
Generating Diverse 3D Reconstructions from a Single Occluded Face Image

Rahul Dey Vishnu Naresh Boddeti

Michigan State University

deyrahul,vishnu@msu.edu

Target Image FLAME [21] DECA [11] CFR-GAN [17]Occ3DMM [8] Extreme3D [42] Reconstructions by Diverse3DFace (Ours)

Figure 1. Diverse 3D reconstructions from a single occluded face image by Diverse3DFace vs. a singular solution by the baselines.

Abstract

Occlusions are a common occurrence in unconstrained

face images. Single image 3D reconstruction from such

face images often suffers from corruption due to the pres-

ence of occlusions. Furthermore, while a plurality of 3D

reconstructions is plausible in the occluded regions, exist-

ing approaches are limited to generating only a single so-

lution. To address both of these challenges, we present

Diverse3DFace, which is specifically designed to simulta-

neously generate a diverse and realistic set of 3D recon-

structions from a single occluded face image. It comprises

three components; a global+local shape fitting process, a

graph neural network-based mesh VAE, and a determinan-

tal point process based diversity-promoting iterative opti-

mization procedure. Quantitative and qualitative compar-

isons of 3D reconstruction on occluded faces show that Di-

verse3DFace can estimate 3D shapes that are consistent

with the visible regions in the target image while exhibit-

ing high, yet realistic, levels of diversity in the occluded

regions. On face images occluded by masks, glasses, and

other random objects, Diverse3DFace generates a distri-

bution of 3D shapes having ∼50% higher diversity on the

occluded regions compared to the baselines. Moreover, our

closest sample to the ground truth has ∼40% lower MSE

than the singular reconstructions by existing approaches.

Code and data available at: https://github.com/human-

analysis/diverse3dface

1. Introduction

Single image-based 3D face reconstruction has improved

significantly in recent years [9, 54]. This includes advances

in statistical models [3,21,26,27] as well as neural network-

based models [11, 12, 33, 38–41, 45, 46]. However, facial

occlusions remain a significant challenge to this task. In-

the-wild face images often come with several forms of oc-

clusions and unless dealt with explicitly, often lead to er-

roneous 3D reconstruction in terms of shape, expression,

pose, etc. [8, 9, 42].

3D reconstruction of partially occluded faces presents

two main challenges. First, 3D reconstruction models need

to selectively use features from the visible regions while ig-

noring those from the occluded parts. Failure to do so, ei-

ther implicitly or explicitly, will lead to poor 3D reconstruc-

tions with an incorrect pose, expression, or both. Second,

there could be a distribution of 3D reconstructions that are

consistent with the visible parts in the image yet diverse on

the occluded parts. Failure to account for all such modes

limits the utility of 3D reconstruction models. Addressing

these two challenges is the primary goal of this paper.

Existing 3D face reconstruction solutions, however, are

ill-equipped to overcome both of these challenges simul-

taneously. From a reconstruction perspective, a major-

ity of the approaches that reconstruct 3D faces from a sin-

gle image restrict themselves to fully-visible face images.

And, even those that explicitly account for facial occlu-

sions [8, 42], do so only in a holistic manner using a global

model that implicitly uses features from the occluded re-
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gions as well. This form of global model-based fitting can

introduce errors (see Fig. 1) in the pose and expression of

the 3D reconstruction, especially when large portions of the

face are occluded. From a diversity perspective, existing

approaches are, by design, limited to only generating a sin-

gle plausible 3D reconstruction. However, in many practical

applications, for a single occluded face image, it is desir-

able to generate multiple reconstructions that are consistent

on the visible parts of the face, while spanning a diverse yet

realistic set of reconstructions on the occluded parts (see

Fig. 1). While the concept of generating diverse solutions

has been explored in other contexts such as image genera-

tion [10], image completion [51], super-resolution [1] and

trajectory forecasting [49], they have not been explored for

monocular 3D face reconstruction of occluded faces.

In this paper, we propose Diverse3DFace which is de-

signed to simultaneously yield a diverse, yet plausible, set

of 3D reconstructions from a single occluded face image.

Diverse3DFace consists of three modules: a global + local

shape fitting process, a graph neural network based varia-

tional autoencoder (Mesh-VAE), and a Determinantal Point

Process (DPP) [20] based iterative optimization procedure.

