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Abstract

Structural failures are often caused by catastrophic events such as earth-
quakes and winds. As a result, it is crucial to predict dynamic stress
distributions during highly disruptive events in real time. Currently
available high-fidelity methods, such as Finite Element Models (FEMs),
suffer from their inherent high complexity. Therefore, to reduce com-
putational cost while maintaining accuracy, a Physics Informed Neural
Network (PINN), PINN-Stress model, is proposed to predict the entire
sequence of stress distribution based on Finite Element simulations using
a partial differential equation (PDE) solver. Using automatic differen-
tiation, we embed a PDE into a deep neural network’s loss function
to incorporate information from measurements and PDEs. The PINN-
Stress model can predict the sequence of stress distribution in almost
real-time and can generalize better than the model without PINN.

Keywords: Physics Informed Neural Network, Stress Prediction, Finite
Element Analysis, Partial Differential Equation
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1 Introduction

A dynamic analysis is used to determine how a system will respond to general
time-dependent loads. Events such as earthquakes and explosions are typi-
cal applications for dynamic analysis. These applications should be able to
carry out real-time analysis in the aftermath of a disaster or during extreme
disruptive events that require immediate corrections to avoid catastrophic
failures. Dynamic loading also can cause dramatic and damaging failures,
which can be avoided by evaluating the structure during the design phase.
Finite Element Analysis (FEA) is a powerful engineering tool used to analyze
the behavior of physical systems under different conditions. FEA can be used
to predict the behavior of a system by evaluating various parameters such as
forces, boundary conditions, stresses, and, displacements. FEA is performed
using specialized computer software called a Finite Element Method (FEM)
solver. FEA is typically used to conduct dynamic stress analysis of various
structures and systems in which it might be hard to determine an analytical
solution. However, it is important to note that FEA is a complex process
and requires extensive knowledge and experience to use properly and also
is computationally prohibitive while being accurate. The current workflow
for FEA applications consists of (i) modeling the geometry and its compo-
nents, (ii) specifying the material properties, boundary conditions, meshing,
and loading, (iii) dynamic analysis, which may be time-consuming based on
the complexity of the model. The complexity of this workflow and its time
requirements make it impractical for real-time applications.

The recently introduced models [1, 2] were designed to predict static stress
distributions using deep neural network (DNN)-based methods in both intact
and damaged structural components. The primary limitations of the above
data-driven models are the incapability to produce physically consistent results
and the lack of generalizability to out-of-distribution scenarios. The concept
of physics-informed learning was introduced recently [3-5] to address the
computational cost of FEA and lack of generalizability to out-of-distribution
scenarios. There is special interest in Physics-informed Neural Networks
(PINNS), which directly incorporate partial differential equations (PDEs) into
the training loss function. However, their applications have primarily been lim-
ited to non-engineering toy simulations. Working with engineering problems
such as those in structural engineering will require these models to learn sev-
eral factors of variation in addition to the physical equations themselves, such
as geometry. To overcome these issues, we propose a novel model for dynamic
stress prediction in the specific domain of 2D steel plates which is real-time
and generalizable and can therefore be used for stress prediction in seismic
and explosions design.

We augment PINN with a novel neural architecture for predicting dynamic
stress distribution to achieve fast dynamic analysis and address deficiencies of
data-driven models. We model the stress distribution in gusset plates under
dynamic loading to demonstrate its utility. Gusset plates are one of the most
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Fig. 1: Overview: Unlike FEM, PINN-Stress is computationally efficient,
facilitates real-time analysis and is generalizable. PINN-Stress use a governing
equation behind the equation of motion as a soft constraint in the loss function
to enforce the loss to minimize. The points with different colors in observations
correspond to the same nodes in the gusset plate. Gusset plate image is taken
from [6]

critical components in structural systems such as bridges and buildings. Since
gusset plates are designed for lateral loads such as earthquakes, wind, and
explosions, real-time dynamic models like ours can help avoid catastrophic
failures. In practice, the outputted stress maps from our models can be used
by downstream applications to detect anomalies such as plate cracks. In other
words, it can be a precursor to existing vision-based systems.

