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Abstract—Deploying deep convolutional neural network (CNN) models on ubiquitous Internet of Things (IoT) devices has attracted
much attention from industry and academia since it greatly facilitates our lives by providing various rapid-response services. Due to the
limited resources of IoT devices, cloud-assisted training of CNN models has become the mainstream. However, most existing related
works suffer from a large amount of model parameter transmission and weak model robustness. To this end, this paper proposes a
cloud-assisted training CNN framework with low model parameter transmission and strong model robustness. In the proposed
framework, we first introduce MonoCNN, which contains only a few learnable filters, and other filters are nonlearnable. These
nonlearnable filter parameters are generated according to certain rules, i.e., the filter generation function (FGF), and can be saved and
reproduced by a few random seeds. Thus, the cloud server only needs to send these learnable filters and a few seeds to the IoT
device. Compared to transmitting all model parameters, sending several learnable filter parameters and seeds can significantly reduce
parameter transmission. Then, we investigate multiple FGFs and enable the IoT device to use the FGF to generate multiple filters and
combine them into MonoCNN. Thus, MonoCNN is affected not only by the training data but also by the FGF. The rules of the FGF play
a role in regularizing the MonoCNN, thereby improving its robustness. Experimental results show that compared to state-of-the-art
methods, our proposed framework can reduce a large amount of model parameter transfer between the cloud server and the IoT
device while improving the performance by approximately 2.2% when dealing with corrupted data.

Index Terms—Internet of Things, cloud computing, cloud-assisted, CNNs.
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1 INTRODUCTION

Background & Motivation. With the advent of the Internet
of Everything era hundreds of millions of Internet of Things
(IoT) devices will be connected to the network. With the
excellent performance of the deep convolutional neural
networks (CNNs) in computer vision [1], [2], speech [3],
natural language processing [4], [5], deploying CNNs on
IoT devices can provide various convenient services [6]–
[11]. Limited by the insufficient resources of IoT devices,
the method to successfully benefit from the excellent perfor-
mance of CNNs is to seek well-resourced cloud servers to
assist in training CNN models.

Fig. 1 shows the process of cloud-assisted CNN model
training. The system architecture consists of two compo-
nents: IoT devices and cloud servers. The deep CNN model
is trained in the cloud server and then sent to the IoT
device to provide users with services. When the subsequent
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Fig. 1: System architecture for cloud-assisted training of
CNN models.

CNN model is updated, the cloud server will periodically
deliver the updated model to the IoT device. To combine
ubiquitous IoT devices with high-performance CNN models
and provide users with high-quality services this paper will
study the cloud-assisted training of CNN models.

Challenges. Implementing cloud-assisted training of a CNN
model system is a nontrivial task that faces the following
two key challenges: The first key challenge is to reduce the
model parameters sent by the cloud server to the IoT devices.
The cloud server usually assists hundreds of millions of IoT
devices in deploying and updating CNN models. In addi-
tion, the number of parameters of the deep CNN model is
high. During model training or subsequent model updating,
frequent and large numbers of model parameter exchanges
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will place considerable pressure on the network bandwidth.
Therefore, reducing the amount of model parameter trans-
mission is a prerequisite for the smooth progress of cloud-
assisted training of CNN models in the era of the Internet of
Everything.

The second key challenge arises from enhancing the ro-
bustness of the CNN model on the IoT device. Due to the
universality of the distribution of IoT devices, the input
data for the execution of tasks are prone to degradation of
CNN model performance due to environmental influence
or man made malicious attacks. For example, the image
data obtained on a rainy or a snowy day or the image is
slightly enlarged, or some pixels are removed. Ensuring the
robustness of the CNN model is a practical problem. The
robustness of a model in this paper refers its generalization
performance against corrupted data. Therefore, ensuring the
robustness of the CNN models deployed on IoT devices is
the key to its deployment.

Our solutions. To address the first challenge, we propose
MonoCNN. In MonoCNN, we only learn a single filter in
each layer, referred to as the seed filter, and generate the
other parameters of the layer through a seed filter and
filter generation function (FGF). The parameters of FGF
are randomly generated and fixed, which allows them to
be reproducible with a few random seeds. Therefore, the
cloud server only needs to send these seed filters and
random seeds to the IoT device, and the trained MonoCNN
model can be reproduced on the IoT device. Compared with
sending all the model parameters, sending these seed filters
and seeds can significantly reduce the number of parameters
transmitted from the cloud server to the IoT device.

To address the second challenge, we propose that the
parameters of the MonoCNN do not completely depend on
the training data. In the MonoCNN, only the parameters
of the seed filter are obtained through training, and the
other parameters are obtained through FGF. This makes
MonoCNN affected not only by the training data but also by
the rules of the FGF. As a result, our MonoCNN naturally
avoids overfitting through FGF regularization so that it
has better generalization when inputting corrupted data.
We also investigate five FGFs and find that the monomial
function significantly outperforms the others.

In summary, our main contributions are as follows:

• To the best of our knowledge, this is the first work
that seeks to reduce model parameter transmission
when training CNN models in a cloud-assisted way.
Our key idea is to issue only a small number of seed
filters and seeds and improve model robustness by
incorporating filter generation function rules.

• We perform a theoretical analysis of the MonoConv
layer, showing that it can approximate the standard
convolutional layer well.

• The experimental results show that the proposed
framework reduces a large amount of model param-
eter transfer between the cloud server and the IoT
device and improves the mean accuracy by approxi-
mately 2.2% when dealing with corrupted data.

The rest of the paper is organized as follows: Section 2
reviews related work. Section 3 describes the proposed

framework. Section 4 presents our evaluation results. Fi-
nally, we conclude this paper in Section 5.

2 RELATED WORK

Combining cloud servers, Internet of Things (IoT) devices,
and deep neural network models to provide users with
high-quality services has become mainstream. We group
existing work into three categories (cloud-only, device-only,
and cloud-device collaboration) based on where the neural
network model training and inference are performed.