The global + local shape fitting process affords robustness

against large occlusions by decoupling shape fitting on the

visible regions from that of the occluded regions. The

Mesh-VAE enables to learn a distribution over a compact

latent space over the different factors of variation in the 3D

shapes of faces. And, the DPP-based iterative optimization

procedure enables us to sample from the latent space of the

Mesh-VAE and optimize them to generate a diverse set of

reconstructions spanning the different modes of the latent

space. Our specific contributions in this paper are:

– We propose Diverse3DFace, a simple yet effective diver-

sity promoting 3D face reconstruction approach that gener-

ates multiple plausible 3D reconstructions corresponding to

a single occluded face image.

– For robustness to occlusions, we propose a global+local

PCA model-based shape fitting that disentangles the fitting

on each facial component from the others. The models

are learned from a dataset of FLAME [21] registered 3D

meshes. During inference, the local perturbations on vari-

ous facial components are added on top of a coarse global

fit to generate the final detailed fitting.

– We employ a DPP [20] based diversity loss in the con-

text of generating diverse 3D reconstructions of faces. We

define the quality and similarity terms in the DPP kernel to

maximize diversity while remaining in the space of realistic

3D head shapes.

– We conduct extensive qualitative and quantitative exper-

iments to show the efficacy of the proposed approach in

generating 3D reconstructions that are faithful to the visible

face while simultaneously capturing multiple diverse modes

on the occluded parts. The solution from Diverse3DFace

that is closest to the ground truth is on average 30-50%

better than the unique solutions of the baselines [11, 21] in

terms of per-vertex ℓ2-error.

2. Related Work

Single Image 3D Face Reconstruction: Blanz and Vetter

[3] proposed the first 3DMM model of human faces. Since

then, such models have grown to include complex pose and

expression modalities in 3D faces [13,26]. Li et al. [21] pro-

posed FLAME that models the full human head and allows

non-linear control over joint poses to generate articulated

expressive head instances. Many recent approaches adopted

neural networks to model higher-order complexities in the

shape and expression spaces [11, 18, 28, 31, 33, 34, 38–41,

46]. A few methods took a hybrid approach of fitting a

non-linear neural network model to the target image to gen-

erate detailed 3D reconstructions [12, 48]. More recently,

advances in graph neural networks [7,19,24,43] have prop-

agated using graph convolution operations to directly learn

non-linear representation on a mesh surface while preserv-

ing the mesh topology [4, 29, 52]. Though these advances

have significantly improved the modeling capabilities of 3D

face reconstruction approaches, they are still limited when

handling occlusions in face images.

On the other hand, a few approaches are explicitly de-

signed to handle occlusions [8, 17, 42]. Tran et al. [42]

trained a neural network to regress a robust foundation

shape from a masked face image, over which a detailed

bump map is added later. And, Egger et al. [8] simultane-

ously optimized an occlusion mask and the model param-

eters from an occluded image. However, these approaches

rely on a global model to account for the entire face, in-

cluding the occluded parts, which is sub-optimal as the lack

of information from such parts needs to be countered us-

ing strong regularization. Moreover, they are limited to re-

constructing a singular 3D solution without considering the

plurality of solutions that can explain the occluded regions.

In contrast, we address the dual problems of robustness and

lack of uniqueness through a multistage approach that dis-

entangles fitting on the visible regions from diversity mod-

eling on the occluded ones.

Diversity Promoting Generative Models: Diversity pro-

moting algorithms have been employed in several areas in

computer vision where a distribution of outcomes is more

desirable than a singular solution. Conditioning [16, 47]

and regularization [5, 14, 36, 37, 53] based techniques are

useful to overcome mode-collapse and promote diversity in

GANs [15]. As ill-posed problems, diversity promoting al-

gorithms are also particularly useful for image completion

and image super-resolution. Zheng et al. [51] proposed a

dual-pipeline C-VAE [35] that maintains ground-truth fi-

delity in one path while allowing diversity on the other.



Bahat et al. [1] generated diverse super-resolution expla-

nations by only enforcing consistency in the low-resolution

space. Compared to image-based approaches that focus on

diversity in the texture, 3D reconstruction requires model-

ing geometric diversity. As one of the most seminal works

in this field, Kulesza and Taskar [20] introduced the frame-

work of Determinantal Point Processes (DPPs) to model di-

versity in machine learning tasks such as inference, sam-

pling, marginalization, etc. Yuan et al. [49,50] adopted DPP

to sample multi-modal latent vectors for diverse human tra-

jectory forecasting. Elfeki et al. [10] devised a DPP-based

objective to train GANs and VAEs to emulate the diversity

in real data. In this work, we adopt the idea of DPPs to

generate diverse 3D reconstructions for an occluded face

by discovering latent space representations that maximize

plausible diversity on the occluded regions while remaining

faithful to the visible parts.