An overview of our approach is shown in Fig. 1. To summarize our contri-
butions, we introduce NeuroStress and PINN-Stress, two novel deep learning
models to learn dynamic stress distribution for complex geometries, boundary
conditions, and various load sequences. The loss function in NeuroStress uses
MAE loss as defined in Eq. 10 in section 5.2 for training. PINN-Stress uses the
physics-informed loss function described in Section 3.1. Our models require
input from sensors placed on the plates for real-life use. But since it is difficult
to obtain such data for research purposes, we generate challenging synthetic
data emulating dynamic stress prediction. Through extensive experiments on
simulated data, we show that:

1. NeuroStress and PINN-Stress can predict dynamic stress distribution with
complex geometries, boundary conditions, and various load sequences faster
than traditional FEA solvers. Previous works only predict static stress
distribution;

2. NeuroStress and PINN-Stress can learn the temporal information in the
data to make accurate predictions;

3. NeuroStress and PINN-Stress can predict von Mises stress distribution
using the von Mises equation. von Mises stress distribution is a primary
diagnostic tool to predict the failure of a structure;

4. Introducing a differentiable grid as a surrogate grid to calculate gradients
of stress output along horizontal and vertical directions.
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5. To the best of our knowledge, PINN-Stress is the first model that learns
governing equations behind that of motion in structures. We attribute the
generalization abilities of our architecture on unseen load sequences and
geometries to its loss function.

2 Related Works

Over the past few years, there has been a revolution in data-driven applica-
tions in various engineering fields, including fluid dynamics [7, 8], molecular
dynamics simulation [9, 10] and material properties prediction [11-14]. Recent
studies have shown that convolutional neural networks (CNN) and Long Term
Short Memories (LSTM) can be used to build metamodels for predicting time
history responses. Modares et al. [15] studied composite materials to iden-
tify the presence and type of structural damage using CNNs. Nie et al. [16]
developed a CNN-based method to predict the low-resolution stress field in a
2D linear cantilever beam. Jiang et al. [17] developed a conditional generative
adversarial network for predicting low-resolution static von Mises stress dis-
tribution in solid structures. Zhang et al. [18] used LSTM to model nonlinear
seismic responses of structures with large plastic deformations. Do et al. [19]
proposed a method for forecasting crack propagation in risk assessment of engi-
neering structures based on LSTM and Multi-Layer Perceptron (MLP). Presas
et al [20] proposed a neural network to estimate the magnitude of static and
dynamic stresses based on the measurements of stationary sensors in turbines.
Raissi et al [3, 21] used Gaussian process regression to construct represen-
tations of linear operator functionals. Their model can accurately infer the
solution and provide uncertainty estimates for different physical problems; this
was then extended in [4, 22]. Raissi et al. [23] proposed a physics-informed neu-
ral network that can solve supervised learning tasks while respecting any given
law of physics described by general nonlinear partial differential equations.
For solving nonlinear PDEs, such as Schrodinger, Burgers, and Allen—Cahn
equations, Raissi et al [24] introduced and illustrated the PINN approach.
Vahab et al [25] developed Physics-Informed Neural Networks based on Airy
stress functions and Fourier series to find optimal solutions to a few reference
biharmonic problems of elasticity and elastic plate theory. Yan et al [26] pro-
posed an approach to solving linear elasticity problems in composite plates
and tubes using Physics Informed Neural Network. Chen et al [27] proposed
a PINN for fatigue life prediction with a sparse amount of experimental data
combined with physical models describing the fatigue behavior of materials.
Bai et al [28] proposed an advanced PINN method based on the modified
loss function for computational 2D and 3D solid mechanics. Jeong et al [29]
introduced a Physics-Informed Neural Network-based Topology Optimization
(PINNTO) framework which is a combination of Topology Optimization and
Physics-Informed PINNs. PINNTO uses an energy-based PINN to replace FEA
in the conventional structural topology optimization and numerically deter-
mine the deformation states. Zhang et al [30] presented a PINN method for
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identifying unknown geometric and material parameters. They parameterize
the geometry of the material using a mesh-free method and a differentiable
and trainable technique that can identify multiple structural features. Fal-
lah et al [31] proposed a PINN model for bending and free vibration analysis
of three-dimensional functionally graded porous beams. Bazmara et al [32]
built a PINN framework using the Euler-Bernoulli beam theory and Hamil-
ton principle to predict the nonlinear bending of the beam system. Zaho et
al [33] presented a PINN model for temperature field predicting heat source
layout. Xu et al [34] introduced a PINN model for predicting external loads
of diverse engineering structures based on limited displacement monitoring
points. Zheng et al [35] reconstructed the solution of the displacement field
after damage to predict crack propagation using PINN. Yao et al. [36] proposed
a physics-guided learning algorithm for predicting the mechanical response
of materials and structures. Das et al. [37] proposed a data-driven physics-
informed method for prognosis and applied it to predict cracking in a mortar
cube specimen. Wang et al. [38] proposed a hybrid DL model that unifies
representation learning and turbulence simulation techniques using physics-
informed learning. Goswami et al. [39] proposed a physics-informed variational
formulation of DeepONet for brittle fracture analysis. Haghighat et al. [40]
presented physics-informed neural networks to inversion and surrogate mod-
eling in solid mechanics. Jin et al. [41] investigated the ability of PINNs to
directly simulate incompressible flows, ranging from laminar to turbulent flows
to turbulent channel flows. Li et al. [42] used the Fourier transform to develop
a Fourier neural operator to model turbulent flows.

