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ABSTRACT 
This study proposes a novel anomaly detection approach 

focusing on structural components which do not have a baseline 

model and with complex boundary conditions that cannot be 

built into a finite element or a digital twin model. The approach 

uses only sensor collected compressed response distribution data 

to detect and localize changes in boundary conditions under 

extreme loading events. The developed methods use 

unsupervised anomaly detection networks combined with novel 

data compression algorithms. The deep network collects training 

data from real direct measured responses of the structural system 

over time to build a model and then computes the reconstruction 

errors and identifies anomalies. A simplified gusset plate under 

variable clamped-clamped boundary conditions is used in this 

study as preliminary proof-of-concept. In this work, anomalies 

are induced by changing the connection conditions (boundary 

conditions) of the gusset plate (e.g. bolts loosening). This study 

improved the deep learning network performance by 

incorporating mechanics-based loss functions into the network, 

fed with experimental data obtained from the distributed sensors 

installed on the structural element. Results show that the 

mechanics-based modified loss function significantly improves 

the identification and localization abilities of boundary 

condition anomalies and eliminates undesired factors and false 

predictions. 

Keywords: damage detection and localization, machine 

learning, gusset plates, structural health monitoring 

 

 

1. INTRODUCTION 
One of main challenges in applying Structural Health 

Monitoring (SHM) methods has been always the lack of accurate 

models for existing structural systems. Establishing a baseline 

model for most systems is either impractical or infeasible due to 

the non-existence of design and construction or design 

information. Even though SHM has been widely applied to 

bridges [1, 2], skyscrapers [3, 4], wind turbines [5, 6], data 

handling and processing remains largely ineffective for real 

large-scale systems under field loading conditions. Typically, the 

tremendous amount of collected data needs to be denoised, 

missing data needs to be restored, and the information processed 

to obtain useful actionable results. Many studies proposed 

different approaches to successfully overcome these obstacles 

using machine learning [7-10], Bayesian models [9, 11], and 

other data fusion methods [2, 9], but the amount unusable data 

remain a major problem. Moreover, it is worth noting that 

recently, machine learning is increasingly applied in structural 

damage detection and structural condition assessment of civil 

infrastructures with various degrees of success. Several studies 

showed that using machine learning tends in general to improve 

the performance in term of speed and accuracy compared with 

the existing SHM tools [12-14]. One of the many issues that have 

generally hampered the use of advanced ML methods in civil 

engineering applications is the quality of data and in some cases 

the forced adaption of inadequate data to methods directly 

borrowed from other fields. In this preliminary work, we intend 

to show the advantages of an efficient data handling approach 

(reduction in this case) combined with an ML method.   

 Convolutional neural networks (CNNs) are one of the most 

heavily applied techniques. For example, a residual CNN was 
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proposed for structural modal identification using de-noised 

signals in [15]. CNNs were also used for real-time monitoring 

and vibration-based structural condition assessment [16-18]. 

Besides feed-forward neural networks, it is worth mentioning 

that several sequence-based models were also employed to 

detect, localize, and quantify the structural defects. On the other 

hand, long short-term memory (LSTM) (i.e., an advanced type 

of recurrent neural network - RNN) was investigated for damage 

detection in wind turbine blades [19], rubber bearing [20], and 

offshore structures [21]. Furthermore, autoencoders were used 

with a reconstruction model of structural responses to detect 

concrete cracks in collected images [22-25]. In [26], 

compressive sensing was developed and the reconstructed 

responses were used for structural damage detection and 

localization. Furthermore, special types of machine learning 

models such as zero-shots and few-shots learning and detection 

are widely used to recognize and disjoin training classes and 

unseen classes or anomalies [27-32], where no anomaly or few 

anomaly data are used for model training. In our work, we are 

focusing on the latter techniques.  

 In this work, the ML approaches are augmented, as stated 

above, with experimental sensing data to establish baseline 

raining. Among the existing SHM sensing technologies, strain 

gauges are commonly used to components’ condition [33]. Strain 

gauges offer several advantages such as high reliability and 

flexibility (shape and size) and the low cost associated with their 

manufacturing process [34-38]. For instance, strain gauges were 

used for damage identification in plate structures [39], bridges 

[39-41], concrete structures [42], and highway sections [43, 44]. 