3. Background

Statistical Models of 3D Face Reconstruction: Statistical

3D models such as BFM [3,26] and FLAME [21] allow for

generating new face instances. These models often consist

of a shape model that explain geometric variations across

identities, an expression model that accounts for variations

due to different facial expressions, and additionally a pose

model and an appearance model to account for variations

in pose and appearance, respectively. Specifically, FLAME

[21] defines a 3D shape as:

S(β, θ, ψ) =W (T (β, θ, ψ),J(β), θ,W), (1)

where the parameters β, θ, ψ represent the shape, pose and
expression parameters, respectively; J ∈ R

3K represents
the locations of K face joints around which T (β, θ, ψ) is
rotated, and finally smoothed by the blend weightsW . The
un-aligned shape T (β, θ, ψ) is obtained by adding up the
contributions of shape, expression and pose variations on
top of a template shape T̄:

T (β, θ, ψ) = T̄+BS(β;S) +BP (θ;P) +BE(ψ; E) (2)

The shape and expression variations are modeled by lin-

ear blendshapes BS(β;S) = Sβ and BE(ψ; E) = Eψ,

where S ∈ R
3N×|β| and E ∈ R

3N×|ψ| are orthonor-

mal shape and expression bases, respectively, learned using

PCA and N is the number of vertices. The pose blendshape

function is defined as BP (θ;P) = (R(θ)−R(θ∗))P ,

where R(θ) comprises of rotation matrices around the K

joints and P ∈ R
3N×9K are the pose blendshapes describ-

ing the vertex offsets from the rest pose activated by R.

Determinantal Point Processes: Determinantal Point Pro-

cesses (DPPs) originated in quantum physics to model

the negative correlations between the quantum states of

fermions [23]. DPPs were first introduced in machine learn-

ing by Kulesza and Taskar [20] as a probabilistic model of

repulsion between points. A point process over a ground set

Y describes the probability of all its 2Y subsets. A point

process is determinantal when the probability of choos-

ing a random subset Y ⊆ Y is given by the determinant

of the sub-kernel matrix LY indexed by the elements of

Y, i.e., P (Y ⊆ Y) = det(LY ). Given a data matrix

B ∈ R
D×N , we can compute the kernel as the Gram matrix

L = BTB. In this case, the determinant of the sub-kernel

matrix det(LY ) is related to the volume spanned by the ele-

ments ofB. Thus, conceptually, DPP assigns a higher prob-

ability to a subset whose elements tend to be orthogonal (di-

verse) to each other, thus spanning a larger volume.

4. Approach

Reconstructing diverse 3D shapes in a single stage, us-

ing only a global model, is sub-optimal due to multiple rea-

sons, as we show in our experiments (Sec. 5.1). First, fitting

a global model to a few visible sub-regions requires strik-

ing a careful trade-off between robustness and local fidelity

which is challenging to achieve. Second, diversification of

the occluded regions will inadvertently affect the quality of

fitting on the visible regions, and vice-versa. Given these

observations, we propose a three-step approach to generate

diverse, yet realistic 3D reconstructions from an occluded

face image. In step 1, we use an ensemble of disentangled

global+local shape models to perform robust 3D reconstruc-

tion w.r.t the visible parts of the face. In step 2, we employ

a VAE to map the partial fit to a latent space from which

multiple reconstructions can be drawn. Finally, in step 3 we

iteratively optimize the latent embeddings to promote real-

istic geometric diversity on the occluded face regions while

maintaining fidelity to the visible ones. We now describe

our complete algorithm along with its different components.

