-
cally adjusts computation to difficult regions in the image.
SPAIR comprises of two components, (1) a localization net-
work that identifies degraded pixels, and (2) a restoration
network that exploits knowledge from the localization net-
work in filter and feature domain to selectively and adap-
tively restore degraded pixels. Our key idea is to exploit
the non-uniformity of heavy degradations in spatial-domain
and suitably embed this knowledge within distortion-guided
modules performing sparse normalization, feature extrac-
tion and attention. Our architecture is agnostic to physi-
cal formation model and generalizes across several types
of spatially-varying degradations. We demonstrate the ef-
ficacy of SPAIR individually on four restoration tasks- re-
moval of rain-streaks, raindrops, shadows and motion blur.
Extensive qualitative and quantitative comparisons with
prior art on 11 benchmark datasets demonstrate that our
degradation-agnostic network design offers significant per-
formance gains over state-of-the-art degradation-specific
architectures.

1. Introduction

Images are often degraded during the data acquisition
process, especially under non-ideal imaging conditions.
Such degradations can be attributed to the medium and dy-
namics between the camera, scene elements and the illu-
mination. For instance, as shown in Fig. 1 , (1) precipi-
tation leads to snow/rain streaks occupying the volume be-
tween the scene and the camera, (2) presence of rain-drops
on the camera lens causes significant degradation in scene

Figure 1. Visualization of degradation masks. The two rows show
degraded input images and corresponding predicted masks.

visibility, (3) relative motion between the camera or scene
elements results in motion blur, and (4) harsh illumination
conditions can induce harsh shadows. Despite the disparate
source of degradations, they share the same underlying mo-
tif that affects the image quality, namely, degradation that
is spatially-varying in nature. For example, raindrops and
shadows degrade monolithic parts of the image depending
on their size and location, motion blur varies with scene
depth and degree of motion, and rain streaks effect only
sparse regions whose orientation depends on the relative
rain direction. Fig. 1 shows representative examples of
degraded images and respective distortion-maps. It can be
seen that a large number of pixels undergo little or no dis-
tortion. Another observation is that the amount of distortion
and its spatial distribution is different in every image.

Restoring such images is vital to improve their aesthetic
quality as well as the performance of downstream tasks,
viz, detection, segmentation, classification, and tracking.
Convolutional neural networks (CNNs) currently typify the
state-of-the-art for various image restoration tasks. Despite
recent progress, existing approaches share several key limi-
tations. Firstly, all layers in their networks are generic CNN
layers, which apply the same set of spatially-invariant fil-
ters to every degraded image. Such layers are limited in
their ability to invert degradations that are highly image-
dependent and spatially-varying. Secondly, most network
architectures are specifically tailored for individual degra-
dation types as they are based on image formation mod-
els. Thirdly, the distortion-localization information embed-
ded in the labeled datasets remains unused or sub-optimally
used in all existing solutions.

Static CNN based models trained to directly regress
clean intensities from degraded ones, perform poorly when
input contains unaffected regions as well as severe inten-



sity distortions in different spatial regions. Conceptually,
a stack of fixed learned filters, excelling at restoring pix-
els degraded with large distortions might not be suitable for
reconstructing the texture from unaffected regions. Prac-
tically, we observe that such designs often yield poor re-
construction performance (introduce unwanted changes or
artifacts on pixels that are not degraded in the input to begin
with). The image-dependent nature of spatial distribution
and magnitude of distortions only exacerbates the problem
faced by static CNNs.

Motivated from the understanding that a restoration net-
work can benefit from adapting to the degradation present
in each test image, we propose a distortion-aware model
to simultaneously realize the twin goals of restoration and
reconstruction. Our spatially-adaptive image restoration ar-
chitecture (referred to as SPAIR) is suited for any type of
degradation which selectively affects parts of the image.
It comprises of two components- a distortion-localization
network (NetL) and a spatially-guided restoration network
(NetR). NetL gathers information from the entire image
to estimate a binary mask (localizing high intensity distor-
tions) which steers the processing in NetR to selectively
improve only degraded regions.

The proposed NetR comprises of 3 distortion-guided
blocks- spatial feature modulator (SFM), sparse convolu-
tion module (SC) and a custom sparse non-local module
(SNL). SFM utilizes the output mask and intermediate fea-
tures from NetL to modulate the feature statistics of in-
termediate features in NetR. SC and SNL improve fea-
tures in the spatially-sparse degraded regions in an image-
dependent manner, without affecting the features in clean
regions. SNL locally restores features in distorted regions
by adaptively gathering global context from all clean re-
gions. Our key contributions are:
– A two-stage framework to systematically exploit
distortion-localization knowledge for directly addressing
the challenges associated with diverse spatially-varying
degradations in an interpretable manner. It achieves the twin
goals of restoration and reconstruction and works across di-
verse degradation-types.
– Distortion-guided spatially-varying modulation of fea-
tures statistics inNetR with the help of distortion-mask and
features from a pretrained NetL.
– Distortion-guided feature extraction with the help of SC
(for local context) and a novel SNL (for global context)
modules. These components facilitate spatially-varying
restoration while controlling receptive field in an image and
location-adaptive manner.
– We demonstrate the versatility of SPAIR by setting new
state-of-the-art on 11 synthetic and real-world datasets for
various spatially-varying restoration tasks (removing rain-
streaks, rain-drops, shadows, and motion blur), outper-
forming existing approaches designed with task-specific

network-engineering. Further, we provide detailed analy-
sis, qualitative results, and generalization tests.

2. Related Works
Adaptive Inference: Adaptive inference techniques [56,
50, 12, 27] have attracted increasing interest since they en-
able input-dependent alteration of CNN structure. One class
of methods dynamically skip subsets of layers in cascaded
CNNs during inference [58, 50, 5]. [6] passes sampled pix-
els (using a random pattern which is fixed during inference)
to CNN layers and fills the remaining locations using sim-
ple interpolation. Few approaches [13, 12] exploit sparsity
in the input image itself using sub-manifold sparse convo-
lutions, but are unsuitable for non-sparse input data.