3 Background

3.1 Stress equilibrium equation

To ensure that any component of an object is in equilibrium, the balance
of forces and moments acting on that component should be enforced. Stress
components acting on the face of the element can be written as equations of
equilibrium. The stress equilibrium equation can be written as a variation in
each stress term within the body since stress changes from point to point.
Considering a two-dimensional case in which stress acts in the horizontal and
vertical directions gives the following set of equations of motion:

005y 004y

ba: - Tz = 1
g + By + pa 0 (1)
Ooyy 00y B

8y + ox + by pay = 0 (2)

where 0,4, 0yy and o4, denote normal stress in horizontal and vertical
directions, and shear stress respectively. b, and b, represent body force in
horizontal and vertical directions. a, and a, represent an acceleration in the
horizontal and vertical directions and p denotes the density of the material.
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3.2 Stress Calculation

The steps for linear finite element analysis’ stress calculation, which is part
of phase (iii) of FEA’s workflow elaborated in the introduction section, are as
follows:

KQ=F 3)
where K denotes a global stiffness matrix, F' is the load vector applied at

each node, and @) denotes the displacement. A stiffness matrix K consists of
elemental stiffness matrices K,:

K.=A.B"DB (4)
where B represents strain-displacement matrix; D represents stress-strain
matrix; and A, represents area of element. Mesh geometry and material prop-
erties determine B and D. This will be followed by adding the local stiffness
matrix k. to the global stiffness matrix. The displacement boundary conditions
are encoded using the corresponding rows and columns in the global stiffness
matrix K. Solving @ can be achieved using direct factorization or iterative
methods.
As a result of calculating the global displacement using equation 3, we can
calculate the nodal displacements ¢ then we can calculate the stress tensors of
each element as follows:

o = DBq ()

von Mises stress is a way of measuring whether a structure has begun

to yield at any point. To compare experimentally observed yield points with

calculated stresses, von Mises stress can be used mathematically as a scalar

quantity. We also predict von Mises stress since the engineering community

relies heavily on it. von Mises stress can be calculated from the predicted o,
Oyy, and oy, through the von Mises stress equation.