4.1. Global + Local Shape Model

A robust partial 3D reconstruction that accurately fits the

visible parts of the face is a prerequisite for generating di-

verse solutions. Existing approaches of occlusion-robust

3D reconstruction typically employ a global model to fit or

regress based on the visible regions [8, 42]. Because of the

global nature of such models, errors in occlusion segmenta-

tion affect the quality of 3D reconstruction [30], even on the

visible parts (see Fig. 5). Typically, strong regularization is

employed to mitigate such effects. However, while heavier

regularization leads to more robustness against occlusions,

it comes at the cost of sub-optimal fitting. This observation,

along with the successful application of localized deforma-

tion components in computer graphics [25, 32], motivated

us to adopt an ensemble of global + local models as an ef-

fective approach to generate robust 3D reconstructions w.r.t

the visible parts. Note that, in this stage of our solution, we

are not concerned about the reconstruction quality in the oc-

cluded regions. We now describe the details of our proposed
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Figure 2. Overview: As input, we need the target image, the occlusion mask, facial landmarks, and optionally a face mask. We use the

HRNET model [44] to obtain both the landmark locations and their confidence values, which we use to estimate the occlusion labels. Given

these input, we first fit our proposed global + local blendshape model to obtain the coarse and local fittings as outlined in Algorithm 1,

which we then add together to obtain the final fitting. We re-project the fitted shape onto the visible mask to obtain a partial fit, zeroed out

on the occluded regions. We map the partial fit onto a latent space using the Mesh-VAE encoder Emesh and sample N latent vectors z. We

then iteratively optimize the z’s to capture diverse modes with respect to the occluded regions while remaining consistent with the visible

regions as outlined in Algorithm 2 to obtain the final set of 3D reconstructions.

global+local 3D head model.

Our global+local shape model is based on the FLAME

mesh topology [21]. We use the FLAME registered

D3DFACS [6] and CoMA [29] datasets to compute the lo-

cal PCA models. The FLAME [21] model comes with ver-

tex masks corresponding to 14 parts on the human head.

We trained individual PCA models corresponding to each

of these parts to account for local variations. To do so, we

first take FLAME-registered meshes and fit the full FLAME

model [21] to these by optimizing the following fitting loss:

Lfit = min
β,θ,ψ
||Sgt − S̃(β, θ, ψ)||, (3)

Here S̃(β, θ, ψ) is obtained using Eqs. (1) and (2). We

then unpose both the ground-truth and the fitted shapes

by removing the variations due to pose θ as described in

[21] and obtain S
gt
0

and S̃(β, 0, ψ), respectively. The full

FLAME model consists of |β|= 300 shapes and |ψ|= 100
expression bases to account for complete global variations.

From this, we retain the top NS shape and NE expression

bases (based on eigenvalues) and discard the rest to com-

pute shape residuals S̃res = S
gt
0
− S̃coarse, where

S̃coarse = T̄+

NS
∑

n=1

βnSn +

NE
∑

n=1

ψnEn (4)

We then compute the region-wise shape and expression
PCA models (SRi , ERi) using the region-wise residuals

MRi
⊙ S̃res (here MRi

is the vertex-mask for the i-th re-
gion). For computing the shape bases, we set NS = 10 and
NE = 100 (removing all expression variations); while for
the expression bases, we set NE = 10 and NS = 300 (re-
moving all identity variations). The global + local model
can then be represented as,

T (βG
, β

R
, θ, ψ

G
, ψ

R) = TG(β
G
, θ, ψ

G) + TR(βR
, ψ

R), (5)

where TG(β
G , θ, ψG) is the coarse global shape given by

the top NS shape and NE expression global bases, along
with the pose blendshapes P ( Eq. (2)); and TR(βR, ψR)
represent the local variations and is given by,

TR(βR
, ψ

R) =
∑

Ri





|βRi |
∑

n=1

β
Ri
n S

Ri
n +

|ψRi |
∑

n=1

ψ
Ri
n E

Ri
n



 (6)



4.2. Shape Completion using Mesh-VAE

We use the global+local model to fit robust 3D recon-

struction on the visible parts of the occluded face. But this

does not ensure robust and consistent reconstruction on the

occluded parts since the local PCA models have noisy (oc-

cluded) or no data to fit to. To address this drawback and

to enable the generation of a distribution of plausible 3D re-

constructions rather than a singular solution, which is one

of our primary goals, we adopt a mesh-based VAE (dubbed

Mesh-VAE) as our shape completion model.

We assume that human head meshes can be mapped onto

a continuous and regularized low-dimensional latent space

Z . Then, given a partial 3D mesh Sm, the Mesh-VAE learns

the conditional likelihood of mesh completions Sc and the

corresponding latent embeddings z:

p(Sc, z|Sm) = p(z|Sm)p(Sc|z,Sm), (7)

4.3. DPP Driven Shape Diversification

Even though the Mesh-VAE can sample multiple shape

completions from p(Sc|z,Sm), in practice, the generated

samples from a VAE are not guaranteed to cover all the

modes [49] (see Sec. 5.1). To enforce diversity, we for-

mulate a DPP on shape completions and develop a diversity

loss to optimize their latent embeddings.