However, none of these approaches afford the fine-
grained spatial-domain control necessary for spatially-
varying image restoration at multiple intermediate layers.
For instance, the approaches that skip processing of some
layers or prune the network still filter the degraded and other
image regions with the same parameters. Methods such as
[5] are only applicable to cascade of consecutive residual
layers, and do not generalize to encoder-decoder designs
(typically used for image restoration) where conditionally
altering network depth or channel width is non-trivial. The
arbitrary rejection of spatial-domain information proposed
in [6] is ill-fitted for general restorations tasks.
Raindrop Removal: Solutions for raindrop removal in-
clude both classical as well as CNN based approaches. [22]
proposed a clustering and median filtering based restora-
tion, while CNN based approaches include, shallow CNNs
[4] but with limited performance, a convolutional-LSTM
based model for “joint” learning of rain-map and rain-free
image [38], and a deeper CNN [31]. [40] instead leveraged
physical models of raindrop properties (including closed-
ness and roundness) to estimate drop-probability. In con-
trast to these methods, SPAIR advocates for a pixel selective
and adaptive processing to remove raindrops.
Rain-streak Removal: Conventional deraining meth-
ods [3, 72, 29, 33] adopt a model-driven methodology utiliz-
ing physical properties of rain and prior knowledge of back-
ground scenes into an optimization problem. CNN-based
approaches include end-to-end negative residual mapping
[8], deeper CNN [62], multi-stage CNNs with recur-
rent connections [28], CNN for predicting density (heavy,
medium, light) during deraining [67], concatenating rain-
map for deraining [61]. However, layers in these ap-
proaches process all image regions with the same filters
(without pixel adaptation). [52] presents model-driven
CNN with convolutional dictionary learning.Wang et.al.
[54] predicts a rain-map and multiplies it element-wise with
feature-maps to enhance them. While SPAIR also utilizes a
mask, there are fundamental differences. We estimate a bi-
nary mask and utilize it more comprehensively, including



for sparse filtering, attention weight calculation and guid-
ing it to non-degraded image regions. SPAIR significantly
differs from rain-guided models of [61, 38] in three aspects.
(1) They only concatenate the rain-mask at the input. In
contrast, we exploit distortion-mask to only perform con-
volutions and non-local operations on degradation regions.
We also transfer feature statistics from clean to degraded re-
gions at multiple intermediate layers using SFM. (2) They
lack global context. SPAIR contains SNL module that adap-
tively gathers all features values within the clean regions
of the image. (3) All pixels are passed through same net-
work with spatially rigid processing, which directly con-
trasts with our work. Ours is the first approach to exploit
explicit degradation-guidance to selectively processes de-
graded pixels and reduce the effect on unaffected regions,
for a variety of spatially-sparse degradations.
Shadow Removal: Early works often erased shadows via
user interaction or by transferring illumination from non-
shadow regions to shadow regions [14, 23]. More robust
results have been achieved using CNN based approaches
which include using multiple networks [16], DeshadowNet
for illumination estimation in shadow regions [39], stacked
conditional GANs [53], ARGAN to detect and remove
shadow with multiple steps [2], RIS-GAN [71] to estimate
negative residual images and inverse illumination maps for
restoration, and finally a cascade of dilated convolutions to
jointly estimate shadow-mask and shadow-free image [1].
In contrast to the aforementioned approaches, we propose
a two-stage framework wherein the distortion-mask and in-
termediate learned features ofNetL are employed in a prin-
cipled manner for region-aware and selective restoration.
Motion Blur Removal: Traditional approaches [26] de-
signed priors on image and motion (eg. locally linear blur
kernels were explored in [48, 10]) but with limited success
in general 3D and dynamic blurred scenes. Recent CNN-
based methods directly estimate the latent sharp image [36],
wherein encoder-decoder designs that aggregate features in
a coarse-to-fine manner have been proposed [36, 49, 9].
Additionally, [69] explored a design composed of multi-
ple CNNs and RNN and [65] proposed a patch-hierarchical
network and stacked its copies along depth to achieve state-
of-the-art performance. [37] proposed a recurrent design
for efficient deblurring. A limitation shared by all of these
methods is the absence of spatially varying adaptive lay-
ers. [47] inserts adaptive convolution and attention within
the layers of [65] to boost its results. Our distortion-guided
sparse architecture performs better than such patch hierachi-
cal designs, while generalizing beyond motion-blur and of-
fering consistent gains across other degradations.
Architectures for general Restoration A few solutions
have been proposed in literature to address multiple
degradation-types. For instance, DuRN [32] make task
dependent alterations in their network structure. Simi-

larly, OWAN [46] was proposed to handle multiple degra-
dations present within the same image. However, [46]
only addresses simple synthetic degradations that are sim-
ilar in nature eg. gaussian blur, noise, and jpeg artifacts.
SPAIR demonstrates its efficacy on realistic datasets of sev-
eral physically unrelated degradations which are heavily
spatially-varying. In such settings, DuRN and OWAN are
quite inferior to our model, as shown in our experiments.

3. Proposed Network Architecture
An image restoration model needs to solve two equally

important tasks: (1) locating the areas to restore in an
image, and (2) applying the right filtering mechanism to
the corresponding regions. While NetL addresses the for-
mer, we realize the latter through a spatially-guided restora-
tion network NetR. A schematic of SPAIR is shown in
Fig. 2. The knowledge from intermediate features of pre-
trained NetL improves NetR’s training, while the mask it-
self lends adaptiveness to the restoration process. To realize
the twin goals of restoration and reconstruction, distortion-
guided filtering of the extracted features inNetR is enabled
through SFM (Spatial Feature Modulator), SC (Sparse Con-
volution), and SNL (Sparse Non Local) modules.

3.1. Distortion Localization Network (NetL)

To maximize the generalizability of our approach, we
adopt the U-Net topology [44] as our CNN backbone (both
for localization and restoration networks). Different ver-
sions of this are known to be effective for several restoration
tasks such as image deblurring [49], denoising [34], and
general image-to-image translation [19]. We build a densely
connected encoder-decoder structure whose detailed layer-
wise description is given in the supplementary. This design
delivers competitive performance across all tasks consid-
ered and hence acts as a backbone for our NetR (see Sec.
6). NetL is a lightweight version of NetR (with similar
structure) since the binary classification (localization) task
is simpler than the intensity regression (restoration) task.