O = \/wa + 02, — 0220y + 302, (6)

4 Method

We introduce a novel architecture in this paper and augment it with a physics-
based loss function for gains in generalization.

4.1 Architecture

Firstly, we use a 2-layered MLP to encode the input to a larger dimensional
space. Then we introduce our spatiotemporal multiplexing (STM) module to
encode the spatial and temporal information alternatively. We treat both the
temporal and the spatial dimensions as sequences, which may be modeled
using an appropriate deep neural architecture such as RNN, LSTM [43] or



Springer Nature 2021 BTEX template

Physics Informed Neural Network for Dynamic Stress Prediction 7

self-attention [44]. A conventional RNN is vulnerable to vanishing gradient
and exploding gradient issues [45] when trained with gradient-based learning
and back-propagation through time (BPTT) [46]. LSTM has been developed
by Hochreiter et al [43] to address this problem. The LSTM architecture
is an RNN architecture that is capable of retaining both short- and long-
term dependencies. Compared with traditional RNNs and LSTM, Transformer
architecture can train faster due to parallelization, perform better on certain
tasks, handle long sequences more efficiently, and scale better to larger datasets
and models. Furthermore, transformer training is generally more stable than
LSTM training [47]. Based on the above arguments LSTMs have demonstrated
better performance than RNNs, but have performed worse compared to self-
attention. However, self-attention requires plenty of data, which cannot be
satisfied in our problem statement. Hence, as a middle ground, we use LSTMs
to model both temporal and spatial information.

Spatiotemporal multiplexing (STM): A single instance of our STM
module consists of two LSTM layers - one for temporal sequence modeling and
another for spatial sequence modeling. The input feature to an STM module is
of shape Bx N xT xd where B, N, T, d are batch size, number of spatial nodes,
number of time frames and feature dimension, respectively. We reshape this
tensor into BN x T x d and feed it as input to the first LSTM. Here, T" forms
the index for sequence. The output tensor from this LSTM is reshaped to BT x
N x d before feeding it into the second LSTM for spatial sequence modeling.
The network layers are summarized in Table 1. We would like to point out
that the idea of multiplexing is not novel in deep learning literature [48, 49].
Our contribution is that we used multiplexing in physics-informed learning and
show its utility in dynamic prediction. Our whole architecture consists of three
STM modules, totaling six LSTM layers. The architecture is schematically
shown in Fig. 2

Table 1: Network layers

Ttem Number of layers  Input dimension  Output dimension  Activation

MLP Encoder 2 5x 64 BxNxTxd ReLU
Spatial 3 BxNxTxd BxT'xNxd
Temporal 3 B+TxNxd B«NxTxd

MLP Decoder 1 64x3 BxNxTxd ReLU

* B: batch size, N: number of nodes, T: time frames, d: feature dimension

4.2 Physics Loss Function

In order to force our model to learn the physical constraints, we minimize the
violation of the physical equations shown in Eq. 1 and 2. We also minimize the
boundary condition violation to fully enforce the underlying PDE. Specifically,
our loss function is a weighted sum of three loss terms:

L = WaataLldata + WPDELPDE + WheLbe (7)
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Fig. 2: Model architecture: We introduce the novel spatiotemporal multi-
plexing (STM) to physics-informed learning in order to learn both spatial and
temporal information in the data. Our architecture is lightweight and hence
gives real-time performance.

where Lgat. measures the mean absolute error (MAE) between true and
predicted labels. Lppg measures the violations of the physical equations
defined in Eq. 1 and 2 by calculating the mean absolute error between the
Left Hand Side (LHS) and the Right Hand Side (RHS). Ly corresponds to
boundary condition constraints. wqasa, WppE, and wy. are the weights used to
balance the interplay between the three loss terms. Ly, consists of the initial
and boundary conditions at each time step as below:

oyt =0) =0 ®)
o(x,y, (tg...ty)) =0 (9)

Equations 8 and 9 should be satisfied for 044, 0yy and 04y. x and y are
coordinates of meshes in each sample, and ¢ is the time at time steps.