We adopt the quality-diversity based formulation of the

DPP kernel L [20], which seeks to balance the quality of

samples with their diversity. Specifically, for elements i, j

in a set, its kernel entry is given by Li,j = qiSi,jqj , where

qi denotes the quality of element i, and Si,j represents the

similarity between i and j. Maximizing the determinant

of such a kernel matrix implies maximizing the quality of

each sample while minimizing the similarity between dis-

tinct samples. For two shape completions S
i
c and S

j
c, we

define the similarity as

Si,j = exp

(

− k

mediani,j(disti,j)
disti,j

)

, (8)

where disti,j = ||Sic − S
j
c||2 is the ℓ2 distance between the

i-th and j-th shape completions and k is a scaling factor.

To ensure that the completed samples look realistic, we re-

late the quality of a sample with the probability of its latent

embedding zi lying within 3σ of the prior N (0, I) as:

qi = exp(−max(0, zTi zi − 3
√
d)), (9)

where d is the dimensionality of zi. For numerical stability

[49], we adopt expected cardinality of L as the DPP loss:

Ldpp = −tr
(

I− (L+ I)−1
)

(10)

4.4. Inference

Given an occluded face image Im, our goal is to generate

a distribution of plausible 3D reconstructions S
1

c , ...,S
M
c .

We do this in three steps which we describe below:

Step 1 Partial Shape Fitting: In this stage, we first fit our

global + local PCA model on the visible parts of the face

image Im to obtain a partial reconstruction Sm. We employ

the following fitting loss:

Lfitting = λ
f
1
Llmk + λ

f
2
Lpho + λ

f
3
Lreg, (11)

where Llmk is the landmark loss, Lpho is the photometric

loss and Lreg applies ℓ2-regularization over the model pa-

rameters. We use an off-the-shelf landmark detector HR-

NET [44] to detect 68 landmarks on the face along with

their confidence values. We mark those landmarks as visi-

ble whose confidence exceeds a threshold τ (set to 0.2) and

apply the landmark loss on those points. To add local de-

tails, we apply a photometric loss between the input image

and a rendered image Iren = R(Sm, Btex(γ, T ), c), where

Btex(γ, T ) is the estimated texture and c the estimated cam-

era parameters. We restrict the photometric loss to the vis-

ible face region using the face mask Mf and the occlusion

mask Mo:

Lpho = ||(Im − Iren)⊙Mf ⊙ (1−Mo)||1 (12)

Step 2 We use the encoder to map the partial fit Sm to a

latent distribution from which we sample the latent embed-

dings z ∼ N (µ, diag(σ2)), where µ,σ = Emesh(Sm).
Step 3 Diversity Promoting Shape Completion: In this

stage, we perform a diversity promoting iterative shape

completion routine, which forces the latent embeddings to-

wards diverse modes w.r.t the occluded regions while re-

maining faithful to the visible regions. At each iteration,

we obtain a distribution of shape completions using the de-

coder Sjc = Dmesh(zj), ∀j = 1...M , and update the z’s to

minimize a diversity loss:

Ldiversity = λ1LS + λ2Lpho + λ3Ldpp (13)

Here LS is the shape consistency loss defined as the ℓ1-

norm between the S
j
c’s and Sm applied on the visible ver-

tices, Lpho is the photometric loss (Eq. (12)) and Ldpp is

the DPP loss (Eq. (10)). The loss coefficients are set to have

similar magnitude for all the loss components.

We outline the full steps for partial shape fitting and di-

versification in Algorithm 1 and Algorithm 2, respectively.