However, strain gauge measurements may provide misleading 

information due to the overlap between strain events (i.e., 

resulting from structural damages or environmental factors) [45]. 

To address such issues, the structure can be monitored 

continuously and data is recorded for whole loading events. For 

example, strain data measured from a long‐span suspension 

bridge were compressed and recovered using an autoencoder 

network for data anomaly detection [46]. Several data 

compression algorithms were developed to reduce data size and 

data latency [45-48]. Recently, self-powered floating gate 

sensors powered by strain energy were used in wireless sensor 

networks to detect, localize and quantify damage [49-51]. 

 This paper presents a new approach for detecting and 

localizing structural damage with unsupervised deep learning. 

Our approach does not involve any labeling or damaged 

instances during model training. Only data from the undamaged 

intact structures were used. The reconstruction error was set to 

serve as a metric to assess the abnormality in the data and 

determine the source of the data (e.g., undamaged or damaged 

instances) [50]. The unique features of the reported approach can 

be summarized as (i) a combination of variational autoencoder 

neural network and LSTM network using highly compressed 

SHM data is used, which can detect and localize structural 

damages, (ii) an unsupervised neural network is trained without 

foreseeing anomalies or any damage instance, (iii) a new 

physics-informed network loss function based on the spatial 

information is presented to improve the damage detection and 

localization abilities, and (iv) efficient and fast (only requires a 

short time to gather few samples for neural network testing). The 

paper is organized as follows. Section 2 presents a short 

summary background of deep learning, and schematic strategy 

for the data reduction method and anomaly detection approaches. 

Sections 3 and 4 show the use of the proposed unsupervised deep 

neural network for anomaly detection and localization through 

experimental results. The network is retrained using a custom 

loss function based on basic mechanical characteristics to further 

improve the model performance. Section 5 summarizes the 

major findings of the study.                                                      

 
2. FRAMEWORK OF DEEP LEARNING–BASED DATA 

ANOMALY DETECTION 
 
2.1 Background of anomaly detection 

Anomaly detection refers to a detection technique for 

finding patterns or instances that do not resemble the data with 

expected behaviors [51, 52]. Such dissimilarity in properties 

might be hard to find but can be isolated with relevant data 

processing. Anomaly detection has been used in the field of 

malware [53, 54], financial fraud detection [55, 56], and SHM 

[57, 58]. Many methods are used including isolation forest [59], 

graph-based anomaly detection [55], entropy-based networks 

[53], discriminative metric learning [60], and deep anomaly 

detection networks [51]. 

In structural damage detection applications, differences in 

structural properties between undamaged and damaged 

structures can be discovered and used to differentiate the 

structural status using computer vision [58], generative 

adversarial networks (GANs) [61], autoencoders, or 

reconstruction-based models [25, 61]. Specifically, in 

reconstruction-based models, many approaches use 

reconstruction discrepancies from sensor data obtained from two 

different states of structures [46, 62, 63]. By adding a Gaussian 

anomaly prior to assumption, variational autoencoders are also 

used for SHM [64, 65]. 

 

2.2 Implemented data reduction technique  
In this work we adopt a data reduction approach based on 

the extraction of data distribution features from continuous 

sensing data streams. Instead of feeding whole strain vs time data 

streams into the network, the time history output is analyzed to 

derive distribution characteristics [49, 66]. First, different 

thresholds are selected based on the strain event responses. Then 

the duration of strain events higher than a threshold is recorded 

and added up to get cumulative time data (i.e., each threshold 

results in one cumulative time data). The cumulative time results 

in Gaussian cumulative density functions (CDFs) represented by 

Eq. (1), and the Gaussian parameters can be obtained by curve 

fitting as shown in Fig. 2 (b). 

 

𝐹𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜀) =
𝛼

2
[1 − erf (

𝜀−𝜇

𝜎√2
)]                    (1) 
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α is the summation of all cumulative time events, μ and σ 

represent the mean and standard deviation of the cumulative 

density function, erf denotes the Gauss error function. 