4.3 Differentiable grid from mesh

Our physics-based loss function requires us to estimate the gradients of stress
output along x and y directions. But since our output is in the form of a tri-
angular mesh, gradient computation is not easy. Instead, we propose a novel
method for calculating gradients on a surrogate grid created using kernel den-
sity estimation (KDE). Specifically, we calculate the stress value at a grid
vertex by adding contributions from every mesh node, weighted by a Gaus-
sian filter centered at this vertex and having a specific variance. By tuning the
variance of this filter, we can achieve a robust, accurate reconstruction of the
mesh along with a mask showing extrapolated regions. The original mesh, the
grid reconstructed from it, and the corresponding mask are shown in Fig. 3.
To compare the accuracy of the surrogate grid, we compare it against the
reconstruction obtained through tricontourf function in Matplotlib package
in Python. As can be observed in Fig. 3c, the grid is accurate within the mesh
region. Now, we can estimate the gradients for the stress outputs from these
grids.
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Fig. 3: Constructing grid values from mesh values (a) mesh nodes of a
single output, the color of each node represents the stress value at the corre-
sponding node, (b) reconstruction from Matplotlib tricontourf function, (c)
our reconstruction on a 200 x 200 grid, (d) corresponding mask showing inter-
polated regions.

5 Experiments and Results

5.1 Data Generation

Gusset plates connect beams and columns to braces in steel structures. The
behavior and analysis of these components are critical since various reports
have observed failures of gusset plates subject to lateral loads [50-52]. The
boundary conditions and time-history load cases are considered to simulate
similar conditions in common gusset plate structures under external loading.
Some of the most common gusset plate configurations in practice are shown
in Fig 4.

Gusset plate ‘B;xce

@ ®) © C)
Fig. 4: Some of the most common gusset plates in practice.

We create a dataset with 71,680 unique samples by combining 14 random
time-history load cases, 1024 different geometries, and 5 most commonly found
boundary conditions in gusset plates. Boundary conditions are shown in Fig. 5,
mimicking the real gusset plates’ boundary conditions. All the translation and
rotational displacements were fixed at the boundary conditions. The range for
width and height of the plates is from 30 c¢cm to 60 cm. Two-dimensional steel
plate structures with five edges, E1 to E5 denoting edges 1 to 5, as shown in
Fig. 6, are considered to be made of homogeneous and isotropic linear elastic
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Table 2: Dataset splits
Split Boundary condition Load position Load number Geometry number
train E2 E4E5 1-8 1-614
train E2E3 E5 1-8 1-614
train E1E2 E4 1-8 1-614
val E3 E2E4 9-12 615-819
test E1E5 E2 12-14 820-1024

materials. Various geometries are generated by changing the position of each
node in horizontal and vertical directions, as shown in Fig. 6, which leads
to 1024 unique pentagons. The material properties remain unchanged and

isotropic for all samples.
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Fig. 5: Different types of boundary conditions for initializing population.
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Fig. 6: Basic schematic topology for initializing the steel plate geometries.

Time histories consist of 100 time-steps generated with random sine and
cosine frequencies. The frequencies range between 1 and 3 Hz, with amplitudes
ranging from 2 to 10 kN at intervals of 2 kN. All time histories in horizontal
and vertical directions are shown in Fig. 7. Each time series last for 1 second
with each time-step lasting 0.01 seconds. All the details of the input variables
used to initialize train-validation-test distribution of the population are shown
in Table 2.
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Fig. 7: Various load sequences in (a) horizontal and (b) vertical directions.