Cloud-only: The key desiderata of generating a high-
performance neural network model are sufficient comput-
ing resources and sufficient training data. The configura-
tion of the cloud server perfectly matches these desider-
ata, which introduced research on running neural network
models in the cloud server [12]–[15]. Among them, Jiang et
al. [12] proposed a video analysis controller based on cloud
and deep neural networks. Liu et al.. [13] proposed a deep
learning-based food recognition system that runs a deep
neural network model in the cloud, and the device obtains
recognition services by uploading the collected data to the
cloud. To reduce the quantity of data uploaded to the
cloud, they also incorporate edge computing to process
data on edge servers [16]–[18]. However, cloud execution
is highly dependent on network conditions. When network
conditions are unstable or disconnected, cloud-based deep
neural network models become degraded or unavailable.

Device-only: With the enhancement of computing and stor-
age capabilities of IoT devices, it is possible to train neural
network models directly on IoT devices, which has also led
to the birth of many excellent lightweight models, such as
MobileNets [19]–[21], resource-aware models [22], inference
efficiency [23], [24] and others [25]. For example, Howard et
al. [19] used depthwise separable convolution instead of
standard convolution to reduce the number of parameters in
the network model. Fang et al. [22] deployed many models
on end-devices and nested these models together to provide
users with multiple model choices while saving storage and
switching overhead. Teerapittayanon et al. [24] and Fang et
al. [23] introduced an early exit and multi-branch network
to improve the efficiency of inference. The above methods
explore how to modify the neural network model to adapt
to the IoT device or better training or inference. Hence they
are complementary to our proposed approach.

Cloud-device collaboration: Research on cloud-device col-
laborative training and inference has received high levels of
attention with a large number of excellent approaches [26]–
[33] have been proposed. For example, Zhang et al. [26]
train the neural network model through cloud-edge collab-
oration and prune the deep neural network in the cloud
to minimize the number of model transmission parame-
ters while retaining the original model performance to the
greatest extent. Stefanos et al. [27] proposed a progressive
inference method for collaborative device and cloud com-
puting and used compression [34] and quantization [35]
to reduce the amount of parameter exchange between the
device and the cloud. Kang et al. [30] divided the CNN
into a head that runs on the device and a tail that runs
on the cloud and decided the split point according to the
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Fig. 2: Overview of the proposed framework. In the proposed framework, we first design the cloud-assisted method. Then,
we design a seed filter-based CNN (i.e., MonoCNN). Each layer of MonoCNN only needs to learn the weights of one filter
(i.e., seed filter), which makes the cloud server only need to send the seed filters and a small number of seeds to the IoT
device. Finally, the IoT device generates the MonoCNN trained by the cloud server according to the seed filters, seeds and
filter generation function.

load of the device and the cloud and network conditions.
Akin, Li et al. [32] proposed a joint accuracy and latency-
aware execution framework, which explores the splitting
points of neural network models so that one part runs on
edge devices and the other part runs in the cloud, achieving
fewer parameter exchanges. The above methods have made
great contributions to reducing model parameter exchange.
However, some methods reduce the exchange of model
parameters by finding the best splitting point. Since the
optimal splitting points of different models are different, it
is time-consuming and labor-intensive to search for suitable
splitting points. In addition, reducing the transmission of
model parameters through compression and quantization
results in a loss in model performance.

In contrast, our proposed approach only requires the
cloud server to send one seed filter and one seed for each
layer in MonoCNN to the IoT device, which solves the
overload of network transmission bandwidth caused by
excessive model parameter transmission. In addition, we
also address the challenge of ensuring model robustness,
which is ignored by the above approaches, by using rules to
regularize the generation of model parameters.

3 DESIGN OF THE PROPOSED APPROACH

3.1 Overview

Fig. 2 illustrates the architecture of the proposed framework.
In our framework, we first train MonoCNN in the cloud
server. Instead of learning all the parameters of MonoCNN,
we only learn a single filter in each layer, referred to as the
seed filter. Other parameters of each layer are generated by
its corresponding seed filter and filter generation function
(FGF) and can be reproduced through a random seed. There-
fore, the cloud server only sends a small number of seed fil-
ters and seeds to the IoT device. After obtaining seed filters
and seeds, the IoT device uses them to generate multiple
novel filters and combine them into the MonoCNN trained

on the cloud server. We describe the proposed framework
in detail as follows: 1⃝: the cloud-assisted method in Sec-
tion 3.2, 2⃝: seed filter learning in Section 3.3, and 3⃝: the
filter generation function in Section 3.4.

3.2 Design of cloud-assisted method

Our goals are threefold i) leverage the complete resources
of cloud servers, ii) limit the demand for resources on IoT
devices, and iii) minimize the amount of model parameter
transmission. To facilitate this goal, we propose training
MonoCNN on the cloud server first and then sending the
trained model to the IoT device for deployment. In general,
one cloud server corresponds to millions of IoT devices.
We train MonoCNN on the cloud server and then send
the trained MonoCNN to IoT devices, which facilitates
updating and maintaining our model on the IoT device.

3.3 Design of seed filter learning

Existing high-performance CNN models have a large num-
ber of parameters. For example, VGG19 [1] has 144 million
parameters. In addition, one cloud server corresponds to
millions of IoT devices. Thus a large number of model
parameters still need to be transmitted to IoT devices. To
this end, we start with an analysis of the CNN model pa-
rameters. As [36] shows, the standard CNN model contains
many redundant parameters [2]. To reduce the number of
learnable parameters in the CNN model, [36] first generates
several filters and then generates some novel filters through
inexpensive operations. Juefei et al. [37] decomposed a stan-
dard convolutional layer into two modules, a nonlearnable
layer, and a 1× 1 convolutional layer. Introducing the non-
learnable layer may represent a breakthrough in reducing
the number of model parameters sent by the cloud server
to the IoT devices. This is because the nonlearnable pa-
rameters are randomly initialized and can simply be saved
and reproduced from a random seed. The nonlearnable
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parameters in this paper refer to the parameters in the CNN
model that remain unchanged during training and inference
and remain unchanged during model training on the cloud
server.