 

FIGURE 1: Representation of the data reduction approach (a) 

strain response and preset strain levels; (b) curve fitting of 

cumulative loading time. 

 

The characteristic of μ and σ obtained from curve fitting can 

be used for structure damage indication. Specifically, different 

parameters μ and σ calculated from different periods of strain 

events can be plotted as different probability distributions 

functions (PDF), and the damage occurrence or propagation can 

be seen visually as the PDF shifts [68]. However, such a one-to-

one comparison of different strain events can only assess local 

damage conditions and is easily disturbed by abnormal or 

extreme events. 

The proposed method takes a sequential data that consists of 

many pairs of μ and σ from a continuous strain output signal, 

each pair of μ and σ is calculated based on one sliced strain 

response segment which extracted from the full strain event as 

shown in Fig. 2. These sequential data are further processed in 

the deep anomaly detection network. 

 

 
FIGURE 2: Framework of data collection and data pre-

processing. 

 
2.3 Unsupervised deep anomaly detection 

The schematic diagram of the unsupervised deep anomaly 

detection method is shown in Fig. 3. Service level loads are 

applied to an undamaged structure to generate strain responses 

and network training data (which are the sequence of μ and σ). 

The network is then trained, and the undamaged structure 

baseline is established through the reconstruction of the 

validation dataset. For damage identification, the testing dataset 

obtained from the damaged structure and the reconstruction from 

the testing dataset is compared with the baseline. Furthermore, a 

mechanics-based loss function is employed and the network is 

retrained for better damage localization. 

 

 
FIGURE 3: Schematic diagram of the proposed unsupervised 

deep anomaly detection network. 

 

3. DAMAGE DETECTION AND LOCALIZATION OF 
GUSSET PLATES 
Structural components connected using gusset plates largely 

depend on bolted connections. It is vital that bolt damage at 

bridge joints is detected early before any critical failure. This 

section uses the proposed data processing method and deep 

anomaly detection neural network for detecting the occurrence 

of bolt loosening and the localization of the damaged bolt area. 

 

3.1 Experiment setup and Data generation 
In this study, a steel plate (45 cm x 36 cm) was used for lab 

testing as shown in Fig. 4. The plate is clamped on the top and 

bottom sides. The top is fixed and the bottom side is loaded with 

random forces controlled by an MTS loading frame in a 

displacement-control configuration. The force is applied with a 

timestep of 0.1s and all the strain data were recorded with a 

sampling rate of 1kHz. A total of 27 strain sensors (i.e., strain 

gauge type is 1-LY11-6/350 measuring the strain in the y-

direction) were attached to the plate for data collection as shown 

in Fig. 4(b). The plate was loaded for only 3 hours, which is 

sufficient for a baseline model to be built. After the first loading 

experiment, the bottom bolt was loosened manually and loaded 

with a random signal of the same duration. 

 

 
FIGURE 4: Experimental setup. 

 

The data reduction method was then used to process both 

the baseline and anomaly strain responses. Fixed length signal 
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interval windows were used to calculate the Gaussian parameters 

with the preset strain threshold levels from Table 1. The obtained 

parameters are grouped as a dataset input for the neural network. 

 

TABLE 1: Preselected strain levels. 

Level Number Strain Threshold Level (με) 

1 20 

2 37 

3 54 

4 71 

5 88 

6 105 

7 122 

 

3.2 Anomaly detection network training 

The network uses two-dimensional data input and the output 

is a reconstruction of the input. The data is arranged in subsets 

of 12 rows representing the 12 continuous observations and 54 

columns representing the 54 parameters obtained from the 27 

sensors (i.e., each sensor has two parameters µ and σ). The 

network consists of an encoder, decoder, LSTM layers, and 

random variances as shown in Fig. 5.  

For the conducted test, the total number of samples is 369 

and the training ratio is 0.75. The model is trained for 150 epochs 

with Adam optimizer and the learning rate is 5e-5. The same 

number of data samples was obtained from testing the bolt 

damaged condition, and then fed into the pre-trained network for 

anomaly detection. 

