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This supplementary material includes the following:

1. Section 1: Two additional linear projection methods.

2. Section 2: Discussion on practical considerations to
account for when approximating inverse square root in
the encrypted domain.

3. Section 3: Additional experiments on fusing finger-
print and face templates.

1. Additional Linear Projection Methods

Naive: The naive method [2] aims to perform a matrix-
vector multiplication similarly to how it would be computed
in the unencrypted domain. The encoding scheme for the
matrix encodes each row of the matrix as a plaintext. The
query vector is presumed to be in the dense representation.
The homomorphic inner product is taken between the vec-
tor and each row of the matrix. This results in γ ciphertexts.
Each of these ciphertexts holds one dimension of the re-
sult replicated in every slot. To combine these results into
a single ciphertext, each result ciphertext is multiplied by
a mask plaintext containing one in the appropriate index
and zeroes elsewhere. All of these ciphertexts are added
together, yielding the final result. This method is consider-
ably slowed down by the fact that it features two serial mul-
tiplications. This necessitates a slower ciphertext-ciphertext
multiplication as well as requiring a larger coefficient mod-
ulus to be selected, which slows all our operations.
Diagonal: This method, devised by Halevi and Shoup [2],
reduces the number of serial multiplications from two to
one by not computing homomorphic inner products. In-
stead, by encoding the diagonals of a matrix as seen in
Figure 2 and multiplying by rotated versions of the query
vector (which is again presumed to be in the dense encod-
ing scheme), the resultant vectors can simply be summed
to yield the result. This diagonal encoding scheme and al-
gorithm assumes that the matrix is square. Thus, we either
need to zero-pad our rectangular matrix to use this method
or not reduce the dimensionality of the concatenated rep-
resentation (i.e., γ = δ). Compressing the representation
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Figure 1: Naive method: A naive method for matrix-vector multi-
plication. Each row of the projection matrix is encoded as a plain-
text. Through a series of homomorphic inner products, we obtain
a ciphertext representing each dimension of the result. Through
masking and adding, we arrive at the final result.

is important to enable efficient match score computation,
however, so this approach is not desirable.
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Figure 2: Diagonal method: Encoding over diagonals of a square
matrix instead of over the rows results in a method that reduces the
multiplicative depth from two to one. The query vector is rotated
once and multiplied by each subsequent matrix plaintext. The sum
of all these results yields the final result.

2. Practical Considerations for Approximating
Inverse Square Root

Panda [3] showed that it is possible to normalize an en-
crypted vector using Goldschmidt’s Algorithm to approx-
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Figure 3: Comparison of multiplicative depth vs. relative error for
different selections of inverse square root approximation. Polyno-
mial approaches can achieve lower multiplicative depth, but incur
more relative error than Goldschmidt’s Algorithm.

imate inverse square root. This method of approximating
inverse square root in the encrypted domain is not particu-
larly suitable for practical applications due to its high mul-
tiplicative depth requirements, slowing every computation
performed in the encrypted domain. We instead use a poly-
nomial approximation constrained over an interval. Fig-
ure 3 shows the multiplicative depth of different parameters
for polynomial and Goldschmidt’s approximations and their
relative errors. Care must be taken to ensure that an appro-
priate range is selected for the approximation, such that the
results of the projection yield squared norms that fall in the
valid range. Smaller ranges yield more precise polynomial
approximations, but are more susceptible to samples not
falling within the range. We select the range [0.05 − 3.00]
and constrain the norm of our projection matrix P such that
the mean of the squared norms of the projections within the
train set is in the middle of the range. If samples fall out-
side this valid range during training, we skip those samples
during that epoch.

3. Additional Experiments

We explore the capacity of HEFT when used on a dataset
with little room for performance improvement. NIST SD4
[4] is a dataset consisting of ink-rolled fingerprint images.
It contains 4,000 samples over 2,000 identities. 192D fea-
tures are extracted via DeepPrint [1]. We pair the well-
performing NIST SD4 dataset with the more challenging
CPLFW dataset to create a multimodal dataset of 7,696
samples over 1,924 classes.

The AUROC of HEFT compared to the baseline is shown
in Table 1 and Fig. 4. The averaging method is not eval-
uated, since it only works on representations that are of

Data Domain Encrypted Normalization Learning Normalization Dimensionality AUROC

CPLFW Message - - 512 0.8253
NIST SD4 Message - - 192 0.99997

Concatenation Message - - 704 0.9982
Learned Message - Exact 32 0.99990
Learned Encrypted Poly (Deg=6) Exact 32 0.9883
Learned Encrypted Poly (Deg=2) Exact 32 0.9294
Learned Encrypted Goldschmidt’s Exact 32 0.9980
Learned Message - HEFT (Deg=2) 32 0.9925
Learned Encrypted Poly (Deg=2) HEFT (Deg=2) 32 0.9925

Table 1: AUROC comparison of HEFT versus baseline

the same dimensionality. NIST SD4 is a somewhat com-
pact representation of 192D, but HEFT can compress it by
a factor of 6 to 32D with only a 0.75% drop in AUROC.
Notably, HEFT improves matching performance over exact
learning by 6.31%. Additionally, HEFT outperforms the
exact normalization learning method when a degree 6 poly-
nomial is used at inference time by 0.42%. These results
show HEFT’s utility at compressing highly accurate repre-
sentations via fusion.

Figure 4: ROC comparison of HEFT against baseline.
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