The above analysis inspires us to specify that the param-
eters of only one filter (called the seed filter) in each layer of
the CNN model should be learnable while the parameters
of all other filters are nonlearnable and are generated per
certain rules based on the seed filter. In this paper, we refer
to this CNN as MonoCNN. Formally, in any given layer,
given the seed wi for that layer, we can generate many
new filters. The filters are generated via certain specified
rules, e.g., a nonlinear transformation v = f(wi), where
f(wj

i ) = sign(wj
i )|w

j
i |β is a monomial that operates on each

element of wi and β > 0 is the exponent. The convolutional
outputs are computed as follows (we consider 1-D signals
for simplicity):

y =
C∑

j=1

f(wj
i ) ∗ x

j (1)

where xj is the jth channel of the input image and wj
i is the

jth channel of the ith filter. During the forward pass, weights
are generated from the seed filter and are then convolved
with the inputs, i.e.,

z[i] = f(w[i]) = sign(w[i])|w[i]|β (2)

v[i] =
z[i]− 1

n

∑
i z[i](∑

i

(
z[i]− 1

n

∑
i z[i]

)2) 1
2

(3)

where we normalize the response maps to prevent the
responses from vanishing or exploding and v is the nor-
malized response map.

Therefore, for a layer in MonoCNN, by specifying a seed
filter along with certain rules (e.g., monomial functions),
we can generate or augment as many filters as needed. For
example, assume that we need m filters in total for one layer,
where these m filters are nonlearnable and are pointwise
monomial transformations of the seed filter Wl. The input
image xl is filtered by these filters to generate m response
maps, which are then passed through a nonlinear activation
gate, such as a rectified linear unit (ReLU) [38], and become
m feature maps. Accordingly, the process of generating the
feature maps can be expressed as,

y =
m∑
i=1

g(f(wi) ∗ x) (4)

where g(·) is a nonlinear activation, and f(wi) is the mono-
mial filter.

Compared to a standard CNN module with the same
structure (with 1 × 1 convolutions), the number of learn-
able parameters is significantly smaller in the MonoCNN
model. Let us assume that the numbers of input and out-
put channels are Cin and Cout, respectively. Therefore, the
size of each 3-D filter in both the CNN and the proposed
MonoCNN is Cin · k · k, where k is the kernel size of the
filter, and there are m such filters. The 1 × 1 convolutions
act on the m filters and create the Cout-channel output. For
the standard CNN, the number of learnable parameters is
Cin · k · k · m + m · Cout. For the MonoCNN model, the

number of learnable parameters is Cin ·k ·k ·1+m ·Cout. For
simplicity, let us assume that Cin = Cout, which is usually
the case for a deep CNN architecture. Then, we have the
parameter saving ratio:

τ =
#PCNN

#PMonoCNN
=

Cin · k · k ·m+m · Cout

Cin · k · k · 1 +m · Cout
=

k2m+m

k2 +m

and when the filter kernel size is k = 3 and the number of
convolutional filters required for each layer satisfies m ≫
32, we have a parameter saving ratio of τ = 10m

m+9 ≈ 10.
It should be mentioned that our proposed MonoCNN does
not include 1 × 1 convolutions, and thus m = Cin = Cout.
Consequently, the parameter saving ratio τ of our proposed
MonoCNN becomes equal to m, i.e., the number of filters
per layer in the CNN model; for a high-performance CNN
model, there are typically 32, 64, 256, 512, and 1024 filters
per layer. Accordingly, our MonoCNN achieves parameter
savings of approximately 32×, 64×, 256× or more.

On the cloud server, MonoCNN contains only a few
learnable parameters while other parameters of the model
are randomly generated according to predefined rules and
can be saved and reproduced through random seeds. Thus,
after the cloud server has trained MonoCNN, the cloud
server needs to send only the seed filters and the random
seeds to the IoT device to reproduce the trained MonoCNN.
Compared to transmitting all model parameters, sending
only seed filters and random seeds can significantly reduce
communication costs.

We further explore the use of a stagewise supervised
training paradigm to assist in training the MonoCNN
model. Fig. 3 depicts the training pipeline. Specifically, given
a MonoCNN model as a student model, we use its coun-
terpart CNN model (a standard CNN) as a teacher model.
We group the network layers into multiple stages, such
that feature maps of the same size (i.e., spatial resolution)
belong to the same stage while reducing the feature map
size by half in each subsequent stage. Let zi denote the
output feature maps of the teacher model in the i-th stage,
and let zp

i denote the output feature maps of the student
(i.e., MonoCNN) model in the i-th stage. We use the ℓ2-
norms between zi and zp

i as additional losses to supervise
the intermediate feature learning process. In addition, we
leverage knowledge distillation (KD) [39], taking the output
probabilities from the teacher model as soft labels. There-
fore, the final loss that we backpropagate for training the
MonoCNN model is defined as follows:

L(x;W ) =
1

N

N∑
i=1

∥∥zi − zp
i

∥∥2
2

(MSE loss)

+ ℓCE
(
y, q(x;W )

)
(hard loss)

+ ℓCE
(
p(x), q(x;W )

)
, (distill loss)

where x and y denote the inputs and outputs, respectively,
provided by the dataset; W denotes the learnable parame-
ters of the MonoCNN model (i.e., the seed filter parameters);
p(·) and q(·) are the output probabilities of the teacher
model and the student (i.e., MonoCNN) model, respectively;
and ℓCE is the cross-entropy loss. Note that we also add ℓ2-
norms of the learnable parameters to prevent overfitting,
which are removed in the above loss formulation for brevity.
See Fig. 3 for a pictorial illustration.
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Fig. 3: Stagewise supervised training pipeline. Intermediate supervision is imposed between the feature maps of our
proposed model and their counterparts.
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Fig. 4: Performance and convergence rate of standard CNN,
MonoCNN (without KD), and MonoCNN on the CIFAR
dataset (clean vs. corrupted).