 

 
FIGURE 5: Proposed network architecture. 

 

The loss function of the network was calculated as the 

summation of mean square error (MSE) and the KL divergence 

term (i.e., a strong prior for latent variable values) using the 

following equations. 

 

𝑙𝑜𝑠𝑠𝑀𝑆𝐸  =
1

𝑛
∑(𝒚 − 𝒙)2                            (2) 

 

𝑙𝑜𝑠𝑠𝐾𝐿  = −0.5 ∗
1

𝑛
∑(1 + log(𝑣𝑎𝑟) − 𝑚𝑒𝑎𝑛2 − 𝑣𝑎𝑟)    (3) 

 

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑀𝑆𝐸 + 𝑙𝑜𝑠𝑠𝐾𝐿                         (4) 

 
Where n, x and y denote the number of samples, the input and 

the output from the anomaly detection network. Respectively, 
𝑚𝑒𝑎𝑛 and 𝑣𝑎𝑟 are the mean and variance of the latent 

distribution generated by the encoder network. The training and 

validation losses are shown in Fig. 6. 

 

 
FIGURE 6: Training and validation losses with two scales (a) 

linear scale; (b) logarithmic scale.
 

 

4. RESULTS AND DISCUSSION 
 
4.1 Damage detection results 

From the network output, or the reconstruction of the input, 

each sensor parameter corresponds to a vector of 12 rows. The 

reconstruction error based on each sensor (or parameter) 

between the input and output can be calculated using Eq. (5) 

below. 

 

𝑒𝑟𝑟𝑜𝑟𝑗 =
1

12
∑ (𝑦𝑖𝑗 − 𝑥𝑖𝑗)212

𝑖=1                         (5) 

 

Where 𝑒𝑟𝑟𝑜𝑟𝑗, 12, 𝑥 and 𝑦 refer to the 𝑗𝑡ℎ parameters for one of 

the sensors, 12 observations in the time sequence, the input and 

output of the network, respectively. 

For the baseline model where the bolt is fully tightened and 

the plate is fixed, the sensor reconstruction errors from the 

training dataset and the validation dataset should be very close 

in values because of the homology of these two datasets. 

Considering hundreds of training and validation samples were 

used, the distributions of those errors were plotted in histograms. 

Two of the 90 histograms are shown in Fig. 7. The distribution 

of the two sets of errors is matched, which validates the 

homology of training and validation datasets and there are no 

anomalies detected. 
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FIGURE 7: Loss histograms of training and validation datasets 

(a) sensor 3 parameter σ; (b) sensor 2 parameter µ. 

 

Compared to the baseline model, the testing dataset from the 

bolt loosening scenario was fed into the trained network and the 

errors were compared with the errors from the validation dataset. 

Sample histograms are shown below in Fig. 8 indicating that the 

bolt damaged case has higher reconstruction errors than the 

baseline model and thus, the existence of anomalies. 

 

 
FIGURE 8: Loss histograms of damaged sample (a) sensor 3 

parameter σ; (b) sensor 2 parameter µ. 

 

To further assess the anomaly detection performance, we 

employed a binary classification algorithm called receiver 

operating characteristic (ROC). A vertical cut-off line can be 

moved from the minimum value to the maximum value of the 

whole dataset to differentiate the two datasets. Accordingly, the 

true positive rates and false-positive rates can be calculated for 

each cut-off value and the calculated data can be plotted as the 

ROC curve as represented in Fig. 9. Besides, the area under the 

receiver operating characteristic (AUROC) can also be 

computed for all 27 sensors to judge the anomaly detection 

quantitatively. The 27 AUROC values can be plotted as a 

contour based on the sensors’ locations for a better visualization 

(i.e., Anomalies can be easily found by looking at the color 

differences). The AUROC contours for the baseline model and 

the bolt damaged model are plotted in Fig. 10. The yellow 

background is the plate geometry and the black dots are the 

sensors (i.e., ‘S1’ means sensor number 1). For the baseline 

model, the AUROC values for both parameters μ and σ are close 

to 0.5, which means the training dataset and validation dataset 

are hard to differentiate. For the bolt damaged model, the values 

vary for different sensors, but the overall contour displays a huge 

contrast with blue and red colors, where values are close to the 

lower and upper limits (i.e., 0 and 1). Such results demonstrate 

the occurrence of anomalies, which in this case, is the loosened 

bolt of the plate. 