5.1.1 Input data

Input parameters include geometry, boundary condition, and body force in
horizontal and vertical directions, each encoded as vectors in a 3-dimensional
matrix. The size of the input matrix is N x M x T. where, N, M and T
represent mesh nodes, input parameters and time, respectively. For example,
if a sample contains 200 mesh nodes, the size of the input matrix is 200 x 5 x
100. Fig. 8 shows how we construct the input matrix based on the geometry,
boundary conditions and body forces. This figure presents a sample with five
mesh nodes. However, all real samples in the trained model have more than
100 mesh nodes. The first and the second columns of the input matrix are x
and y coordinates of the mesh nodes respectively. The third column represents
the condition of boundary constraint at each node using a Boolean value. If
there is a boundary constraint at the corresponding node, then the value is
one, otherwise is zero. The fourth and the fifth columns represent body force
sequences at each node along = and y directions. Details of boundary conditions
and their load positions are described in Table 2.

5.1.2 Output Data

To obtain the stress distributions for each sample, we perform FEA using the
Partial Differential Equation (PDE) solver in the MATLAB toolbox. Specif-
ically, we use transient-planestress function of MATLAB PDE solver to
generate dynamic stress contours which will act as the ground truth for our
model. We define geometry, boundary condition, material properties, and time
histories as input, and the PDE solver returns the sequence of stress distribu-
tions of 044, 0yy and oy, corresponding to the inputs. The size of each output
is mesh nodes x load sequence. For example, if a sample contains 200 mesh
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Fig. 8: Construction of input matrix (Unit: m, N).

nodes, the size of the output matrix is 200 x 100. Each of the three outputs
are normalized separately between -1 and 1 to ensure faster convergence. The
input and the output representations of the model is shown in Fig. 9.
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Mesh nodes

Fig. 9: Input and output representation for normal and shear stress distri-
bution prediction: (a) Input matrix, (b) Output (044), (¢) Output (oy,), (d)
Output (ogy).

5.2 Metrics

We use Mean Absolute Error (MAE), defined in Eq. 10 as the primary training
loss and metric. To ensure that we do not overfit to a single metric, we also
use Mean Relative Percentage Error (MRPE) to evaluate the overall quality
of predicted stress distribution.

n,t
1 2 ~
N, T
MRPE — MAE . x 100 (11)

max|S(n, 1), 5(n, )]
where S(n, t) is the true stress value at a node n at time step ¢, as computed by

FEA, and S (n,t) is the corresponding stress value predicted by our model, N
is the total number of mesh nodes in each frame of a sample, and 7" is a total
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number of time steps in each sample. As mentioned earlier, we set T'= 100 in
our experiments.

5.3 Implementation

We implemented our model using PyTorch [53] and PyTorch Lightning.
AdamW optimizer [48] was used with an initial learning rate of 1072, All the
details of the network hyperparameters can be found in table 3. The com-
putational performance of the model was evaluated on an AMD EPYC 7313
16-core processor and one NVIDIA A6000 48GB GPU per experiment. The
time required during the training phase for a single batch with 100 frames and
a batch size of 10 for NeuroStress and PINN-Stress were 7 and 20 milliseconds
respectively. The inference time of NeuroStress and PINN-Stress for one sam-
ple was 1 millisecond. The most powerful FE solvers take between 2 minutes
to an hour to solve the same. We use MATLAB PDE solver as a FE solver to
compare the efficiency of our model. We assumed that one sample takes about
two minutes to solve in the FE solver, regardless of how much modeling there
is in the FE solver. MATLAB PDE solver does not use GPU acceleration.
Therefore, NeuroStress and PINN-Stress in solution time are about 12 x 10*
times faster than MATLAB PDE solver.