Fig. 4 illustrates the performance and convergence rates
of the standard CNN model, the MonoCNN model without
KD, and the MonoCNN model on the CIFAR-10 dataset.
As shown in Fig. 4a, when processing clean data, the
MonoCNN model converges faster than the standard CNN
model, but the performance is lower. However, when KD
is used performance of MonoCNN model improves, and
its convergence rate decreases, possibly due to the use
of a standard CNN as the teacher model. As shown in
Fig. 4b, when processing corrupted data, the three methods
achieve comparable convergence rates. The performance of
the MonoCNN model is higher than that of the standard
CNN model and slightly higher than that of the MonoCNN
model without KD. The experimental results shown in Fig. 4
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Fig. 5: Performance and convergence rate of five filter gen-
eration functions on CIFAR-10 and CIFAR-100 datasets.

demonstrate the superiority of the MonoCNN model in
handling corrupted data.

3.4 Filter generation function design
The combination of using seed filters and generating new
filters according to certain rules makes MonoCNN compa-
rable to or exceeds the performance of the standard CNN
model in handling corrupted data. The rules for generating
new filters are of great merit. The standard CNN model
contains a large number of nonlinear mappings, which
inspired us to use nonlinear mapping functions as FGFs.
Given the existing nonlinear mapping functions and the
large number of derivations included in the standard CNN
model, we choose the following five functions that are easy
to compute:

φ(x) = sign(x)|x|β , (5)
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φ(x) = e−(βx)2 , (6)

φ(x) =
√
1 + (βx)2, (7)

φ(x) =
1

1 + (βx)2
, (8)

φ(x) =
1√

1 + (βx)2
, (9)

Eq. 5, Eq. 6, Eq. 7, Eq. 8 and Eq. 9 are monomial function,
Gaussian function, multiquadric function, inverse quadratic
function and inverse multiquadric function, respectively.
These functions are nonlinear and easy to compute after
derivation. Since a theoretical basis to prove which non-
linear mapping function is the best for generating novel
filters proved elusive we empirically evaluate them across
different datasets. As shown in Fig. 5, and the monomial
function is significantly better than the others in terms of
performance. Therefore, we use the monomial function in
our FGF in this paper and call the CNN model based on the
seed filter and monomial function as MonoCNN.

3.5 Discussion
3.5.1 Using MonoCNN on IoT devices
After the IoT device receives the seed filters and seeds
sent by the cloud server, there are two methods for using
MonoCNN. The first method is to generate the MonoCNN
according to the seed filters, seeds and the FGF when the IoT
is idle and store it. When the MonoCNN model needs to be
used, the IoT device can page it into memory to run it in the
same way as the standard CNN model. The second method
is to dynamically generate the MonoCNN model. That is,
when the MonoCNN needs to be used, the IoT device
instantly generates the MonoCNN by paging the seed filters,
seeds, and the FGF into memory. The second method, which
only stores seed filters and seeds on the IoT device, can
save memory usage and page-in overhead. However, the
price is that there is a certain overhead in generating the
MonoCNN model. Practically, since the generation process
of MonoCNN has only one multiplication and addition
operation, its generation overhead is small. We will test
the resource overhead of generating MonoCNN on the IoT
device as our future work.

3.5.2 Theoretical analysis
Here, we provide theoretical analysis on the MonoConv
layer and demonstrate how it can well approximate the
standard convolutional layer.

At layer l, let xπ ∈ R(C·k·k)×1 be a vectorized sin-
gle patch from the C-channel input maps at location π,
where k is the kernel size of the convolutional filter. Let
w ∈ R(C·k·k)×1 be a vectorized single convolution filter
from the convolutional filter tensor W ∈ RC×k×k×m, which
contains a total of m generated convolutional filters at layer
l. We drop the layer subscription l for brevity.

In a standard CNN, this patch xπ is taken as a dot
product with the filter w, followed by the nonlinearity (e.g.,
ReLU σrelu), resulting in a single output feature value dπ at

the corresponding location π on the feature map. Similarly,
each value of the output feature map is a direct result of
convolving the entire input map x with a convolutional
filter w. This microscopic process can be expressed as:

dπ = σrelu(w
⊤xπ) (10)

Without loss of generality, we assume a single-seed Mono-
Conv case for the following analysis. For a MonoConv
layer, a single-seed filter ws is expanded into a set of m
convolutional filters W ∈ Rm×k×k×w where wi = w◦βi

s ,
and the exponents βis are predefined and are not updated
during training.

The corresponding output feature map value d
(mono)
π

from a MonoConv layer is a linear combination of multiple
elements from the intermediate response maps. Each slice of
this response map is obtained by convolving the input map
x with W , followed by a nonlinearity. The corresponding
output feature map value d

(mono)
π is thus obtained by

linearly combining the m response maps with parameters
α1, α2, . . . , αm. This entire process can be expressed as:

d (mono)
π = σrelu(Wxπ)

⊤︸ ︷︷ ︸
1×m

α︸︷︷︸
m×1

= c⊤reluα (11)

where W is now a 2D matrix of size m× k2w with m filters
vec(wi) stacked as rows, with a slight abuse of notation.
α = [α1, . . . , αm]⊤ ∈ Rm×1. Comparing dπ and d

(mono)
π ,

we consider the following two cases (i) dπ = 0: since crelu =
σrelu(Wxπ) ≥ 0, there always exists a vector α ∈ Rm×1

such that d (mono)
π = dπ . However, when (ii) dπ > 0, it is

obvious that the approximation does not hold when crelu =
0. Thus, under the assumption that crelu is not an all-zero
vector, the approximation d

(mono)
π ≈ dπ will hold.

4 EVALUATION

In this section, we first introduce our experimental setup
including the datasets, baselines, and evaluation metrics
studied in this work, followed by the implementation de-
tails. We then provide an empirical comparison in terms
of network complexity and performance on multiple vision
benchmarks.