Given a degraded image, NetL produces a single chan-
nel mask and is trained using binary cross-entropy loss to
match the GT binary mask. For datasets with no ground
truth mask, we use the absolute difference between de-
graded image and clean image, and threshold it to obtain
a binary mask, classifying pixels into degraded (value 1) or
clean (value 0). Empirically, we observed that NetR’s per-
formance improves when NetL is trained to predict only
the pixels with severe distortions (as opposed to detecting
even minute intensity changes). Note that the distortion-
map directly correlates with the difficulty of restoration,
and it may differ from the physically occuring degradation-
distribution. For instance, when physical rain-steaks are
equally distributed throughout the image, the distortion-
map would contain more non-zero values in the urban tex-
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Figure 2. Proposed SPAIR and its components. NetR is shown at
the top and NetL is shown at the bottom. Connection between the
two networks (for SFM) are shown using black arrows.

tured regions than the sky regions (since white rain-streaks
do not significantly alter the bright intensities in sky).

3.2. Spatially-Guided Restoration Network (NetR)

As depicted in Fig. 2, NetR extracts a features pyramid
from input degraded image using a cascade of densely con-
nected layers [17]. These features are fed to decoder that
generates the restored image. Although correction of small
intensities changes can be learnt by simple convolutional
layers (basic building block for all prior works), they strug-
gle for spatially-distributed heavy degradations. For such
regions, localization based guidance improves restoration
quality. We propose 3 modules to employ trained NetL to
convey localization knowledge to NetR.

Since image generation process requires decoder to learn
both reconstruction and restoration, each level of the de-
coder contains an SC and an SNL module. Note that we re-
frain from using SC or SNL in the encoder layers of NetR
since that would completely discard the degraded image in-
tensities (which contain partially-useful information). We
employ SFM at multiple levels to perform distortion-guided
feature normalization to complement SC and SNL modules.

3.2.1 Spatial Feature Modulator (SFM)

SFM fuses the features of NetR with intermediate features
from layers of the pretrained NetL in an additive manner.
We observe that with such feature guidance, early layers
of NetR extract more distortion-aware features that corre-
late strongly to the degradation-variation within the input
image. Since both the networks share a similar encoder-
decoder structure, the inputs of all strided convolution lay-
ers are fused using SFM, as shown in Fig. 2.

In CNNs, feature normalization is known to be impor-

tant and complementary to feature extraction. The role of
SFM is to perform distortion-guided spatial-varying feature
normalization. This complements the distortion-guided fea-
ture extraction process using local (SC) and global (SNL)
context. SFM module performs adaptive shifting of the fea-
ture statistics at degraded locations, which aids the restora-
tion process. Studies [21] show that feature mean relates to
global semantic information while variance is correlated to
local texture. Inspired from this, our SFM modulates fea-
tures at degraded locations to match the feature statistics
(mean and variance) of clean regions.

Given the fused features F and the predicted mask M,
we calculate the modulated features FS as

FS = σ(F, (1−M))

(
F �M− µ(F,M)

σ(F,M)

)
+ µ(F, (1−M) (1)

The mean operator is µ(Q,M) = 1∑
pMp

∑
pQp �Mp

and the standard deviation is σ(Q,M) =√
1∑

pMp

∑
p(Q

2
p �Mp − µ(Q,M)) + ε, where sub-

script p represents 2D pixel location. Since modulation
of features is desired only at the degraded locations, the
feature output of SFM is FS �M+ F � (1−M).

3.2.2 Mask-guided Sparse Convolution (SC)

As discussed earlier, filters of general convolution layers are
spatially-invariant and hence are forced to learn the restora-
tion and reconstruction tasks jointly, which impedes the
training process and reduces model’s performance. SPAIR
harnesses the efficacy of mask-guided sparse convolution
that facilitates selective restoration of highly degraded re-
gions, and simplifies the learning process. SC (shown in
Fig. 2) contains a densely connected set of 6 guided sparse
convolution layers followed by a 1×1 convolution to reduce
the number of channels. Each unit in SC takes a the input
feature map, F and the predicted maskM. Pixels masked
as 1 in M are sampled, and passed through a convolution
operation, resulting in a sparse feature map FS as

FS
p =

{
0 Mp = 0∑

p′∈Rk
K ′pFp+p′ Mq,Mp = 1,

(2)

where Rk indicates the support region of kernel offsets
with kernel size k (e.g., for a 3 × 3 convolution, Rk =
{(−1,−1), (−1, 0), ..., (1, 1)} and k = 3), and K ∈
RCin×Cout×k×k denotes convolution weights. Although
SC is quite effective for the spatially-varying task at hand,
its receptive field is limited to only degraded pixels. We
next describe our SNL module which extracts features using
global context-aggregation (with distortion-guidance) and
complements the role of SC.
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degradation-guided context aggregation. Sparse 1x1 convolution
connects the two structurally-identical sparse-attention steps.

3.2.3 Region-Guided Sparse Non-Local Module (SNL)

Most computer vision tasks are inherently contextual. Fre-
quently used tools for gathering larger context such as di-
lated convolution [64], global average or attention pooling
[15], or multi-scale methods [49] etc. can enlarge the re-
ceptive field beyond simple convolutional layers. Yet, they
are not image-adaptive and still cannot utilize the full fea-
ture map effectively. In contrast, a single non-local layer
[55] is capable of extending the receptive field to the maxi-
mum H ×W size adaptively for each image and each pixel
in an image. We claim that such a property is well-suited
for a spatially-varying restoration model, where the heavily
corrupted regions benefit from the ability to gather relevant
features from the whole image. Effectiveness of adaptive
global context aggregation has also been explored for recog-
nition/segmentation tasks in [55, 41].

We hypothesize that within a restoration model, the non-
local context aggregation process can benefit immensely
from the knowledge of degraded pixel locations. We intuit
that propagating heavily degraded information throughout
the spatial domain can be counter-productive. Ideally, an
adaptive module should learn to completely ignore irrele-
vant features, but recent vision models (e.g. image caption-
ing [18]) have shown that this behavior is not practically
achieved. They resort to perform additional filtering to re-
move unnecessary information.