Table 3: Network hyperparameters

Batch size  Learning rate ~ Weight decay = Number of STM modules  Loss functions

10 le—3 le—4 3 MAE-Phy

5.4 Results

We implement two main models, NeuroStress and PINN-Stress. Both models
are trained on the same train dataset for 300 epochs, evaluated on the vali-
dation dataset for fine-tuning, and we report all metrics on the test dataset.
The entire dataset contains 71,680 samples, while the train dataset contains
43,008 samples, validation and test datasets each contain 14336, forming the
60%-20%-20% split of the whole dataset. Error metrics are calculated using
the checkpoint with the least validation error. Fig. 10 shows stress distribu-
tion prediction for 044, 0yy, 0zy and oy, of a randomly selected frame in a
sample. PINN-Stress predictions are almost identical to their corresponding
references, and the errors in a PINN-Stress prediction are substantially lower
than those in a NeuroStress prediction. Particularly, PINN-Stress can capture
peak stress better than NeuroStress, which is of primary importance in struc-
tural design. The importance of maximum stress matters in the design phase
since maximum stress should be less than yield strength to avoid permanent
deformation.
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6 Ablation Studies

6.1 Generalization

We investigate and compare the generalization capabilities of NeuroStress and
PINN-Stress models for varying distributions of boundary conditions, load
sequences and geometries. To that end, we collect the entire dataset and split
them into train, validation and test sets such that validation and test sets
contain unseen instances of the entity to check generalization on. For example,
for checking generalization on geometry, train set will consist of 614 geometries
out of 1024, and validation and test sets will contain the remaining (205 each).
Table 4 represents the data split for the generalization experiment.

We compare the mean relative percent error (MRPE) of each method on
von Mises stress prediction. As von Mises stress identifies if a given material
is likely to yield or fracture, we use its prediction error as the sole criterion.
Fig 11 shows the relative error of each frame for a random sample across all
time frames for unseen load sequences and structural geometries. As can be
seen, in both figures, the relative errors in PINN-Stress are less than Neu-
roStress, especially in extreme peaks. For instance, in the last two peaks of
the Figs 11a and 11b the relative error of the PINN-Stress is around 10% less
than NeuroStress. This demonstrates the ability of PINN-Stress to predict the
maximum stress values. Additionally, the relative error of PINN-Stress in both
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Table 4: Data split for generalization experiments

Quantity Data split* MRPE (%)

Train Val Test NeuroStress PINN-Stress
Geometry 1-614 615-819 820-1024 1.7 1.5
Load 1-8 9-11 12-14 4.8 4.2
BC E2, E2E3, E1E2 E3 E1E5 18.3 16

* The values in the data split column refer to indices of the corresponding
generalization quantity.

unseen load sequences and structural geometries for almost all 100 frames is
less than 4%, and at least half of the frames have a relative error of less than
2% which we deem acceptable in the engineering domain.

: : :
“e— PINN-Stress 1 —e— PINN:Stress 'ﬁ
- NeufoStress ® I 8 [ e NeuroStress 7}
6 jd L) i 11
! s i

2 # st i 4 gor R
] 18 I ] 'Y
Salladt P U SUNE P i
3 Ve i 1 i & ® ir e
@ LYK T g o 4 i i
& hiRig ¢ ¢ & . #t 1
= i ! q h ! = ! ¢

2 gw H : % 2 *

i Iy H
I 1 B
0 LR g of
i ] | I | |
0 20 40 60 30 100 0 20 40 60 80 100
Time (s) Time (s)
(a) (b)

Fig. 11: Comparison of NeuroStress and PINN-Stress errors for o, across

100 frames for a random spatial node in a sample. (a) unseen load sequences
and (b) unseen geometries.

We pick a random frame from a randomly selected sample to visualize the
stress distribution for unseen load sequences as shown in Fig 12. This figure
demonstrates the generalization capability of PINN-Stress and NeuroStress to
unseen load sequences. As it can be seen, 04, 0yy, 02y and oy, predictions by
PINN-Stress are significantly better than those by NeuroStress. Particularly,
the PINN-Stress is more effective at capturing extreme peak values than the
NeuroStress.