5. Experimental Evaluation

Datasets: We use the FLAME [21] registered head meshes

from the CoMA [29] and D3DFACS [6] datasets for training

the Mesh-VAE, as well as for evaluating the proposed ap-

proach. Note that, other than the Mesh-VAE, our approach

does not involve training any other modules. We split the

two datasets into 80:10:10 train:val:test splits based on sub-

ject ID. We train the Mesh-VAE model using the combined

training splits from the two datasets. During training, we



Algorithm 1 Shape Fitting on the Visible Face Regions

Input: Image Im, Occlusion mask Mo, Face mask Mf ,

Global models S, E ,P , Local models SRi , ERi for i =
1 to 14, Texture model T , Landmarks detectorH
Parameters: β, θ, ψ, γ, c, βRi , ψRi for i = 1 to 14
Hyperparameters: τ = 0.1, niter, λ

f
1
, λ
f
2
, λ
f
3
, η

Output: Partially fitted shape Sm

Detect landmarks from image LI ,Lconf ← H(Im)
Set Lvalid ← 1 when Lconf > τ else 0

for j = 1 to niter do

Obtain Sm using Eqs. (1), (2), (5) and (6)

Select 68 landmarks from shape LS ←Mlmk(S)
Obtain rendered image Iren ← R(S, Btex(γ, T ), c)
L
f
lmk ← ||(LS − LI)⊙ Lvalid||1

L
f
pho ← ||(Im − Iren)⊙Mf ⊙ (1−Mo)||1

Lfreg ← ℓ2 regularization loss over all parameters

Lfitting = λ
f
1
L
f
lmk + λ

f
2
L
f
pho + λ

f
3
Lfreg

Update p ← p − η∇pLfitting for p ∈
β, θ, ψ, γ, c, βRi , ψRi for i = 1 to 14
end for

Algorithm 2 Diverse Shape Completions

Input: Mesh-VAE Encoder Emesh and Decoder Dmesh;

From Algorithm 1: Im,Mo,Mf ,LI ,Lvalid, θ, γ, c, T
Hyperparameters: ncomp, λ1, λ2, λ3, η

Output: M Shape completions {Sj=1:M
c }

Sample the vertex mask Mv
o by projecting S onto Mo

Obtain latent parameters µ,σ ← Emesh(Sm ⊙Mv
o )

Sample M latent vectors z1, ..., zM ∼ N (µ,σ2I)
for i = 1 to ncomp do

Obtain S
j
c ← Dmesh(zj) for j = 1...M

Obtain Iren,j ← R(Sjc, Btex(γ, T ), c) for j = 1...M

LS ←
∑M

j=1
||(Sjc − Sm)⊙ (1−Mv

o )||1
Lpho ←

∑M

j=1
||(Im − Iren,j)⊙Mf ⊙ (1−Mo)||1

Ldpp ← Ldpp(Sj=1:M
c ⊙Mv

o ) using Eq. (10)

Ldiversity = λ1LS + λ2Lpho + λ3Ldpp
Update zj ← zj − η∇zj

Ldiversity for j = 1 to M

end for

augment the meshes with occlusion masks of random (con-

tiguous) shapes at random locations. To evaluate our ap-

proach, we use the test split of the CoMA dataset [29] con-

sisting of subjects that were excluded from training. Fur-

thermore, we conduct a qualitative evaluation on the un-

annotated images from the CelebA dataset [22]. For both

datasets, the test images are artificially augmented with oc-

clusions such as masks, glasses, and other random objects.

Implementation: We implement the Mesh-VAE as a fully

convolutional graph neural network (GNN) based upon the

MeshConv architecture presented in [52]. MeshConv [52]

uses spatially varying convolution kernels to account for the

irregularity of local mesh structures and was shown to out-

perform fixed kernel-based GNN approaches [4, 7, 19, 24,

29, 43] on reconstruction tasks. To train Mesh-VAE as a

shape completion model, we augment the training meshes

with random continuous masks covering 25-40% of the ver-

tices. However, in practice, directly training the Mesh-VAE

for inpainting is very challenging, especially with large de-

grees of occlusions. We adopt a curriculum learning [2]

approach to overcome this challenge and progressively in-

troduce larger occlusions during the training process, i.e.,

we start with easier shape completion tasks and progres-

sively increase its difficulty. We use a combination of ℓ1-

reconstruction, ℓ1-Laplacian, and the KL-divergence losses

to train the network. Note that we do not use partial shape

completions fitted to occluded face images using either the

FLAME [21] or our global+local model to train the Mesh-

VAE, and instead use ground truth meshes to avoid any bias

towards either shape model.

Baselines: To evaluate the efficacy of Diverse3DFace in

terms of diversity and robustness to occlusions, we com-

pare against baselines such as FLAME [21], DECA [11],

CFR-GAN [17], Occ3DMM [8] and Extreme3D [42] us-

ing publicly available implementations or pretrained models

(wherever applicable). Due to the difficulty and unreliabil-

ity in obtaining dense correspondence between FLAME and

other mesh topologies, we perform a quantitative compari-

son only against methods based on the FLAME [21] topol-

ogy. In other cases, we report qualitative comparisons based

on face images with various occlusions patterns.

