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A B S T R A C T

Scientists and engineers agree that solving complex problems requires integrating traditional physics-based
modeling techniques with state-of-the-art deep learning (DL) methods. This paper aims to integrate physics
knowledge into a convolutional neural network (CNN) to boost learning within a feasible solution space in
a specific domain. Our proposed method uses deep neural networks in the form of (CNNs) augmented with
custom loss functions which uses physics rules to bypass the need for Finite Element Analysis and predict
high-resolution stress distributions on damaged steel plates with variable loading and boundary conditions. We
embedded physics constraints into the loss function to enforce the model training, precisely capturing stress
concentrations around the tips of various structural damage configurations. The CNN was designed and trained
to use the geometry, boundary conditions, and load as input and predict the stress contours. The proposed
framework’s performance is compared to Finite-Element simulations using partial differential equation (PDE)
solver. The trained DL model can predict the stress distributions of damaged steel plates with a mean absolute
error of 0.22% percent and an absolute peak error of 1.5% for the Von Mises stress distribution
1. Introduction

Accurately and efficiently predicting physical responses is essential
for different real-world applications, such as the prediction of the
remaining life of mechanical systems [1], earthquake alarms [2], and
weather forecasting [3]. Although data-driven and physics-based solu-
tions allow for solid predictions, both methods still suffer from several
limitations. The drawbacks of data-driven methods are the requirement
for large amounts of data, inability to produce physically consistent
results, and weakness of generalize to out-of-sample scenarios. [4].
However, physics-based models, such as Finite Element Analysis (FEA),
are computationally prohibitive. Therefore, to achieve fast analysis of
mechanical systems and address deficiencies of data-driven models,
we integrate conventional physics-based methods with state-of-the-art
Deep Learning (DL) methods to predict stress distributions in damaged
steel components.

Numerical analysis methods, such as FEA, are typically used to
conduct stress analysis of various structures and systems for which it
is impractical or hard to determine an analytical solution. Researchers
commonly use FEA methods to evaluate the design, safety, and mainte-
nance, of different structures in various fields, including aerospace, au-
tomotive, architecture, and civil structural systems. The current work-
flow for FEA applications includes: (i) Modeling the geometry and
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its components, which can be time-consuming based on the system
complexity; (ii) Specifying material properties, boundary conditions,
and loading ; (iii) Applying a meshing strategy for the geometry. The
time-consuming and complexity of the current FEA workflow make it
impractical in real-time or near real-time applications, such as in the
aftermath of a disaster or during extreme disruptive events that require
immediate corrections to avoid catastrophic failures.

Based on the steps of FEA described above, performing a complete
stress analysis with conventional FEA has a high computational cost.
We proposed DL methods [5,6] in our previous work [7] to resolve
this issue, bypassing FEA once trained. This work added various types
of cracks (damage) into the samples and enhanced our model with a
physics equation to predict stress distributions in damaged steel plates.

Our approach in a sense could be viewed as a surrogate for FEA soft-
ware and it avoids the computation bottlenecks in FEA. In particular,
our model predicts the stress distributions and stress concentrations of
the most common gusset plates used in infrastructures, such as bridges
and buildings. The main idea here is to train a generalized model
than can later be used in situations where real time estimations are
needed, such as in the aftermath of extreme disruptive events. For
example, focusing on critical structural components, there is a need
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Fig. 1. Illustration of binary masks. (a) mask 1, (b) mask 2.

Fig. 2. Basic schematic topology for initializing the damaged steel plate geometries.

for immediate assessment following a disaster or during extremely dis-
ruptive events to guide corrective actions. Engineers could rely on the
proposed computationally efficient algorithms in order to determine
stress distributions over damaged gusset plates and apply the proper
rehabilitation actions. It is important for them to be able to analyze
damaged gusset plates quickly and accurately, which is exactly what
our model can provide. To the best of our knowledge, this work is
the first work to use the stress concentration factor equation to predict
stress distribution and stress concentration in the specific domain of
damaged steel plates.