In contrast, the proposed SNL module leverages the
distortion mask to control the scope of non-local context
aggregation. While restoring degraded pixels, it assigns
dynamically estimated non-zero weights to features from
only not/less degraded pixel locations, delivering superior
performance as it dampens the influence of heavily de-
graded/corrupted information. Moreover, SNL leaves the
features of clean regions unaltered as this operation is per-
formed only on degraded pixel locations.

As illustrated in Fig. 3, SNL comprises of an efficient
two-step aggregation approach, with each step compris-
ing of horizontal-vertical scanning of the feature matrix in
four fixed directions: left-to-right, top-to-bottom, and vice-
versa. Having two steps is important in harvesting full-

image contextual information from all pixels. While direc-
tional scanning of CNN features has been explored in litera-
ture [51, 30], SPAIR introduces a region-guided and sparse
non-local module.

We elaborate on the feature aggregation process within
first step of the SNL module for horizontal direction (it can
be similarly derived for other directions as well). We denote
the value at a particular location (i, j) in the feature map
F ∈ RC×H×W as fi,j ∈ RC . To model its relationship with
all other valid locations (ensuring Mi,j = 0) on the right
Fright

i,j ∈ RC×(W−i), we calculate a pairwise relationship
matrix oright ∈ RW−i using softmax as

oright = softmax(fi,j � Fright
i,j ) (3)

This matrix is then used to weigh the contribution of the
features towards the right (Fright

i,j ) as

gright
i,j = Fright

i,j � o (4)

where gright
i,j ∈ RC . Note that locations with Mi,j = 0

are skipped during the above operations and the four direc-
tions are parallely executed in the CUDA implementation.
Finally, the features from four directions are fused using
pixel-wise adaptive weights. These weights E ∈ R4×H×W

are generated by feeding the feature F to another convolu-
tion layer. The fused features hi,j are obtained as

hi,j =

4∑
k∈Ω

eki,j � gk
i,j (5)

where eki,j ∈ R1 is the (k, i, j)-th element of E and k ∈
{left, right, up, down}. The entire process is repeated
twice (Fig. 3) to allow each pixel to gather global context.
Sparse 1 × 1 convolution: To perform feature-refinement
between two steps of the SNL module, we introduce a
sparse 1 × 1 convolution. As shown in the subfigure Fig.
3, on the feature locations of interest specified by the bi-
nary mask, a point-wise feature representation is extracted.
A fully connected layer then accepts and refines the entire
stack of these point-wise features. This replaces the 2D con-
volution onH×W spatial grid with point-wise 1D convolu-
tion on the selected points and facilitates sparse processing.

4. Datasets and Implementation Details
Rain-Streaks: Using the same experimental setups of the
recent approaches on image deraining [20], we train our
model on 13,712 clean-rain image pairs gathered from
multiple datasets [8, 29, 62, 67, 68]. With this single
trained model, we perform evaluation on different test sets,
including Rain100H [62], Rain100L [62], Test100 [68],
Test2800 [8], and Test1200 [67]. We also report the error
reduction error for each method relative to the best method



Table 1. Image deraining results. Best and second best scores are highlighted and underlined. For each method, relative MSE reduction
achieved by SPAIR is reported in parenthesis (see Section 4 for calculation). SPAIR achieves ∼22% improvement over MSPFN [20].

Test100 [68] Rain100H [62] Rain100L [62] Test2800 [8] Test1200 [67] Average
Methods PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

DerainNet [7] 22.77 0.810 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835 22.48 (69.3%) 0.796 (61.3%)
SEMI [57] 22.35 0.788 16.56 0.486 25.03 0.842 24.43 0.782 26.05 0.822 22.88 (67.8%) 0.744 (69.1%)
DIDMDN [67] 22.56 0.818 17.35 0.524 25.23 0.741 28.13 0.867 29.65 0.901 24.58 (60.9%) 0.770 (65.7%)
UMRL [63] 24.41 0.829 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910 28.02 (41.9%) 0.880 (34.2%)
RESCAN [28] 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 28.59 (37.9%) 0.857 (44.8%)
PreNet [42] 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 29.42 (31.7%) 0.897 (23.3%)
MSPFN [20] 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.75 (21.9%) 0.903 (18.6%)
SPAIR (Ours) 30.35 0.909 30.95 0.892 36.93 0.969 33.34 0.936 33.04 0.922 32.91 (0.0%) 0.926 (0.0%)

Table 2. Quantitative comparisons of models trained and tested on the SPANet [54] and the Rain100H [62] benchmarks.
Dataset Metric DSC GMM Clear DDN RESCAN PReNet SPANet JORDERE RCDNet1 RCDNet SPAIR

SpaNet [54] PSNR 34.95 34.30 34.39 36.16 38.11 40.16 40.24 40.78 40.99 41.47 44.10
SSIM 0.9416 0.9428 0.9509 0.9463 0.9707 0.9816 0.9811 ** 0.9816 0.9834 0.9872

Rain100H [62] PSNR 13.77 15.23 15.33 22.85 29.62 30.11 25.11 30.50 30.91 31.28 31.69
SSIM 0.3199 0.4498 0.7421 0.7250 0.8720 0.9053 0.8332 0.8967 0.9037 0.9093 0.9201

by translating PSNR to RMSE (RMSE ∝
√
10−PSNR/10)

and SSIM to DSSIM (DSSIM = (1 − SSIM)/2). We also
evaluate SPAIR on SPANet Dataset [54] (real-world rain)
containing 2× 105 training and 1000 testing images.

Raindrop: We use the AGAN dataset [38] with 861 train-
ing and 58 test samples. Images were generated by placing
a raindrop covered glass between the camera and scene.

Shadow: We evaluate our model using a challenging
benchmark ISTD [53] containing 1300 (train) and 540 (test)
images (with real shadows and diverse textured scenes).

Motion Blur: We follow the configuration of [47, 66, 25,
49] and use the GoPro [35] dataset containing 2,103 image
pairs for training and 1,111 pairs for evaluation. Further-
more, to demonstrate generalizability, we directly evaluate
our GoPro trained model on the test set of HIDE [45] and
RealBlur [43] datasets. The HIDE dataset is specifically
collected for human-aware motion deblurring, containing
2,025 test images. While the GoPro and HIDE datasets are
generated by averaging real videos, the blurred images in
RealBlur-J dataset are captured in real-world conditions.