4.1 Experimental Setup

Datasets. Five popular datasets are used to verify the effec-
tiveness of the proposed method.

CIFAR-10/-100 [40] are two multiclass natural object
datasets widely used for image classification. Both consist of
50,000 training and 10,000 test images from 10/100 classes,
with each image of 32× 32 pixels.

MS COCO [41] dataset comprises more than 100K
images of diverse objects with annotations, including both
bounding boxes and segmentation masks, from 80 cate-
gories. We take the train2017 set for training and compare
detection performance on the val2017 set.

PASCAL VOC 2012 [42] is a comparably small-scale
dataset of images with 20 foreground object categories and
one category for background. Following prior works [43],
we augment the original training set with the extra anno-
tations from [44], resulting in 10, 582 images (train aug)
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Fig. 6: Comparison of the number of parameters required to be transmitted by the regular CNN and our MonoCNN. We
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competitor methods.

TABLE 1: Comparing MonoCNN and existing alternative methods for image classification on CIFAR-10/-100. Mean
performance along with standard deviation from five runs are reported (i.e., mean±std).

Method Params
(M)

Top-1 Accuracy (%)

CIFAR-10 CIFAR-100

CNN 9.2 92.44±0.19 71.69±0.10

LBCNN 1.2 87.67±0.30 60.57±0.10

PNN 1.2 70.61±0.17 43.56±0.10

ShiftNet 1.1 30.83±0.88 8.84±0.46

GhostNet 4.9 90.05±0.25 65.59±0.19

MonoCNN 2.4 91.45±0.15 69.17±0.21

(a) VGG 11

Method Params
(M)

Top-1 Accuracy (%)

CIFAR-10 CIFAR-100

CNN 11.2 95.19±0.11 77.98±0.33

LBCNN 2.8 93.05±0.10 72.72±0.02

PNN 2.8 92.45±0.18 73.21±0.13

ShiftNet 2.8 92.76±0.14 73.67±0.24

GhostNet 4.3 93.40±0.14 72.77±0.58

MonoCNN 2.8 94.02±0.06 74.22±0.13

(b) ResNet18

Method Params
(M)

Top-1 Accuracy (%)

CIFAR-10 CIFAR-100

CNN 21.3 95.57±0.08 78.73±0.42

LBCNN 3.9 93.54±0.16 73.81±0.21

PNN 3.9 92.31±0.20 73.33±0.14

ShiftNet 3.9 92.84±0.20 73.87±0.25

GhostNet 7.1 93.58±0.24 73.16±0.63

MonoCNN 4.0 94.24±0.12 75.63±0.52

(c) ResNet34

in total for training. We use this dataset for both object
detection and semantic segmentation.

Cityscapes [45] is a large-scale (images are of 1024×2048
pixels) dataset for semantic understanding of urban street
scenes. It is officially split into a training set of 2, 975 images,
a validation set of 500 images, and a (privately hosted)
testing set of 1, 525 images. We use 19 from the provided
30 classes for semantic segmentation.
Baselines. To verify the effectiveness of the proposed
method, we consider the following baselines:

LBCNN [37]: The local binary convolutional neural net-
work (LBCNN) uses sparse local binary filter parameters
(randomly initialized and kept fixed) followed by a learned
1×1 convolution to replace regular 3×3 convolution layers.

PNN [46]: The perturbative neural network (PNN) in-
jects randomly generated additive noise to the input fea-
tures combined through a learned 1 × 1 convolution to
replace regular 3× 3 convolution layers.

ShiftNet [47]: ShiftNet applies a sparse spatial shift
(e.g., one pixel left) to create diverse viewpoints of features,
replacing the regular 3× 3 convolutions.

GhostNet [36]: GhostNet partially substitutes computa-
tionally expensive operations (e.g., regular 3 × 3 convolu-
tions) with cheap operations (e.g., 1 × 1 or grouped 3 × 3
convolutions).

To ensure a fair and comprehensive comparison, we
implement all the above baseline methods within three
well-studied underlining architectures, including VGG11
[1], ResNet18 [2], and ResNet34 [2].

Evaluation Metrics. We use top-1 accuracy to compare per-
formance for image classification. We use the mean average
precision (AP), computed for a recall value over 0 to 1, for
object detection. For semantic segmentation, we adopt mean
intersection-over-union (mIoU), which computes the IoU for

each semantic class averaged over classes. It is worth noting
that we only consider the number of parameters that must
be learned, as these are the parameters that must be sent
from the cloud server to IoT devices.

Implementation Details. We implement our method in
PyTorch 1.7 with CUDA 10.1, and all experiments are per-
formed on 2080TI GPUs. Following the suggestions from the
original papers, we set the sparsity to 0.9 for LBCNN [37]
and the noise level to 0.01 for PNN [46]; we use the 1 × 1
convolution as the cheap operation for GhostNet [36] and
set the ratio to 4.

4.2 Experimental Results

In this section, we first present a comparison of network
complexity, followed by a performance comparison for im-
age classification, object detection, and semantic segmen-
tation on clean data. Finally, we compare robustness on
limited training data, corrupted data, and different style
data.

4.2.1 Amount of Model Parameter Transmission
Our proposed MonoCNN minimizes the number of model
parameters sent by the cloud server to IoT devices. As
shown in Fig. 6, we consider three widely used architec-
tures (VGG11 and ResNet18/34) and compare the learnable
parameters of MonoCNN with those of regular CNNs for
image classification, object detection, and semantic segmen-
tation. Since all filter parameters in the standard CNN
model need to be learned, the cloud server needs to send
all the filter parameters of the standard CNN model to the
IoT device, resulting in a large amount of model parameter
transmission. In contrast, in our proposed MonoCNN, only
a single-seed filter needs to be learned in each layer, and the
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rest of the filters are generated by the filter generation func-
tion. The hyperparameters of the filter generation function
(e.g., monomial exponent) are randomly initialized and re-
main fixed so that these nonlearnable hyperparameters can
be saved and reproduced by the random number generator
seed. Therefore, cloud-assisted training of MonoCNN only
requires the cloud server to send a few seed filters and the
random number generator seeds to recover the MonoCNN
model on the IoT device.