2. Related works

The most recent works in data-driven applications have included
design and topology optimization [8,9] data-driven approaches in fluid
dynamics [10,11], molecular dynamics simulation [12,13], and mate-
rial properties prediction [14–17]. Atalla et al. and Levin et al. [18,19]
have used neural regression for FEA model updating. More recently,
DL has shown promise in solving traditional mechanics problems. Some
researchers used DL for structural damage detection, a promising alter-
native to conventional structural health monitoring methods [20,21].
Lee et al. [22] demonstrated the efficiency and accuracy of deep
learning compared to the conventional neural network using a well-
known ten-bar truss problem. Do et al. [23] presented DNN to replace
FEA for buckling and free vibration analyses of the functionally graded
plates. Lee et al. [24] proposed method can eliminate the step of finite
element analysis and accelerate topology optimization processes.

Javadi et al. [25] used a typical neural network in FEA as a sur-
rogate for the traditional constitutive material model. They simplified
the geometry into a feature vector which approaches hard to generalize
complicated cases. The numerical quadrature of the element stiffness
matrix in the FEA on a per-element basis was optimized by Oishi
2

et al. using deep learning [26]. Their approach helps to accelerate the
calculation of the element stiffness matrix. Convolutional Neural Net-
work (CNN) is a kind of neural network which has shown remarkable
performance on several applications related to Computer Vision and
Image Processing. The significant learning ability of CNN is mainly
due to several feature extraction stages that can intrinsically learn
representations from the feeding data. Recently, Madani et al. [27]
developed a CNN architecture for stress prediction of arterial walls
in atherosclerosis. Also, Liang et al. [28] proposed a CNN model for
aortic wall stress prediction. It is expected that their method will allow
real-time stress analysis of human organs for a wide range of clinical
applications.

Gulgec et al. [29] proposed a CNN architecture to classify simulated
damaged and intact samples and localize the damage in steel gusset
plates. Modares et al. [30] conducted a study on composite materials to
identify the presence and type of structural damage using convolutional
neural networks. Also, for detecting concrete cracks without calculating
the defect features, Cha et al. [31] proposed a vision-based method
based on convolutional neural networks (CNNs). Do et al. [32] pro-
posed a method for forecasting the crack propagation in risk assessment
of engineering structures based ‘‘long short-term memory’’ and ‘‘multi-
layer neural network’’. Truong et al. [33] proposed a deep forward
neural network method to detect the location and severity of damaged
elements in the bar planar truss and bar dome-like space truss using the
noisy incomplete modal dat. Lieu et al. [34] presented a deep neural
network-based adaptive surrogate model for structural reliability anal-
ysis. Zhuang et al. [35] developed a technique for bending, vibration,
and buckling analysis of Kirchhoff plates based on deep autoencoders.
Samaniego et al. [36] proposed a deep neural network to solve bound-
ary value problems. They used relevant examples, from computational
mechanics, using DNNs to build the approximation space. A deep feed
forward artificial neural network has been developed by Berg et al. [37]
to approximate partial differential equations with complex geometry.
Truong et al. [38] proposed a method for the safety evaluation of steel
trusses using the gradient tree boosting algorithm.

An approach for predicting stress distribution on all layers of non-
uniform 3D parts was presented by Khadilkar et al. [39] More re-
cently, Nie et al. [40] developed a CNN-based method to predict
the low-resolution stress field in a 2D linear cantilever beam. Jiang
et al. [41] developed a conditional generative adversarial network for
low-resolution von Mises stress distribution prediction in solid struc-
tures. redTo the best of our knowledge, this work is the first to use
a simple physics equation to penalize the custom loss function in the
‘DL-FEA’ approach, to perform a fast and accurate prediction of high-
resolution stress distributions in the specific domain of damaged steel
plates.

The algorithm takes the geometry, boundary conditions, and load
as input and renders the Von Mises stress distribution as an output.
We modeled the steel plates as gusset plates with loading applied at
different edges, different boundary conditions, and varying complex
geometries. Compared with our last work [7], the dataset is initialized
with 61,440 samples, representing about 40 K fewer samples. Samples
initialized with varying geometries, boundary conditions, and loads are
used to train and evaluate the network.