Implementation Details 1: The NetR for each degrada-
tion is trained to minimize l1 reconstruction loss between
the output and the GT clean image. NetL is trained us-
ing binary cross entropy loss with respect to the GT binary
mask. Each training batch contains randomly cropped RGB
patches of size 256 × 256 from degraded images that are
randomly flipped horizontally or vertically. The batch-size
was 8 for rain-streak, raindrop, and shadow removal and 16
for deblurring. Both networks use Adam optimizer with ini-
tial leaning rate 10−4, halved after every 50 epochs. We use
PyTorch library and RTX 2080Ti GPU.

1We will publicly release our implementation

Table 3. Raindrop removal results on testset from Qian et al. [38].
Method Eigen [4] Pix2pix [19] AGAN[38] DuRN[32] Quan[40] SPAIR
PSNR 28.59 30.59 31.51 31.24 31.44 32.73
SSIM 0.6726 0.8075 0.9213 0.9259 0.9263 0.9410

5. Experimental Evaluation

Rain-streak Removal: Following prior art [20], we per-
form quantitative evaluations (PSNR/SSIM scores) on the Y
channel (in YCbCr color space). Table 1 reports the results
across all five datasets where SPAIR consistently achieves
significant gains over the baselines. Compared to the recent
algorithm MSPFN [20], we obtain a performance gain of
2.16 dB (averaged across all datasets). Next, for fair com-
parison with RCDNet [52], we evaluate SPAIR in their set-
ting (in Table 2) by training and testing on the challenging
Rain100H [62] and SPANet [54] (captured in real-world
rainy scenes) datasets. While the improvement is modest
(0.41 dB) on very heavy rain (Rain100H), it is as large as
3 dB on datasets with low rain density, eg. SPANet and
Rain100L (since in this case, we selectively process very
few pixels without affecting clean pixels), highlighting the
advantage of our distortion-adaptive restoration.

Fig. 4 presents qualitative comparisons on challenging
images from Rain100H dataset. Our results exhibit signif-
icantly higher visual quality than existing methods which
fail to recover background textures (1st row), introduce ar-
tifacts (2nd row). SPAIR is robust to changes in scenes and
rain densities as it effectively removes rain streaks of differ-
ent orientations and magnitudes, and generates images that
are visually pleasing and faithful to the ground-truth.

Raindrop Removal: Table 3 and Fig. 5 show qualitative
and visual comparisons with recent methods [38, 40, 32].
SPAIR outperforms the baselines by a large margin. Our
results are visually closer to GT and perceptually better than
those of competing methods which often contain artifacts or



Input JORDER [62] Fu et al. [8] RESCAN [28] PReNet [42] SPANet [54] RDCNet [52] SPAIR GT
Figure 4. Qualitative comparison of zoomed-in results on synthetic rainy images from the Rain100H test-set.

Input AGAN [38] DuRN [32] SPAIR GT Input AGAN [38] DuRN [32] SPAIR GT
Figure 5. Qualitative comparisons of results on images from the AGAN testset [38].

Table 4. Shadow removal results on ISTD Dataset [53]. Subscripts
S and NS indicate shadow and non-shadow regions, respectively.
Metric Input [60] [14] [11] [53] [16] [71] [1] SPAIR

RMSES 32.12 19.82 18.95 14.98 10.33 9.48 8.99 8.14 8.05
RMSENS 7.19 14.83 7.46 7.29 6.93 6.14 6.33 6.04 5.47
RMSE 10.97 15.63 9.30 8.53 7.47 6.67 6.95 6.37 5.88

Table 5. Deblurring results. Our method is trained only on the
GoPro dataset [35] and directly applied to the test images of
HIDE [45] and RealBlur-J [43] datasets. PSNR‡ scores were ob-
tained after training and testing on RealBlur-J dataset.

GoPro [35] HIDE [45] RealBlur-J [43]
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR‡

Xu et al. [59] 21.00 0.741 - - 27.14 0.830
DeblurGAN [24] 28.70 0.858 24.51 0.871 27.97 0.834
Nah et al. [35] 29.08 0.914 25.73 0.874 27.87 0.827
Zhang et al. [69] 29.19 0.931 - - 27.80 0.847
DeblurGAN-v2 [25] 29.55 0.934 26.61 0.875 28.70 0.866 29.69
SRN [49] 30.26 0.934 28.36 0.915 28.56 0.867 31.38
Shen et al. [45] - - 28.89 0.930 - -
DBGAN [70] 31.10 0.942 28.94 0.915 - -
MT-RNN [37] 31.15 0.945 29.15 0.918 - -
DMPHN [66] 31.20 0.940 29.09 0.924 28.42 0.860
Suin et al. [47] 31.85 0.948 29.98 0.930 - -
SPAIR 32.06 0.953 30.29 0.931 28.81 0.875 31.82

color distortions.
Shadow Removal: We evaluate our shadow-removal
model against traditional [14, 11, 60] and learning based
methods including ST-CGAN [53], DSC [16], DeShad-
owNet [39]. Following prior art, results are evaluated in
Lab color space using RMSE scores calculated over shadow
and non-shadow regions. Fig. 6 and Table 4 show that
although CNN-based designs are better than hand-crafted
methods, most existing approaches produce shadow bound-
aries or color inconsistencies. However, SPAIR has mini-
mal artifacts in the shadow boundaries, outperforming the
baselines both qualitatively and quantitatively.

Deblurring: We validate our distortion-guided approach
for general motion deblurring on 3 benchmarks: Go-
Pro [35], HIDE [45], and the real-world blurred images
of a recent RealBlur-J [43]. We report the quantitative
comparisons with the existing deblurring approaches in Ta-
ble 5. Overall, SPAIR performs favorably against other al-
gorithms. Note that inspite of training only on the GoPro,
it outperforms all methods including [45] on HIDE, with-
out requiring any human bounding box supervision, thereby
demonstrating its strong generalization capability.

We evaluate models on RealBlur-J [43] testset under two
experimental settings: 1) training on GoPro (to test gen-
eralization to real images), and 2) training on RealBlur-J.
SPAIR obtains performance gain of 0.39 dB over the DM-
PHN model [66] in setting 1, and 0.44 dB over existing best
method for setting 2. Our model’s effectiveness is owed to
the robustness of the distortion-aware approach.