Additionally, as shown in Fig. 6, GhostNet also has
fewer model parameters than the standard CNN model
because GhostNet uses cheap operations to augment filters.
However, our proposed MonoCNN needs to send fewer
model parameters, and in subsequent experiments, our
proposed MonoCNN outperforms GhostNet in almost all
tasks. It is worth mentioning that other types of parameter
reduction techniques (e.g., pruning, quantization [34], and
neural architecture search [48], [49]) can be applied on top
of our method for further compression of model parameters.

4.2.2 Results on Standard Benchmarks
In this section, we evaluate the effectiveness of our
MonoCNN on standard benchmark datasets for image clas-
sification, object detection, and semantic segmentation tasks.

Image Classification. For training on the CIFAR-10/-100
datasets, we use the SGD optimizer with an initial learning
rate of 0.025, which is annealed to zero following the cosine
schedule. We use standard data augmentations: we pad
images with four pixels on each side and randomly crop
a 32 × 32 region, from which random horizontal flipping
is also applied. Given the stochastic nature of the CIFAR
datasets (as the results are subject to high variance even
with exactly the same setup), we repeat the training five
times with different initial random seeds and report the
mean performance along with the standard deviation.

Table 1 depicts the results. In general, we observe that
our MonoCNN consistently outperforms other peer meth-
ods on both CIFAR-10 and CIFAR-100 while requiring a
similar or fewer number of parameters to be learned. Addi-
tionally, our MonoCNN provides substantial savings in the
parameters while achieving similar accuracy performance
when compared to regular CNNs. In particular, the pro-
posed MonoCNN is 3.58% more accurate on CIFAR-100 and
2× more compact than GhostNet [36] when paired with the
VGG11 architecture.

Objection Detection. To evaluate the effectiveness of our
model for object detection, we implement all compared
methods using ResNet18 as the underlining backbone archi-
tecture and FPN [50] as the detection head. For training on
both MS COCO and PASCAL VOC 2012, we use the SGD
optimizer with an initial learning rate of 0.02 and a batch
size of eight over four GPU cards. Following the common
practice, we adopt the 1× (i.e., 12 or 36 epochs) schedule
to train our detection models and decay the learning rate
at the 8th and 11th epochs by a factor of 10. We resize the
training images to the shorter side of 800 pixels with the
longer side to be within 1333 pixels for MS COCO. We resize
the training images to 1000× 600 for PASCAL VOC 2012.

Table 2 and Table 3 depict the results. Similar to the pre-
vious case of image classification, the proposed MonoCNN

consistently outperforms other peer methods for object de-
tection. In particular, MonoCNN achieves 6.2 and 8.0 higher
AP points than LBCNN [37] while using a similar number
of parameters. In addition, we also provide a qualitative
visualization between MonoCNN and the compared meth-
ods in Fig. 7. Evidently, MonoCNN (right-most column in
Fig. 7) is not only more accurate in detecting smaller objects
(see the first and fourth row in Fig. 7) but also more precise
in avoiding duplicate detection boxes (see second and third
row in Fig. 7) than peer methods (Columns 2-4 in Fig. 7).

TABLE 2: Comparing MonoCNN and existing alternative
methods for object detection on MS COCO.

Method AP AP50 AP75 APs APm APl

CNN 33.1 52.6 35.5 18.9 35.4 43.1
LBCNN 25.6 43.3 26.3 13.4 27.2 34.2
GhostNet 30.4 49.3 32.1 16.8 32.5 40.8

MonoCNN 31.8 51.3 34.1 17.3 33.9 41.9

TABLE 3: Comparing MonoCNN and existing alternative
methods for object detection on PASCAL VOC 2012.

Method AP AP50 AP75 APs APm APl

CNN 47.4 79.8 50.6 19.1 33.9 52.1
LBCNN 37.7 69.5 36.1 18.0 25.1 41.8
GhostNet 44.3 76.7 45.9 17.2 31.1 48.8

MonoCNN 45.7 78.1 47.7 16.5 30.8 50.8

Semantic Segmentation. We follow the same setup as in
the previous case of object detection. We also implement
all compared methods using ResNet18 as the underlining
backbone architecture and FPN as the segmentation head.
For training on Cityscapes and PASCAL VOC 2012, we use
the SGD optimizer with a momentum of 0.9 and weight
decay of 5e-4. The batch size is set to 24 over two 2080TI
GPUs. Following the common practice, we adopt the “poly”
learning rate policy (i.e., 0.01 × (1 − iter

maxIter )
0.9) from 0.01

to zero in 60K iterations. Data augmentation includes color
jittering, random horizontal flipping, random cropping and
random resizing. In addition, we scale training images with
a factor randomly sampled from [0.125, 1.5] and crop them
to 1024× 512 for Cityscapes.

Table 4 and Table 5 break down the classwise seg-
mentation mIoU for PASCAL VOC 2012 and Cityscapes,
respectively. Evidently, we observe that our MonoCNN
significantly outperforms peer competitors on both datasets.
In particular, MonoCNN achieves better mIoU with 3×
fewer parameters than the regular CNN model on PASCAL
VOC 2012; MonoCNN achieves 3.6 and 5.2 points higher
mIoU than LBCNN [37] on the two datasets, respectively. A
qualitative comparison is also provided in Fig. 8. Visually,
we observe that MonoCNN leads to a more fain-grained
segmentation on small objects (see boxed regions in 8a).