3. Custom loss function

Learning biases can be established by proper choice of loss func-
tions, constraints, and inference algorithms that can regulate the train-
ing step of the ML model to explicitly direct convergence towards
solutions that adhere to the fundamental of physics [42]. The under-
lying physical laws can be satisfied by using and tuning such a penalty
constraint. In this paper, we consider the stress concentration factor
equation to improve the prediction of stress concentration around the
crack tip in steel gusset plates. It can be demonstrated from mathe-
matical analysis and experimental results that stress distributions occur
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Fig. 3. Some of the most common gusset plates in practice.
Fig. 4. Different location of damages on steel plates: (a) category 1, (b) category 2, (c) category.
Fig. 5. Different types of boundary conditions for initializing population.
near changes in sections of a loaded structural component. It reaches
greater magnitudes than the average stress in the section. It is called
stress concentration when the peak stress increases near openings and
other changes in the section. Eq. (1) defines stress concentration as the
peak stress relative to the nominal stress that would exist if the stress
distribution remained uniform [43].

𝐾𝑡 =
𝜎𝑚𝑎𝑥
𝜎𝑛𝑜𝑚

(1)

Where, 𝑘𝑡 is stress concentration factor, 𝜎𝑚𝑎𝑥 and 𝜎𝑛𝑜𝑚 are peak stress
around the crack tip and nominal stress in the remainder of the section,
respectively. We create binary masks to apply the stress concentration
factor equation to the loss function. Fig. 1 illustrates one of the possible
mask scenarios, in Fig. 1(a) crack (rectangle with gray color) is sur-
rounded by mask 1 (white rectangle) which all pixel values of the mask
are one (white), and all other pixel values are zero (black). Fig. 1(b)
shows mask 2 which all the zero pixel values from mask 1 are replaced
3

with value one, and all one pixel’s values are replaced with value zero.
The relation between the two masks is mask 2 = 1 - mask 1. Mask
1 represents the area where the stress concentration factor should be
applied to capture the peak stress, and mask 2 represents the area with
nominal stress distribution. Based on the above description, our custom
loss function will be defined as below:

𝐿𝑜𝑠𝑠 =
𝜆𝑃𝐻𝑌
𝑛

𝑛
∑

𝑛=1
(𝑆(𝑖) − 𝑆∧(𝑖))2 ⋅𝑀1 +

1
𝑚

𝑚
∑

𝑚=1
(𝑆(𝑖) − 𝑆∧(𝑖))2 ⋅𝑀2 (2)

Where, 𝜆𝑃𝐻𝑌 is stress concentration factor, n and m are the number of
white pixels in mask 1 and mask 2, respectively. 𝑀1 is mask 1 and 𝑀2

is mask 2. S(i) is the stress value at a node ‘i‘ computed by FEA as the
ground truth and, s (i) is the corresponding predicted stress by the DL
model and ‘⋅‘ is the symbol of the Hadamard product.
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Fig. 6. Input and output representation for stress distribution prediction: (a) damaged geometry, (b) boundary condition, (c) horizontal load, (d) vertical load, (e) output.
Fig. 7. A sample of mesh generation: (a) unstructured triangular mesh, (b) structured
grid surface.

4. Methods

4.1. Data generation

Two-dimensional steel plate structures with five edges, E1 to E5 de-
noting edges 1 to 5 as shown in Fig. 2, are considered homogeneous and
isotropic linear elastic material. Various geometries are generated by
changing the position of each node in horizontal and vertical directions,
as shown in Fig. 2, which led to 1024 unique pentagons. The material
properties remain unchanged and isotropic for all samples. 1024 crack
4

scenarios with various widths, lengths, angles, and locations were also
created on the steel plates (Fig. 2). Since the number of geometries is
the same as the number of crack scenarios, each geometry has a unique
crack.

The 2D steel plates approach the geometry of gusset plates. The
boundary conditions and loading angles are considered to simulate
similar conditions in common gusset plate structures under external
loading. Some most common gusset plates in practice are shown in
Fig. 3. Adding different loading and boundary conditions extended the
population into 61,440 unique samples. All input variables used to
initialize the population are shown in Table 1. Gusset plates are used
for connecting beams and columns to braces in steel structures. The
behavior and analysis of these components are particularly important
since various reports have observed failures of gusset plates subject to
lateral loads [44–47].