 

 
FIGURE 9: ROC curve (a) sensor 3 parameter σ; (b) sensor 2 

parameter µ. 

 

 

 
 

FIGURE 10: AUROC contours (a) parameter µ in undamaged 

plate; (b) parameter σ in undamaged plate; (c) parameter µ in 

bolt damaged plate; (d) parameter σ in bolt damaged plate. 

 

4.2 Damage localization results 

AUROC contours allow for anomaly (damage) detection, 

however it is hard to accurately localize the anomaly locations 

(boundary condition or other damage types). Such binary 

classification method performs well in detection but not 

localization. An approach that modifies the error for anomaly 

localization is introduced, 

 

𝐸𝑟𝑟𝑜𝑟∗ =
|𝑒𝑟𝑟𝑜𝑟𝑣𝑎𝑙−𝑒𝑟𝑟𝑜𝑟𝑡𝑒𝑠𝑡|

𝑁𝑜𝑟𝑚(𝑥𝑣𝑎𝑙)
                        (6) 

 
Where 𝑒𝑟𝑟𝑜𝑟𝑣𝑎𝑙  and 𝑒𝑟𝑟𝑜𝑟𝑡𝑒𝑠𝑡  represent the reconstruction 

errors obtained from the validation or testing dataset and can be 

obtained using Eq. (5), while 𝑁𝑜𝑟𝑚(𝑥𝑣𝑎𝑙) refers to the norm 

vector on the time sequence dimension of the validation input 

data 𝑥𝑣𝑎𝑙 . 

The 27 modified error values can also be plotted as a contour 

based on the sensor location information. The baseline model 

was also evaluated by comparing the training dataset to the 
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validation dataset. The contours for the baseline model and the 

anomaly case are displayed in Fig. 11.  Fig. 11 (a) and Fig. 11 

(b) show that the baseline model has no anomalies. In Fig. 11 (c) 

and Fig. 11 (d), the bolt damaged case indicates the anomalies 

are located mainly on the bottom right side of the plate, which is 

caused by the loosened bolt at the bottom fixture (a boundary 

condition change). The peak values are at least 10 times larger 

compared to the baseline model. However, there are other 

noticeable peaks at sensor 9 and sensor 24, especially in Fig. 11 

(d). Such unrelated anomalies are usually caused by factors such 

as data acquisition errors, sensor calibration, and sensors 

malfunctions (e.g., sensors not fully attached to the plate). One 

of the common characteristics is those factors is the fact that they 

not related to the plate mechanics. Hence, we further improved 

the network by strengthening the interrelations between sensors 

and thus alleviating the environmental effects. 

 

 

 
FIGURE 11: Modified error contours (a) parameter µ results for 

undamaged plate; (b) parameter σ results for undamaged plate; 

(c) parameter µ results for bolt loosening plate; (d) parameter σ 

results for bolt loosening plate. 

 
4.3 Mechanics-based loss function and model retrain 

From basic mechanics, strain changes at one location of the 

plate will result in strain changes around that location (influence 

area), which depends on the boundary condition, geometry, and 

loading conditions. To allow the network to learn such features 

from the baseline model, a mechanics inspired relations between 

the different sensor locations was incorporated with the loss 

function. Any abnormal datasets tested with the newly trained 

network would improve the classification accuracy of the 

anomalies if the data does not follow the learned baseline 

mechanical relations. The loss function is modified and an extra 

loss term 𝑙𝑜𝑠𝑠spatial was added to the original MSE loss function.  

𝑙𝑜𝑠𝑠spatial and the modified loss function are defined below. 