Discussion. As shown by experimental results on image
classification, object detection, and semantic segmentation
tasks, the proposed MonoCNN consistently outperforms a
wide range of existing alternatives with similar or fewer
parameters. In addition, the proposed MonoCNN can sig-
nificantly decrease the number of parameters compared to
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Fig. 7: Qualitative comparison on MS COCO object detection. From left to right, we show the example predictions from
ground truth, regular CNN, LBCNN, GhostNet, and our MonoCNN. The predicted labels with confidence scores are
annotated at the top-left corners of the detection boxes.

standard CNN models, but with slight performance degra-
dation. The main reason is that it is difficult for MonoCNN
with a small number of learnable parameters to process
the test images that are highly correlated with the training
images through the training images. However, in real sce-
narios, in the data collected by IoT devices, the correlation
between training images and test images is much smaller
than that of the training image set and test image set divided
by the standard dataset. For MonoCNN, its parameters are
also affected by the filter generation function and are not
completely dependent on the training data, thus MonoCNN
is expected to achieve high performance in processing this

type of image.

4.2.3 Results on Robustness
In this section, we use CIFAR-10 classification to evaluate
the performance of the proposed MonoCNN for robustness
on limited data and on data with commonly observable
corruptions.
Limited training data. Insufficient training data are a con-
ventional difficulty for deep neural network models but
often arise in practical applications. Considering the lower
model complexity (i.e., fewer learnable parameters), we
hypothesize that MonoCNN may be less prone to overfitting
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(a) Cityscapes (b) PASCAL VOC 2012

Fig. 8: Qualitative comparison on semantic segmentation. For (a) Cityscapes, we visualize the ground truth, LBCNN,
GhostNet, and our MonoCNN from top to bottom. For (b) PASCAL VOC 2012, we visualize input images, ground truth,
and our MonoCNN from left to right. Zoom in for details.

TABLE 4: Comparing MonoCNN and existing alternative methods for semantic segmentation on PASCAL VOC 2012.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

CNN 79.6 37.4 71.4 51.3 54.2 81.5 76.5 77.6 28.1 59.9 38.3 67.8 66.6 71.7 78.4 39.2 66.4 34.4 69.7 60.4 65.2
LBCNN 71.8 35.0 58.8 47.0 47.1 76.4 73.0 72.4 21.4 46.9 37.8 59.5 51.4 63.8 71.4 31.5 64.0 30.5 65.4 52.3 61.9
GhostNet 77.4 36.2 69.3 48.8 56.4 78.4 74.7 75.8 27.1 59.1 40.8 66.0 62.6 68.5 76.0 36.3 66.5 31.3 68.4 58.8 63.5

MonoCNN 83.9 37.8 78.2 53.3 58.8 89.5 77.9 82.8 31.2 58.9 38.3 71.6 71.8 75.0 77.6 48.2 73.9 35.2 77.4 63.7 65.5

TABLE 5: Comparing MonoCNN and existing alternative methods for semantic segmentation on Cityscapes.

Method road sidewalk building wall fence pole light sign vegetation terrain sky person rider truck bus caravan trailer train motorcycle mIoU

CNN 97.3 78.8 89.9 50.1 47.4 47.4 55.5 66.8 89.9 58.6 93.0 72.7 50.3 92.4 63.3 74.0 53.4 51.0 67.9 68.4
LBCNN 96.9 76.4 88.2 47.8 42.3 40.6 44.2 59.9 88.6 56.3 92.1 66.8 42.2 90.6 56.2 65.2 36.1 41.6 63.6 62.9
GhostNet 97.3 79.4 89.2 47.9 46.5 45.7 51.7 64.7 89.6 59.9 92.6 70.7 46.6 91.5 60.0 75.8 65.7 41.4 66.2 67.5

MonoCNN 97.4 79.8 89.7 49.0 48.7 46.0 55.0 65.7 90.0 61.0 93.0 71.3 49.1 92.1 66.4 73.0 58.9 39.4 66.5 68.1
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Fig. 9: Robustness to limited training data.

to the limited training data. To verify this hypothesis, we
perform an empirical experiment on (randomly selected)
subsets of the CIFAR-10 training set while keeping the
testing set intact. Fig. 9 depicts the results. Compared to
fully learned convolutions (standard CNNs), MonoCNN
exhibits noticeably better generalization performance under
limited training data.

Corrupted data. The vulnerability to a small perturbation in
inputs adversely affects the deployment of deep learning
vision systems in many IoT applications that are sensi-
tive to safety and user privacy. To quantitatively measure
the robustness of the proposed MonoCNN, we consider

TABLE 6: Details of the corruption types evaluated.

Group Corruption Types

Noise Gaussian, Impulse, Shot, Speckle

Blur Defocus, Glass, Motion, Zoom, Gaussian

Weather Brightness, Fog, Frost, Snow, Spatter

Digital Contrast, Elastic, JPEG compression, Pixelate, Saturate

the CIFAR-10-C dataset proposed by Hendrycks and Diet-
terich [51], who applied common observable corruption to
the original (i.e., clean) test images of CIFAR-10. There are
19 different types of corruption from four main categories.
See Table 6 for details and Fig. 10 for visualization.

Based on the empirical findings summarized in Table 7,
we observe that our MonoCNN performs significantly bet-
ter than other peer models under a similar number of pa-
rameters. In addition, MonoCNN also performs noticeably
better than the regular CNN model.

Data under different styles. In addition to data under
degraded quality, another important angle for measuring
robustness is the generalization performance on data under
different styles, i.e., data with the same context but rep-
resented differently. We consider the Icons-50 dataset [51],
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(a) Original (b) Gaussian noise (c) Motion blur (d) Fog (e) Pixelate

Fig. 10: Visualization examples of commonly observable corruptions shown in Table 6.

TABLE 7: Robustness to commonly observable corruptions.
We perform five runs and report mean performance along
with standard deviation (mean±std).