For crack initiation, we divided the steel plate into 15 different
regions to create cracks with different lengths and ensure that the crack
length would not violate the edges of the steel plate. Fig. 4 shows all
damage locations in 3 categories. Every red point represents the center
of single damage in the steel plate. Categories 1 to 3 each have 9, 4,
and 2 subcategories, respectively. Each plate has just one crack, and
other red points just represent the location of the cracks. Details of
crack initiation are shown in Table 2.

The distributed static loads, applied to the gusset plates in this
study, ranged from 1 to 5 kN with intervals of 1 kN. Moreover, loads
were applied with 3 different angles, including 𝜋 , 𝜋 and 𝜋 on either
6 4 3
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Table 1
Input variables.

Geometry Boundary conditions Load position Load angle (degree) Load Magnitude (kN)

pentagon E2 E4E5 30,45,60 1,2,3,4,5
pentagon E2E3 E5 30,45,60 1,2,3,4,5
pentagon E1E2 E4 30,45,60 1,2,3,4,5
pentagon E1 E2 30,45,60 1,2,3,4,5
Table 2
Detail of damages in steel plates.

Crack number Width Length of category1 Length of category2 Length of category3 Angle
mm mm mm mm degree

1 1 10,40,80 120 160,200 0,30,45,90
2 2 10,40,80 120 160,200 0,30,45,90
3 3 10,40,80 120 160,200 0,30,45,90
4 4 10,40,80 120 160,200 0,30,45,90
5 5 10,40,80 120 160,200 0,30,45,90
6 6 10,40,80 120 160,200 0,30,45,90
7 7 10,40,80 120 160,200 0,30,45,90
Fig. 8. Proposed CNN architecture.
Fig. 9. The building block of residual learning [48].

one or two edges of the plate. The load is decomposed to its horizontal
and vertical direction components. Also, four types of boundary condi-
tions are considered, as shown in Fig. 5, similar to real gusset plates’
boundary conditions. All the translational and rotational displacements
were fixed at the boundary conditions. The minimum and maximum
range for the width and height of the plate are from 30 cm to 60 cm.

4.2. Input data

The geometry is encoded into a 600 × 600 matrix as a single channel
binary image. 0 (black) and 1 (white) denote the outside and inside
of the geometry, as shown in Fig. 6(a). The boundary condition is
5

also represented by another 600 × 600 pixel binary image, where
the constrained edges are defined by 1 (white) (Fig. 6(b)). Moreover,
each horizontal and vertical component of the load is encoded as one
600 × 600-pixel single-channel colored image, as shown in Fig. 6(c)
and (d). Each row of Fig. 6 represents one of the simulated boundary
conditions and its load positions as described in Table 1. The magnitude
of the horizontal and vertical components of the loads, after decompo-
sition, varies between 0.5 kN and 4.33 kN. These loads are normalized
between (100,0,0) and (255,0,0) as RGB colors to create a color image
where the colored part represents the location and magnitude of the
load (Fig. 6(c) and (d)).

4.3. Output data

FEA was performed using the Partial Differential Equation (PDE)
solver in the MATLAB toolbox to obtain the stress distributions of
each sample. We did not use other FE approaches such as a Carrera
unified formulation [51] due to computational cost. Carrera Unified
Formulation allows FE matrices and vectors to be derived in terms of
fundamental nuclei. The MATLAB PDE toolbox mesh generator only
generates unstructured triangulated meshes, which are not compatible
with CNN. The minimum and maximum triangulated mesh size is 5 mm
and 10 mm; respectively. Since each element should be represented
by one pixel in an image, we develop a 600 × 600 grid surface equal
to the dimensions of the largest possible geometry. Fig. 7(a) and (b)
show the unstructured mesh and 600 by 600 grid surface on top
of the one random sample, respectively. The stress values are then
interpolated between the triangular elements and grids to determine a
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Fig. 10. The building block of Squeeze-and-Excitation [49].
Fig. 11. SE-ResNet module.
Fig. 12. The building block of self-attention module for the SAGAN [50].
Fig. 13. CLE and MAE curves on training and testing data with two scales: (a) linear scale, (b) logarithmic scale.
stress distribution compatible with our CNN network. The stress values
of all the elements outside of the material geometry are assigned to
zero, as shown in Fig. 6(e). The dimensions of the largest sample are
600 × 600 mm, and the smallest are 300 × 300 mm. Therefore, the
dimension of each element is 1 × 1 mm, which means that each image
6