Metrics: The goal of this paper is to generate diverse yet re-

alistic 3D reconstructions of occluded face images. Such an

approach should have three desired qualities: 1) the recon-

structed shapes should fit as accurately as possible to the

visible regions, 2) the occluded regions should be diverse

from each other, and 3) at least one of the reconstructed

shapes should be very similar to the ground truth shape.

There is no prior work on diverse 3D reconstruction, and as

such, there are no established metrics. So we define the fol-

lowing three metrics to evaluate the aforementioned quali-

ties: (1) Closest Sample Error (CSE): the per-vertex ℓ2-

error between the ground-truth shape and the closest recon-

structed shape (lower is better), (2) Average Self Distance-

Visible (ASD-V): the per-vertex ℓ2-distance on the visible

regions between a 3D completion and its closest neighbor,

averaged across all the samples (lower is better), and (3)

Average Self Distance-Occluded (ASD-O): ASD on oc-

cluded regions (higher is better). These metrics are inspired

by those defined for diverse trajectory forecasting [49].

5.1. Quantitative Results

Tab. 1 reports the 3D reconstruction accuracy in terms of

mean shape error (MSE) on artificially occluded test images

from the CoMA dataset [29] for different approaches using



Target Image FLAME [21] DECA [11] CFR-GAN [17] Occ3DMM [8] Extreme3D [42] Reconstructions by Diverse3DFace (Ours) Ground truth

Figure 3. Qualitative evaluation on the CoMA dataset [29]: Reconstructed singular 3D meshes from the target image by the baselines

vs. the diverse reconstructions (one full shape followed by six partial zoomed-in variations) from Diverse3DFace.

Occlusion DECA [11] FLAME [21] Global+Local (Ours)

Glasses 57.83 47.89 39.98

Face-mask 61.18 30.37 30.11

Random 70.34 47.56 38.27

Overall 62.91 41.24 35.85

Table 1. Comparison of 3D reconstruction accuracy evaluated in

terms of mean shape error (MSE) ×10−3.

the FLAME [21] topology. Across all occlusion types, our

proposed global+local model reports the lowest MSE val-

ues. The large gap between FLAME (fitting) [21], DECA

[11] and our approach demonstrates the necessity of region-

specific model fitting for occlusion robustness.

Due to the lack of existing diverse 3D reconstruc-

tion approaches, we formulate four baselines to evalu-

ate the diversity performance of Diverse3DFace: 1) fit-

ting FLAME on the visible parts plus DPP loss on the

occluded parts (FLAME+DPP), 2) replace FLAME in

(1) with our global+local model (Global+Local+DPP),

3) fitting global+local model followed by shape com-

pletions by the Mesh-VAE as per the learned distribu-

tion p(Sc, z|Sm) (Global+Local+VAE), and 4) replac-

ing the global+local model with FLAME [21] in Di-

verse3DFace (FLAME+VAE+DPP). We report the quan-

titative metrics in Tab. 2. Across all occlusion types,

FLAME+DPP and Global+Local+DPP report much higher

CSE and ASD-V, and lower ASD-O than Diverse3DFace.

Though Global+Local+VAE obtains lower CSE than Di-

verse3DFace, it does so at the cost of reduced diversity in

terms of ASD-O. FLAME+VAE+DPP reports better diver-

sity metrics but at the cost of higher CSE errors. On the

other hand, Diverse3DFace reports the lowest ASD-V, the

highest ASD-O, and the second-lowest CSE, satisfying the

three desired qualities mentioned earlier. These observa-

tions confirm our hypothesis that explicitly accounting for

occlusions and optimizing for diversity can lead to 3D re-

constructions that are both more accurate (on the visible re-

gions) and more geometrically diverse (on the occluded re-

gions). Among the different occlusion types, we report the

highest ASD-O for face-masks. These results are consistent

with the fact that human faces have higher variability in the

mouth and nose regions, which our approach is able to learn

and reproduce.