Method Noise Blur Weather Digital mean

CNN 57.05±7.55 74.90±10.5 86.27±5.41 82.32±6.34 75.13±12.9

LBCNN 54.88±6.87 67.61±12.0 81.79±7.49 78.41±7.62 70.67±12.1

PNN 50.13±6.67 63.27±9.12 79.30±7.56 76.09±7.57 67.20±11.5

GhostNet 58.48±5.93 67.53±9.95 81.57±7.35 78.10±7.61 71.42±9.08

MonoCNN 64.41±5.42 77.41±9.41 85.31±5.01 82.22±6.22 77.34±7.98

which consists of 10K images from 50 classes of icons
(e.g., airplane, symbols, activities, etc.) collected by various
technology companies (e.g., Apple, Facebook, Google, etc.).
We hold off data from one company while training on data
from other companies to quantify robustness under different
styles. See Fig. 11 for a visualization.

Fig. 11: Visualization examples of the Icons-50 dataset. For
each class, we show images collected from Apple, Facebook,
Google, and Samsung from top-left to bottom-right.

As shown in Table 8, the mean accuracy of our proposed
MonoCNN outperforms the mean accuracy of other models.
For example, our proposed MonoCNN achieves a mean
accuracy improvement of 1.15% compared to the regular
CNN. The main reason is that the parameters of MonoCNN
are affected by both the filter generation function and
the training data, which makes MonoCNN promising for
achieving better performance than regular CNNs when
dealing with test data whose style is inconsistent with the
training data.

In Table 7 and Table 8, we observe that when there
exists sufficient training data and the test data are within
the same underlining distribution as the training data, all
efficiency-oriented methods (i.e., LBCNN, PNN, GhostNet,

TABLE 8: Robustness to different styles. We perform five
runs and report mean performance along standard devia-
tion (mean±std).

Method Apple Facebook Google Samsung Mean

CNN 91.74±0.65 86.56±0.25 82.63±0.88 81.30±1.11 85.56±4.69

LBCNN 92.73±0.67 87.63±1.33 83.42±0.40 79.09±0.62 85.72±5.83

PNN 92.49±0.48 82.43±1.37 82.24±1.11 82.19±1.67 84.84±5.10

GhostNet 92.95±0.80 85.26±2.20 80.85±0.58 76.64±0.71 83.93±6.97

MonoCNN 93.52±0.59 86.48±0.66 82.42±1.61 84.40±0.87 86.71±4.84

and MonoCNN) exhibit a lower performance due to lower
model capacity from limited parameters. However, the pro-
posed FGF mechanism provides an inductive bias to the
training of MonoCNN, which prevents overfitting to the
training data, in turn, leading to a better generalization
performance under limited training data and on out-of-
distribution test data (i.e., corrupted data or data under
different styles).

4.3 Monomial Function Hyperparameter Study
As demonstrated in the previous sections, we empirically
observe that the monomial transformation is better suited
for the filter generation function. In this section, we perform
parameter sensitivity analysis on the hyperparameters of
the monomial transformation.
Effect of polynomial terms. Instead of a monomial, one may
relax the constraint on the number of terms to include the
more general case of polynomial transformation. Accord-
ingly, we allow the number of terms to grow from one (i.e.,
monomial) to many terms and evaluate the performance of
corresponding models on CIFAR-10 classification. We repeat
each setup five times and present the results in Fig. 12.
We observe that monomial transformation (i.e., number of
terms equal to one) is better suited for filter generation
function as opposed to polynomial transformation with
many terms.
Effect of monomial exponent. Recall that we adopt the
pointwise polynomial transformation as the filter generation
function based on our empirical experiments. The monomial
filter generation function randomly samples a (continuous-
valued) exponent β from [a, b], where a and b are the lower
and upper bounds on β. To understand the effect of β, we
set the number of channels to 64 and the number of layers to
20 for our MonoCNN and vary the lower and upper bounds
of β. Fig. 13 depicts the results. In general, having a diverse
set of exponents β (i.e.,, a larger range of β bounds) leads to
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Fig. 12: Impact of the number of terms used in polyno-
mial transformation, where monomial transformation cor-
responds to the number of terms equal to one.

better performance of MonoCNN. Empirically, we identify
that setting the lower bound a to 1 and the upper bound b
to 7 yields the best performance.
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Fig. 13: Impact of polynomial exponent range. The mono-
mial exponent β is uniformly sampled from [a, b], where a
and b are the lower and upper bounds.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we make the following two contributions.
First, we propose cloud-assisted training of a CNN model
framework for IoT devices by considering model parameter
transmission and model robustness. Second, we propose a
novel CNN architecture (i.e., MonoCNN) that reduces the
number of model parameters sent by the cloud server to IoT
devices by specifying only one filter that needs to be learned
in each layer of MonoCNN and improves the robustness of
the model by regularizing the model parameters using the
filter generation function. Experimental results show that
the proposed approach achieves better performance in deal-
ing with corrupted data and minimizes model parameter
transmission.

In addition, Gill et al. [52] comprehensively combed
the emerging trends and future directions of AI for next-
generation computing, which motivates our future work to
start from the following points:

• We will deploy MonoCNN on the IoT device (such as
the Raspberry Pi 4B) and test the resources and time
it takes to generate MonoCNN based on learnable
parameters, seeds, and filter generation function.

• Since the available resources of the IoT device are
dynamically changing, we need to deploy multiple
MonoCNN variants with different capacities. How-
ever, this faces two challenges: (i) how to divide
multiple MonoCNN variants with different capaci-
ties and how to train these MonoCNN variants; (ii)
how to reduce the storage resources occupied by
deploying multiple MonoCNN variants.

• IoT devices usually run multiple applications simul-
taneously. However, resources are limited. When the
IoT device cannot provide sufficient resources for
each application at the same time, how to reason-
ably allocate resources for each application poses a
challenge.

• Training the high-performance MonoCNN requires
a large quantity of labeled data; however, unlabeled
data are common in real scenarios, and how to train
MonoCNN with the help of unlabeled data is a
practical challenge.

• To avoid leakage of user-sensitive private data, train-
ing MonoCNN on the IoT device is a research di-
rection; however, how to speed up the training of
MonoCNN is a challenge.
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