has 360000 pixels. All the cracks are initialized in the smallest dimen-
sion (300 × 300 mm) to keep all lengths of cracks inside the geometry.
This high-resolution dataset led to achieving significant accuracy. The
maximum and minimum von Mises stress values for elements among
the entire dataset are 362,687 MPa and −138.35 MPa, respectively.
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Fig. 14. Cumulative distribution of PMAE and PPAE: (a) PMAE of samples less than mean, median and, 80% of data on the test dataset, (b) PPAE of samples less than mean,
median and, 80% of data on the test dataset.

Fig. 15. Predicted stress distribution and corresponding inputs with different loads and boundary conditions scenarios. Columns (a) to (d) represent damaged geometry, boundary
conditions, load in the horizontal and vertical direction, respectively. Columns (e) and (f) represent ground truth and predicted stress distribution, respectively. (Units = mm-MPa-N).
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Fig. 16. Larger representative from Fig. 15. (a) Ground truth (b) predicted. (Units = mm-MPa-N).
Table 3
Size of network layers.

Downsampling layers E1 E2 E3 E4 E5 E6 E7
Height× Width × Channel 600 × 600 × 12 600 × 600 × 32 600 × 600 × 64 600 × 600 × 128 600 × 600 × 256 600 × 600 × 512 600 × 600 × 1024

SE-ResNet Layers RS1 RS2 RS3
Height× Width × Channel 10 × 10 × 1024 10 × 10 × 1024 10 × 10 × 1024

Upsampling layers D1 D2 SA1 D3 SA2 D4 D5 D6
Height× Width × Channel 19 × 19 × 512 38 × 38 × 256 38 × 38 × 256 75 × 758 × 128 75 × 758 × 128 150 × 150 × 64 300 × 300 × 32 600 × 600 × 12
We normalized all the output data between 0 and 1 to ensure faster
convergence and encoded it to 600 × 600 matrices.

5. CNN architecture

The CNN can be built in different ways using a sequence of convo-
lutional layers. The convolutional layers learn to encode the input in
a set of simple signals and then reconstruct the input [52]. Our CNN
architecture consists of 4 types of layers: The first stage is downsam-
pling layers which consist of seven convolutional layers (E1, E2, E3,
E4, E5, E6, E7), the second stage are 3 layers (RS1, RS2, and RS3) of
Squeeze-Excitation and Residual blocks (SE-ResNet). The last stage is
upsampling layers which consist of six deconvolutional layers (D1, D2,
D3, D4, D5, D6) and 2 self-attention layers (SA1, SA2), as illustrated in
Fig. 8. The size of layers can be also seen in Table 3.

5.1. Residuals blocks

We used residual blocks to address the vanishing gradient prob-
lem. In addition, SE blocks are computationally lightweight and result
in only very small increases in model complexity. As illustrated in
Fig. 9, the formulation of F(x)+x can be realized by feedforward neural
networks with shortcut connections. The shortcut connection simply
performs identity mapping, and its output is added to the output of
the stacked layers [48].
8

5.2. Squeeze-and-excitation blocks

As depicted in Fig. 10, Squeeze-and-Excitation blocks improve the
representational capacity of the network, enabling dynamic channel-
wise feature recalibration. A SE-block can be implemented with five
steps. First, we feed the input 𝑥 as a convolutional block and the current
number of channels to the SE function, where 𝐹𝑡𝑟 in Fig. 10 is the convo-
lutional operator for the transformation of X to U. Then, at the second
phase, Each channel is squeezed into a single numeric value by using
average pooling. Additionally, in the third phase, a fully connected
layer is followed by a ReLu function, which applies a nonlinearity and
reduces the output channel complexity. Then at the fourth phase, SE
blocks can be used directly with residual networks. Fig. 11 depicts a
SE-ResNet module which the SE block transformation. 𝐹𝑡𝑟 is regarded
as the non-identity branch of a residual module. Before summation of
the identity branch, both squeeze and excitation act. Using both SE and
ResNet in the network outperforms using ResNet [49].