 

𝚫 = 𝒚 − 𝒙                                    (7) 
 

𝑙𝑜𝑠𝑠𝑠𝑝𝑎𝑡𝑖𝑎𝑙  =
1

𝑁2
∑ 𝑊𝑖𝑗|𝚫𝑖 − 𝚫𝑗|                    (8) 

 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠 + 𝑙𝑜𝑠𝑠𝑠𝑝𝑎𝑡𝑖𝑎𝑙           
   (9) 

 
where 𝑥, 𝑦, 𝛥 and 𝑊 refer to the input vector, the output 

vector, the difference between the input and output vectors and 

the spatial weight matrix, respectively. 𝑁 denotes the number of 

the sensors under examination.  

 

The weight matrix can be defined as: 

 

𝑊𝑖𝑗 = 𝜀𝑖/𝜀𝑗                                
   (10) 

 

where 𝜀𝑖 refer to the strain at sensor 𝑖. 
 

In Fig. 12, the modified losses vs epoch curves of the training 

and validation datasets are shown below. The absolute values are 

higher than the previous training results in Fig 6 because of the 

added spatial loss item. 

 

 
FIGURE 12: Modified training and validation losses with two 

scales (a) linear scale; (b) logarithmic scale. 

 
4.4 Damage localization results 

The AUROC contours from the training, validation, and 

testing dataset are shown in Fig. 13. Compared to Fig. 11 (a) and 

Fig. 11 (b), Fig. 13 (a) and Fig. 13 (b) also have contours values 

observed to be ≅ 0.5, which means that there were no anomalies 

in the plate and the new baseline model is not affected by the 

modified network. In Fig. 13 (c) and Fig. 13 (d), the AUROC 

contours can obviously detect the anomalies, but the possible 

anomaly locations are not accurate. Noise in sensor 24 in Fig. 13 

(c) and sensor 19 in Fig. 13 (d) reduce the accuracy. The red 

areas in the bottom right side in Fig. 13 (c) are covering too many 

sensors, which reduces the ability to localize the anomalies. 
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FIGURE 13: ROC contours using mechanics-based loss 

function (a) parameter µ for undamaged plate; (b) parameter σ 

for undamaged plate; (c) parameter µ for bolt damaged plate; (d) 

parameter σ for bolt damaged plate. 

 

Fig. 14 shows the modified error contours from the 

mechanics-based anomaly detection network. Fig. 14 (a) and 

Fig. 14 (b) show similar results of the baseline model compared 

to Fig. 11 (a) and Fig. 11 (b), which use the MSE loss function 

for the network training. For Fig. 14 (c) and Fig. 14 (d), the 

modified network has improved its ability to enhance the peak 

values at the actual anomalies area (i.e., located at the bottom 

right corner of the plate), as the values are increased from 1.44 

to 2.1 and 0.45 to 1.8, compared to Fig. 11 (c) and Fig. 11 (d) 

respectively. Also, the network eliminates undesired peak areas, 

and only the bottom right corner shows the anomaly contour, 

which is exactly where the bolt connection is located (i.e., 

between sensor 1 and sensor 2). 

 

 

 
FIGURE 14: Modified error contours using mechanics-based 

loss function (a) parameter µ for undamaged plate; (b) parameter 

σ for undamaged plate; (c) parameter µ for bolt damaged plate 

(d) parameter σ for bolt damaged plate. 

 

 

5. CONCLUSION 
In this study, we proposed a mechanics-based deep anomaly 

detection neural network using compressed sensor data that can 

be applied to any structural component. The structure response 

data were measured at different locations of the component and 

then compressed based on probability distributions 

representation scheme. The compressed data were used for 

unsupervised network training by minimizing the reconstruction 

errors between the network input and output. After training, the 

output training and testing datasets were compared with different 

statistical methods such as loss histograms, ROC curves, and 

AUROC contours to classify the anomalies. A modified 

reconstruction error was defined to accurately localize the 

anomalies. We also presented a novel mechanics-based loss 

function. The retrained network established a relation between 

different sensors which enhances the performance of filtering out 

anomalies and finding the correct anomaly location. A gusset 

plate was tested and we successfully detected and localized the 

changed boundary condition at the bolt connections. 
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