Visual comparisons on images containing dynamic and
3D scenes are shown in Fig. 7. Often, the results of prior
works suffer from incomplete deblurring or artifacts. In
contrast, our network demonstrates non-uniform deblurring
capability while preserving sharpness. Scene details in the
regions containing text, boundaries, and textures are more
faithfully restored, making them recognizable.

6. Network Analysis
This work explores the benefits of distortion-localization

guided feature modulation and sparse processing for
spatially-varying restoration tasks. Table 6 quantifies the ef-
fect of individual design choices on performance of SPAIR
on the AGAN (raindrop) and GoPro (motion blur) datasets.

To validate our design choices, we implement the follow-
ing baselines (reported in Table 6). Net1: Dense encoder-
decoder network (CNN backbone of our NetR) with few
additional parameters to match NetL. Net2: Net1 guided
byNetL using SFM. Net3: Net2 with all densely connected



Input [14] [11] [60] [53] [16] [1] SPAIR
Figure 6. Comparison of shadow removal results on ISTD Dataset [53]. Shadow region and boundaries are visible in existing approaches.

Blurred Image Blurred patch SRN DelurGAN-V2 Stack(4)-DMPHN MTRNN Suin et al. SPAIR
Figure 7. Visual comparisons of zoomed-in results of competing deblurring models on images from the GoPro test set [36].

Table 6. Network analysis with PSNR for AGAN and GoPro
benchmarks, respectively. DED, SFM, SC, NL, SNL denote dense
encoder-decoder, spatial feature modulator, mask-guided sparse
convolution, non-local module, and mask-guided sparse non-local
module, respectively.
Methods DED SFM SC NL SNL PSNR

Raindrop Motion Blur

Net1 X 30.72 30.84
Net2 X X 31.48 31.55
Net3 X X X 31.83 31.62
Net4 X X X X 32.19 31.81

SPAIR X X X X 32.73 32.06

convolutional blocks in decoder replaced with SC modules,
Net4: Net3 with non-local (NL) layer [55] introduced in the
decoder. Net5: Net4 containing the proposed SNL module
instead of NL. Good baseline scores of Net1 for both tasks
support our backbone design choice.
Effectivenes of SFM: Net2 introduces SFM blocks (Sec.
3.2.1) which guide restoration network using mask and fea-
tures of NetL at multiple intermediate levels. The sig-
nificant improvement in accuracy in comparison to Net1
demonstrates the benefit of degradation guidance.
Effect of SC and SNL modules: Net4 employs the general
non-local layer [55] in decoder global context aggregation.
Net5 has the same structure as Net4 (sans the NL module),
and it feeds the predicted mask as input to the SNL modules.
The improvement in behavior and performance is attributed
to SNL design which uses explicit distortion-guidance to
steer pixel-attention. SNL is more suited than NL for both
degraded and clean regions. As explained in Eq. 4, while
restoring degraded pixels, SNL assigns dynamically esti-
mated non-zero weights to features originating from only
clean pixels in the image. By design, it leaves the features
of clean regions unaltered. As reported in Table 6, Net3
vs. Net2 shows the benefits of SC module whereas, Net5

vs. Net3 shows the utility of global context aggregation
for restoration. Net5, our final model, shows a significant
improvement over CNN baseline (Net1), demonstrating the
advantages of our overall solution over static CNNs.

Supplementary Details: We provide additional real results
and qualitative comparisons for all four tasks, additional
model analysis, detailed operation of modules and layer-
wise description of the network in supplementary.

Benefit: Many applications (e.g., autonomous vehicles) in-
volve dealing with rain, shadows, blur etc. at different time
instances. Designing architectures that are applicable across
multiple tasks, without requiring specialized architecture
re-engineering is practically very convenient (potentially fa-
cilitating customized hardware design). Our versatile de-
sign enables this as only the learned weights vary across
degradations while the architecture remains the same.

7. Conclusions
We addressed the single image restoration tasks of re-

moving spatially-varying degradations such as raindrop,
rain streak, shadow, and motion blur. We model the restora-
tion task as a combination of degraded-region localization
and region guided sparse restoration and propose a guided
image restoration framework SPAIR which leverages the
features of NetL for spatial modulation of the features in
NetR using SFM module. We introduce distortion local-
ization awareness in NetR using sparse convolution mod-
ule (SC) and sparse non-local attention module (SNL) and
show its significant benefits . Extensive evaluation on 11
datasets across four restoration tasks demonstrates that pro-
posed framework outperforms strong degradation-specific
baselines. Ablation analysis and visualizations are shown
to validate the effectiveness of its key components.
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Supplementary Details: This document is organized as
follows. In Section S1, we provide additional analysis and
visualization of various aspects of our model. Experiments
on multi-task learning are provided in Section S2, while
Section S3 contain additional qualitative results and com-
parisons on various benchmark datasets for all four tasks.
The document concludes with detailed operation of mod-
ules in Section S4.

S1. Model Analysis

S1.1. Effect of Spatially-Selective Processing

We perform a few analytical experiments to verify the
effectiveness of spatially-selective processing. We vary the
threshold (for intensity change to be classified as signifi-
cant distortion) and calculate the PSNR on thus obtained de-
graded and non-degraded regions separately. Owing to the
adaptiveness of our approach and specialized modules for
the current task, we achieve better restoration results for the
regions with significant corruption (Fig. S4). This behavior
is generally expected from better restoration network de-
sign. Interestingly, we observed that, for regions with negli-
gible amount of degradation (non-degraded regions for very
low threshold), the input image itself is sufficiently good
(Fig. S4). Due to generic processing, most of the previous
methods are unable to reconstruct those regions accurately
(i.e. they corrupt the background pixels) and result in poor
PSNR even in the simplest of regions.

Next, we visualize the error-maps (the difference be-
tween degraded and ground-truth image) for the non-
degraded regions in Figs. S5 (RainStreak) and Figs. S6
(Raindrop). As we can observe, our method results in
the least amount of reconstruction error. The improvement
over existing methods in the non-degraded areas shows that
SPAIR causes least amount of changes in the non-degraded
pixels. Improved restoration in degraded regions is at-
tributed to modules specifically processing the degraded re-
gions. Our method preserves input details which are uncor-
rupted and is able to improve the quality of the restoration
of affected regions.