5.3. Self-attention blocks

In DL, the attention mechanism is inspired by human vision. Our
brain transmits a signal via neurons after we receive visual information
from the outside. Humans benefit from this process as it helps them
focus on the right areas, and it reduces the weight of unrelated areas
in their attention. As part of the feature extraction process of the
input image, attention increases the weight of the area of interest and
reduces the weight of unrelated regions. In the current paper, we use
Self-Attention GAN (SAGAN) [50]to improve the prediction’s results.
Convolution processes information in a local neighborhood; therefore,
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Fig. 17. Inaccurate predicted stress distribution and corresponding inputs with different loads and boundary conditions scenarios. Columns (a) to (d) represent geometry, boundary
conditions, load in the horizontal and vertical direction, respectively. Columns (e) and (f) represent ground truth and predicted stress distribution, respectively. (Units = mm-MPa-N).
using a single convolutional layer is computationally inefficient for
modeling long-range dependency in images. SAGAN helps efficiently
model relationships between widely separated spatial regions, even
areas far apart; it can simply capture global dependencies.

In the self-attentions mechanism, the convolutional image feature
maps are broadening into three copies, corresponding to the key, value,
and query concepts in the transformer [53]. key, value, and query are
Key: 𝑓 (𝑥) = 𝑊𝑓𝑥, Query: 𝑔(𝑥) = 𝑊𝑔𝑥, and Value: ℎ(𝑥) = 𝑊ℎ𝑥. The
image features from the previously hidden layer are first transformed
into two feature spaces f(x) and g(x), to calculate the attention and
then apply the dot-product attention to output the self-attention feature
maps using Eqs. (3) and (4). The entire process of the self-attention
mechanism in SAGAN is depicted in Fig. 12.

𝑎𝑖,𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓 (𝑥𝑖)𝑇 𝑔(𝑥𝑖)) (3)

𝑜𝑗 = 𝑤𝑣(
𝑛
∑

𝛼𝑖,𝑗ℎ(𝑥𝑖)) (4)
9

𝑖=1
6. Loss function and performance metrics

We used the custom loss function for the training loss as defined
in Eq. (2). Therefore, its error is defined as CLE (Custom Loss Error).
We also used MAE (Mean Absolute Error), PMAE (Percentage Mean
Absolute Error), PAE (Peak Absolute Error), and PPAE (Percentage Peak
Absolute Error) to evaluate the overall quality of predicted stress distri-
bution. These metrics are defined in Eqs. (5) (6), (7), (8), respectively.

𝑀𝑆𝐸 = 1
𝑛
|

𝑛
∑

𝑖=1
(𝑆(𝑖) − 𝑆∧(𝑖))2| (5)

Where 𝑆(𝑖) is the stress value at a node ‘i‘ computed by FEA as the
ground truth and, 𝑆∧(𝑖) is the corresponding predicted stress by the DL
model, and n is the total number of elements at each sample which is
360000 in our work. Symbol || denotes the absolute value. Our model’s
prediction and ground truth are displayed as 600 × 600 resolution
images.
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Fig. 18. Larger representative from Fig. 17. (a) Ground truth (b) predicted. (Units = mm-MPa-N).
The percentage mean absolute error is defined as:

𝑃𝑀𝐴𝐸 = 𝑀𝐴𝐸
𝑚𝑎𝑥[𝑆(𝑖)] − 𝑚𝑖𝑛[𝑆(𝑖)]

× 100 (6)

Where max [𝑆(𝑖)] is the maximum value in a set of ground truth stress
values and min [𝑆(𝑖)] is the minimum value.