5.2. Qualitative Results

Fig. 3 shows qualitative results of 3D reconstruction on

the artificially occluded CoMA [29] images. All the base-

lines can only generate a single 3D reconstruction w.r.t the

target image. We observe that the reconstructions generated

by Diverse3DFace look diverse yet plausible and visually

more faithful to the ground truth in the visible regions. In

comparison, FLAME-based fitting [21], and DECA [11] do

not explicitly handle occlusions and generate soft and er-

roneous shapes. CFR-GAN [17] and Occ-3DMM [8] get

the pose wrong in multiple instances. Extreme3D [42] gen-

erates visually better reconstructions of the visible parts

of the face but gets the expression wrong in the second

row. In Fig. 4, we show further visual comparisons on the

occlusion-augmented images from the CelebA [22] dataset.

Note that we do not have ground truth scans for these im-

ages. However, visual results suggest that the baselines,

by being holistic models, do not explicitly exclude features

from the occluded regions and often get incorrect poses and

expressions on these images. Meanwhile, the reconstruc-

tions from Diverse3DFace look diverse on the occluded re-

gions yet consistent w.r.t to the visible parts of the face.



Occlusion FLAME+DPP Global+Local+DPP Global+Local+VAE FLAME+VAE+DPP Global+Local+VAE+DPP (Ours)

Type CSE (↓) ASD-V (↓) ASD-O (↓) CSE (↓) ASD-V (↓) ASD-O (↑) CSE (↓) ASD-V (↓) ASD-O (↑) CSE (↓) ASD-V (↓) ASD-O (↑) CSE (↓) ASD-V (↓) ASD-O (↑)
Glasses 41.26 3.83 3.26 38.17 2.25 3.11 32.88 1.01 1.38 42.58 0.63 4.43 36.30 0.61 4.50

Face-mask 28.14 3.07 4.58 28.06 2.30 3.57 25.95 0.89 1.79 27.97 0.61 7.88 27.58 0.85 7.89

Random 43.12 3.61 4.06 38.85 2.59 3.51 36.58 0.97 1.61 43.00 0.78 5.44 39.11 0.72 5.62

Overall 36.81 3.61 4.06 34.55 2.35 3.39 31.18 0.95 1.59 37.45 0.77 5.92 33.71 0.73 6.05

Table 2. Evaluation of diverse reconstructions by the baselines vs. Diverse3DFace in terms of CSE, ASD-V and ASD-O (in order of 10−3).

Target Image FLAME [21] DECA [11]
CFR-

GAN [17]

Occ3DMM

[8]

Extreme3D

[42]
Reconstructions by Diverse3DFace (Ours)

Figure 4. Qualitative evaluation on the CelebA dataset [22]: Reconstructed singular 3D meshes from the target image by the baselines

vs. the diverse reconstructions from Diverse3DFace.

Figure 5. FLAME [21] based fitting (middle row) vs. our

Global+Local fitting (last row) on occluded face images (top row).

FLAME vs Global+Local PCA Model: In addition to the

quantitative comparison done in Tab. 1, we qualitatively

compare the occlusion robustness of the global FLAME

[21] model vs. our global+local model. In Fig. 5, we

show some failure cases of the FLAME [21] based fitting

on severely occluded images. Notice the severe deforma-

tions on the FLAME [21] fitted outputs, especially around

the mouth. In contrast, the fittings by our global+local mod-

els look more faithful and detailed with respect to the visi-

ble parts. These observations further support our claim that

a global+local model-based fitting performs better than a

global-model based fitting on occluded face images.

6. Conclusion

We proposed Diverse3DFace, an approach to reconstruct

diverse yet plausible 3D reconstructions corresponding to a

single occluded face image. Our approach was motivated

by the fact that, in the presence of occlusions, a distribu-

tion of plausible 3D reconstructions is more desirable than

a single unique solution. We proposed a three-step solu-

tion that first fits a robust partial shape using an ensemble

of global+local PCA models, maps it to a latent space, and

iteratively optimizes the embeddings to promote diversity

in the occluded parts while retaining fidelity with respect to

the visible parts of the face. Experimental evaluation across

multiple occlusion types and datasets show the efficacy of

Diverse3DFace, both in terms of robustness and diversity,

compared to multiple baselines. To our knowledge, this is

the first approach that generates a distribution of diverse 3D

reconstructions of a single occluded face image.

A limitation of the proposed approach is its dependence

on the robustness of the global+local fitting in the first step

for further diverse completions. Although such a locally

disentangled fitting demonstrably performs better than a

global model fitting, it may still be affected in cases where

the initial landmark or face-mask estimates are wrong.
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