S1.2. Effect of SFM

We had observed (in Table 6 of main paper) that SFM
module is well suited to the spatially-varying task and fur-
ther improved the performance (Net7). For the rain-streak
removal, we have visualized feature statistics of degraded
and non-degraded regions in Fig. S7. In the left image,
we can see a significant difference in the statistics before
SFM. As rainy regions are usually unnaturally brighter, the
mean value is much higher than in non-rainy areas. This
implies that if we apply a global normalization, the statis-
tics of non-rainy regions will be adversely affected. On
the other hand, SFM based normalization only operates on
rainy regions and applies an affine transform on it guided
by the mean and variance of non-rainy regions. It offers
two advantages: a) statistics of degraded regions gets mod-
ulated to match the characteristics of non-degraded regions
while preserving the content, b) adverse effects of rain on
non-rainy regions will be minimized. We can observe in
the figure on the right that the statistics of rainy regions
have moved closer to the non-rainy regions, resulting in im-
proved performance.

S1.3. Attention Visualization

We have visualized predicted degradation-mask and
pixel-level attention maps for raindrop and motion-blur af-
fected images in Fig. S1 and for rain-streak affected im-
ages in Fig. S2. As SNL allows a pixel to gather rele-
vant global context adaptively, we can observe that the de-
graded pixel is mainly focusing on less-corupted regions
with similar texture, color structure, etc., which contribute
to restoration process. The SNL module brings an improve-
ment in model’s behavior and performance by using explicit
distortion-guidance to steer pixel-attention. SNL is more
suited than general NL for both degraded and clean regions.

S2. Exploring Multi-Task Learning
We also explore an additional benefit of our deisgn.

Since our architecture design does not change across
restoration tasks, it opens venues for multi-task learning.
We perform expriments on jointly learning two restoration



tasks. Among the 4 spatially-varying degradations we con-
sider in this paper, we choose to address Rain-Streaks and
RainDrops jointly,s as they are closely related to each other
and generally occur in similar environments. We explore
the possibility of obtaining a single trained model which can
remove raindrops as well as rainstreaks from a given test
image. We train SPAIR jointly on the datasets of two tasks:
Mixed RainStreak Dataset [9] (used in Table 1 of main pa-
per) and RainDrop Dataset [13] (used in Table 3 of main
paper). After training jointly on the two tasks, we evalu-
ate the model on the two benchmarks and compare against
existing task specific methods. We also include the recent
multi-task restoration model OWAN [17] as a baseline and
train it in the same setting as SPAIR.

Specifically, we train our model on 14573 clean-
degraded image pairs gathered from rain-streak datasets [4,
11, 22, 24, 25] and the raindrop dataset [13]. With this sin-
gle trained model (referred to as SPAIR (Joint)), we perform
evaluation on different test sets, including Rain100H [22],
Rain100L [22], Test100 [25], Test2800 [4], Test1200 [24]
and AGAN [13]. The results on the two tasks are reported
in Tables S1 and S2. It is evident that SPAIR (Joint) is
the first model in literature to achieve state-of-the-art results
on Rain-Streak and RainDrop removal tasks, without addi-
tional training.

Figure S1. Visualization of pixelwise-relation map for different
degraded images. Red box denotes the pixel gathering informa-
tion. It gathers information from non-degraded pixels in similar
textured regions.

S3. Analysis on Distortion Localization Net-
work (NetL)

We have visualized predicted distortion-mask along with
the ground truth distortion-mask in Fig. S3. The close re-
semblance of the predicted and ground truth degradation
maps shows the effectiveness of NetL.

Supervised vs unsupervised learning: We choose to
train NetL in a supervised fashion, since accurate pixel-
level distortion estimation is of key importance in restora-
tion.

Impact of Accuracy of NetL: Note that, compared to

Figure S2. Visualization of attenton on rainstreak-affected images.
From left to right: Input image, degradation-mask, and attention-
map for a pixel (marked in red) estimated within SNL module.

the ground truth mask, there will inevitably be some er-
rors in the predicted one. Although our proposed modules
in the decoder leverage the extra guidance from the pre-
dicted mask, as there are standard convolution layers too in
the decoder and the restoration network is trained with the
predicted mask itself, errors in very few pixels of the pre-



Table S1. Image deraining results using SPAIR trained jointly for Rain-Streak and Raindrop removal tasks. Best and second best scores
are highlighted and underlined. SPAIR significantly outperforms baselines methods in both settings: Single task and Joint task learning.

Test100 [25] Rain100H [22] Rain100L [22] Test2800 [4] Test1200 [24] Average
Methods PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
MSPFN [9] 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.75 0.903
SPAIR (Single) 30.35 0.909 30.95 0.892 36.93 0.969 33.34 0.936 33.04 0.922 32.91 0.926
OWAN [17] (Joint) 23.85 0.810 24.46 0.724 28.54 0.878 30.40 0.891 30.09 0.872 27.47 0.835
SPAIR (Joint) 30.33 0.909 30.81 0.892 36.39 0.964 33.34 0.936 33.10 0.925 32.79 0.925

Table S2. Raindrop removal results (AGAN Dataset [13]) using SPAIR trained jointly for Rain-Streak and Raindrop removal tasks. SPAIR
yield better results than existing methods in both settings: Single task and Joint task learning.

Method Eigen [2] Pix2pix [8] AGAN[13] DuRN[12] Quan[14] SPAIR (Single) OWAN [17] (Joint) SPAIR (Joint)
PSNR 28.59 30.59 31.51 31.24 31.44 32.73 28.44 32.59
SSIM 0.6726 0.8075 0.9213 0.9259 0.9263 0.9410 0.841 0.935

Figure S3. Visualization of degradation mask for different tasks.
First, second, third row describes input image, ground-truth
mask,predicted mask respectively

dicted mask do not adversely affect the final restoration out-
put. NetL classifies some regions as non-degraded, while
slight intensity distortions may well be present in those ar-
eas. Nonetheless, restoration of such distortions is easy and
this is achieved through the few non-sparse layers in our
network.