PAE and PPAE measure the accuracy of maximum stress which
are one of the main important critical load values in the predicted
stress distribution. The importance of maximum stress matters in design
phase, since maximum stress should be less than yield strength to avoid
permanent deformation. PAE and PPAE are defined as:

𝑃𝐴𝐸 = [𝑆(𝑖)] − [𝑆∧(𝑖)] (7)

𝑃𝑃𝐴𝐸 = 𝑃𝐴𝐸
[𝑆(𝑖)]

× 100 (8)

7. Implementation details

All codes are written in PyTorch Lightning and run on two NVIDIA
TITAN RTX 24G GPUs. AdamW optimizer [54] was used to speed up the
convergence of our models using a learning rate of 1e−5. The batch size
is set to 8, leading to the best accuracy compared to other batch sizes.
The value of stress concentration factor, which is applied as a 𝜆𝑃𝐻𝑌 in
the custom loss function is 15, leading to the best results compared to
the other values.

8. Results and discussions

We train and evaluate our model on custom loss using the entire
dataset for 200 epochs, the other metrics are plotted as independent
metrics. The training data size is 49,152, and the separate testing data
size is 12,288 which is randomly divided with a train/test ratio of 80%–
20%. Fig. 13 shows Custom Loss Function (CLE) and MAE losses as a
function of epochs. Fig. 13(a) is in linear scales, and Fig. 13(b) is in
logarithmic scales. Fig. 13(a) shows that the curves of both CLE and
MAE rapidly declined after a few epochs. However, Fig. 13(b) gives a
more precise representation of the model’s behavior. From Fig. 13(b),
10
Table 4
Error metrics at epoch 181 (Units: mm-MPa-N).

Metrics CLE MAE PMAE (%) PAE PPAE (%)

Testing 4.5 22.01 0.22 10.8 1.5

it can be seen that CLE is less than MAE, which is due to penalization
of the loss with the stress concentration factor.

We saved the best checkpoint during training, epoch 181, and all
error metrics are based on this checkpoint. The evaluation results of the
network are shown in Table 4. As it can be seen, PMAE and PPAE for
the testing dataset are just 0.22% and 1.50%, respectively. We consider
these results satisfactory for stress distribution predictions of damaged
structural components, specifically the PPAE, which is the most critical
load value for stress distribution and stress concentration in engineering
do main applications.

Fig. 14 illustrates the cumulative distribution of PMAE and PPAE
in the test dataset. Fig. 14(a) shows that the probability of mean in
PMAE is about 2%, which means that about 2% of predicted samples
have a PMAE of less than 0.22; however, 80% of predicted samples
have PMAE less than 3, and 50% of predicted samples have a PMAE of
less than 1.21, which is the median. Fig. 14(b) shows that about 99%
of predicted samples have a PPAE of less than 1.5, 80% of predicted
samples have PMAE less than 0.35 and, 50% of the predicted samples
have a PPAE of less than 0.17.

The prediction results of some randomly selected samples from the
test dataset are visualized in Fig. 15. Each row represents a sample.
Columns (a) to (d) represent geometry, boundary conditions, and load
in horizontal and vertical directions, respectively. Columns (e) and
(f) represent the ground truth and predicted stress distributions, re-
spectively. Comparing columns (e) and (f) shows that predicted stress
distributions are pretty similar to the ground truths. Fig. 15 also demon-
strates that the network can localize and quantify different sizes of
damages, even tiny cracks. The second row of Fig. 15 is an example
of rectangle damage with a size of 10 × 1 mm, which shows proper
damage localization and stress distribution prediction of the remainder
of the section.
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Fig. 19. Comparison of predicted stress distribution in MSE and custom loss model and their corresponding masks. Columns (a) and (b) represent the mask for the damaged area
and the remainder of the section, respectively. Columns (c) to (e) represent ground truth, predicted stress distribution in the MSE and custom loss models, respectively. (Units =
mm-MPa-N).
Fig. 16 shows two cases of Fig. 15 with larger scales to show details
of ground truth and predicted stress distribution. Moreover, comparing
the last two columns of Fig. 15 shows the efficacy of our novel custom
loss function, which can accurately capture stress concentration around
crack tips. This means the learned algorithm can capture the underlying
knowledge of physics behind the stress concentration.

Some inaccurate predictions are also shown in Fig. 17. As it can
be seen, these predictions can still capture damage locations and stress
concentration around crack tips; however, mean and peak stress distri-
bution in some parts of the ground truth and predictions slightly vary.
Fig. 18 shows two cases of Fig. 17 with larger scales to show details of
ground truth and predicted stress distribution.
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9. Study on the effect of the custom loss function

We have also trained our model using torch.nn.MSELoss function
compares its results with our custom loss model to evaluate how
efficient our proposed custom loss function is. We investigated the
performance of custom loss model with different stress concentration
factor and compared with MSE model. Table 5 demonstrates that the
performance of custom loss model with stress concentration factor
equal to 1 is almost same as MSE model, which is expected based on
Eq. (2).

However, with applying higher and lower values than 15 the PPAE
increased in the custom loss model. It seems lower stress concentration
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Fig. 20. Larger representative from Fig. 19. (a) ground truth (b) MSE loss model (c) custom loss model. (Units = mm-MPa-N).
Table 5
Error metrics with different stress concentration factors (Units: mm-MPa-N).

Model Stress concentration factor PMAE (%) PPAE (%)

Custom loss 1 0.05 2.52
Custom loss 8 0.12 2
Custom loss 15 0.22 1.5
Custom loss 20 0.27 2.3
Custom loss 30 0.48 3.7
MSE loss None 0.053 2.5

factors do not trigger the pixel values within the damaged area and
higher stress concentration factors are over triggering the pixel values
within the damaged area. Therefor, we trained our custom loss model
with stress factor 15 to obtain the best results.

The error metric in the MSE loss model and the custom loss model
with stress factor 15 are presented in Table 6. As it can be seen, the
custom loss model’s performance is slightly better than MSE model
in terms of PPAE, which is expected since we penalize the damaged
areas 15 times more than the remainder of the section. However,
MSE model shows better performance in terms of MAE metric than
custom loss model. This means custom loss model is better in damage
localization and capturing stress concentration around the crack tips
and MSE model is better in general stress prediction. Although PPAE
in the custom loss model is 1% less than the MSE model, the custom
loss has a significant advantage in damage localization and capturing
stress concentration around crack tips.

Fig. 19 compares predicted stress distribution between MSE and
custom loss model and the masks used for custom loss function. In
Fig. 19 Columns (a) represents the mask used for penalizing the dam-
aged area, and column (b) represents the mask used for the remainder
of the section, which has no penalization. Columns (c), (d), and (e)
represent the ground truth, MSE model prediction and, custom loss
model prediction. As it can be seen in the first row of Fig. 19, the MSE
model cannot localize the crack; however, the custom loss model has
completely localized the tiny crack and its stress concentration around
the crack tip. Fig. 19 also shows that the MSE model can localize larger
cracks but still is not as good as the custom loss model in capturing
stress concentration around crack tips. Fig. 20 shows two cases of
12
Table 6
Error metrics in MSE and custom loss model (Units: mm-MPa-N).

Metrics CLE MAE PMAE (%) PAE PPAE (%)

Custom loss 4.5 22.01 0.22 10.8 1.5
MSE 5.07 0.053 109.03 2.5

Fig. 19 with larger scales to show details of ground truth and predicted
stress distribution with MSE loss model and custom loss model.

10. Conclusion

This work develops a convolutional neural network (CNN) aug-
mented with the custom loss function which is inspired from stress
concentration physics equation to predict high-resolution von Mises
stress distribution in the specific domain of damaged steel plates. The
proposed network learns to predict the stress distribution given the
damaged geometries, load, and boundary conditions as input and high-
resolution stress contours as the output. The dataset is composed of
61,440 unique and complex cases of various geometries, boundary
conditions, and loads. The PDE toolbox of MATLAB was used to gen-
erate the output data for training as FEA samples. We also build a
CNN model using torch.nn.MSELoss function to see how much our
proposed custom loss function is efficient. The CNN network achieves
high accuracy in both custom loss and MSE models, under multiple
metrics, in the evaluations of stress distribution datasets. The custom
loss model outperforms the MSE model in terms of peak stress value
predictions, in addition to accurately localizing damages and capturing
stress concentration around crack tips, which is not possible with
other ML methods. The custom loss trained DL model which trained
with 49152 FEA samples can be used for future predictions of stress
distributions of damaged steel plates of 12888 FEA samples. The custom
loss trained DL model has a mean absolute error of 0.22% and a
maximum stress error of 1.5% in the Von Mises stress distribution.
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