We conduct the following experiment to show that at
convergence, final performance of NetR is not very sen-
sitive to small error in the prediction of NetL. The varia-
tion of NetR’s performance with respect to NetL’s cross-
entropy loss is shown in Table S3

Table S3. Influence of the acrruacy of NetL on performance of
SPAIR for raindrop removal evaluated using AGAN Dataset [13].

Epoch 20 50 70 90

BCE Loss (×10−2) 8.4 6.06 5.95 5.92
PSNR 32.08 32.67 32.73 32.73

S4. Additional qualitative comparisons
Rain-Streaks: Figs. S8, S9 show additional qualita-
tive results and comparisons state-of-the-art methods on
Rain100H Dataset (Table 2 of main paper). Existing meth-

ods suffer from visible rain streaks or texture-smearing
along rain direction. In comparison, our results are visually
more pleasing, while being faithful to the ground-truth im-
age. Fig. S10 contains comparisons of all methods trained
on the combined RainStreak Dataset (Table 1 of main pa-
per). Further, we evaluate SPAIR trained on the combined
RainStreak Dataset (Table 1 of main paper) on real-world
rainy images (taken from internet) in Fig. S11. It is evident
that few rain streaks remain visible and background remains
unclear in the results of all existing methods while our ap-
proach generates satisfactory deraining results.
Raindrop: We show additional results on the test-set of
AGAN dataset in Figs. S12,S13,S14. We also include com-
parisons on a real-world image in Fig. S15 . Visually, we
can observe significant improvement over prior works.
Shadow Removal: Fig. S16 provides additional qualitative
comparisons on shadow removal showing that most exist-
ing approaches produce shadow boundaries or color incon-
sistencies. In contrast, SPAIR has minimal artifacts in the
shadow boundaries, outperforming the baselines both qual-
itatively and quantitatively.
Motion Blur: While the GoPro and HIDE datasets are gen-
erated by averaging consecutive frames of real high frame-
rate videos, the blurred images in RealBlur-J dataset are
captured in real-world conditions. In Fig. S17 we pro-
vide compariosns of our results with the best results from
[16]. In Figs. S18-S22, we provide additional results and vi-
sual comparisons of our architectures with competing meth-
ods on the GoPro deblurring benchmark. The visual results
show that our results closely mimic the ground-truth sharp
images, while producing artifact-free results in regions con-
taining challenging blur. Improvements over prior meth-
ods become more pronounced on images affected with large
blur.

S5. Network Details

Network layer details are given in Fig. S23.



Figure S4. Comparison with baseline methods using PSNR scores in degraded and non-degraded regions for two tasks: rainstreak removal
and raindrop removal. (Best viewed in color).
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Input DDN RESCAN PReNet SPA-Net RCDNet Ours GT
Figure S8. Qualitative comparison of results on test images from the Rain100H test-set (corresponding to Table 2 of main paper).



(a) Input (b) SPA-Net [20] (b) RCDNet [18] (c) Ours (d) GT
Figure S9. Visual comparisons on real rain-affected images from the SPANet dataset [20] (corresponding to Table 2 of main paper).



Input DerainNet [3] UMRL [23] RESCAN [10] PreNet [15] MSPFN [9] SPAIR GT
Figure S10. Qualitative comparisons on test images from various benchmarks considered in Table 1 of main paper.

(a) Input (b) DDN [4] (c) DID [24] (d) RESCAN [10] (e) SPA-Net[20] (f) Ours
Figure S11. Qualitative comparisons on real-world rainy images from internet.



(a) Input (b) Eigen [2] (c) Pix2pix [8] (d) A-GAN [13] (e) Quan et al. [14] (f) Ours (g) GT
Figure S12. Qualitative comparisons of results on test images from the AGAN testset [13].



(a) Input (b) A-GAN [13] (c) DuRN [12] (d) Ours (e) GT
Figure S13. Qualitative comparisons of results on images from the AGAN testset [13].



(a) Input (b) A-GAN [13] (c) DuRN [12] (d) Ours (e) GT
Figure S14. Qualitative comparisons of results on images from the AGAN testset [13].



(a) Input (b) Eigen [2] (c) Pix2pix [8] (d) A-GAN [13] (e) Quan et al. [14] (f) Ours
Figure S15. Qualitative comparisons of results on a real-world image from the AGAN testset [13].

Input [6] [5] [21] [19] [7] [1] SPAIR
Figure S16. Comparison of shadow removal results on ISTD Dataset [19]. Shadow region and boundaries are visible in existing approaches.



(a) Input (b) [16] (c) SPAIR (d) GT
Figure S17. Visual comparisons on real-world blurred images from the RealBlurJ dataset [16] (corresponding to Table 2 of main paper).



Blurred DeblurGANv2 MS-CNN

DeblurGAN SRN Stach(4)-DMPHN

Ours Ground Truth

Figure S18. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of DeblurGANv2, MS-CNN, DeblurGAN, SRN, Stack(4)-DMPHN, Our Result, and
Ground-truth, respectively.



Blurred DeblurGANv2 MS-CNN

DeblurGAN SRN Stach(4)-DMPHN

Ours Ground Truth

Figure S19. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of DeblurGANv2, MS-CNN, DeblurGAN, SRN, Stack(4)-DMPHN, Our Result, and
Ground-truth, respectively.



Blurred DeblurGANv2 MS-CNN

DeblurGAN SRN Stach(4)-DMPHN

Ours Ground Truth

Figure S20. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of DeblurGANv2, MS-CNN, DeblurGAN, SRN, Stack(4)-DMPHN, Our Result, and
Ground-truth, respectively.



Blurred DeblurGANv2 MS-CNN

DeblurGAN SRN Stach(4)-DMPHN

Ours Ground Truth

Figure S21. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of DeblurGANv2, MS-CNN, DeblurGAN, SRN, Stack(4)-DMPHN, Our Result, and
Ground-truth, respectively.



Blurred DeblurGANv2 MS-CNN

DeblurGAN SRN Stach(4)-DMPHN

Ours Ground Truth

Figure S22. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of DeblurGANv2, MS-CNN, DeblurGAN, SRN, Stack(4)-DMPHN, Our Result, and
Ground-truth, respectively.
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Figure S23. Layerwise details of encoder decoder within NetL.