We have also compared the generalization capability of PINN-Stress and
NeuroStress over unseen load sequences in a single spatial node across all time
frames in Fig 13. Fig 13 demonstrate the ability of our models to capture the
temporal dependencies over time frames. It can be seen that both models’
predictions are almost identical to references in all the time frames. However,
in extreme peaks PINN-Stress outperforms NeuroStress.
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Fig. 12: Predicting dynamic stress distribution for diverse load sequences
(Unit: MPa).
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Ozy and oy, across 100 frames for a sample with unseen load sequences.

Fig 14 demonstrates the generalization capability of PINN-Stress and Neu-
roStress to unseen geometries for a random frame from a sample. As it can be
Seen, Ogy, Oyy, Ozy and oy, predictions by PINN-Stress are significantly better
than those by NeuroStress. The NeuroStress can just predict the overall pat-
tern of stress distribution; however, the PINN-Stress can predict every details
of stress distribution. Fig 15 shows stress values in a single spatial node across
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all time frames for the randomly selected sample with unseen geometries. pre-
dictions of PINN-Stress in unseen geometries like unseen load sequences are
almost identical to the references and, in peak locations, are more fitted to the
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references compared to the NeuroStress. The results of geometries generaliza-
tion can be found in Table 4. The lowest error in each experiment is highlighted
in bold. In every experiment, we can observe that PINN-Stress generalizes
better than NeuroStress. However, neither method generalizes satisfyingly for
various boundary conditions. Since we only considered five different boundary
conditions in total, we ran the same experiment for different combinations of
boundary conditions and the results were similar.

6.2 Choice of architecture

The efficiency of architecture can be attributed to several design choices
we have made. Our architecture models the temporal dependency between
time frames and the relationship between different nodes in an input via
our spatiotemporal multiplexing mechanism. As mentioned earlier, we are
the first to introduce such a design into PINNs to the best of our knowl-
edge. Even though self-attention has shown state-of-the-art performance in
sequence modeling, they are not suitable for tasks without large amounts
of data. Hence, we use LSTMs for sequence modeling. To demonstrate our
claim, we compare our architecture against other baseline architectures. We
compare against three architectures: Spatiotempo-Att, Tempo-LSTM,
Spatio-MLP. Spatiotempo-Att is very similar to our architecture, except the
LSTM modules in our model are replaced with self-attention modules. Tempo-
LSTM is also similar to our architecture except the LSTMs act only along
the temporal dimension. Spatio-MLP is a normal feedforward network with
six layers with LeakyReLU activation in between. It treats each time frame
separately but considers all the nodes simultaneously. We will refer to our
architecture as Spatiotempo-LSTM. To save time and resources, we train
all the architectures on 10% of training data with MAE loss. Similar to our
experiments on generalization, we report the error on von Mises stress predic-
tion. The results are shown in Table 5, and the best results are highlighted in
bold Fig 16 shows the relative error of each frame for a random sample across
all time frames for baseline architectures compared to our architecture. As it
can be seen Spatiotempo-LSTM has less relative error in most of the frames
compared to the baseline architectures.

Table 5: Architecture comparison

Architecture

Spatiotempo-Att  Tempo-LSTM  Spatio-MLP  Spatiotempo-LSTM

#Params (K) 309 208 828 208
MRPE(%) 19.5 17.5 25.4 16.6
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Fig. 16: Comparison of baselines architectures and our architecture for o,
across 100 frames for a random spatial node in a sample. (a) Spatiotempo-
LSTM vs Spatiotempo-att, (b) Spatiotempo-LSTM vs Tempo-LSTM and (c)
Spatiotempo-LSTM vs Spatio-MLP

6.3 Baselines

We selected two state-of-the-art methods as the baselines for comparison. In
the first method proposed by Nie et al. [16] U-net architecture was employed
to predict the static stress distribution of cantilever beams. Specifically, they
used conv and deconv layers as encoder-decoder and res-net and squeeze and
excitation blocks in the latent space. We changed the input matrix which was
discussed in section 5.1.2 into images same as our paper [1] in order to be com-
patible with CNN. Since their architecture was designed for static cases and our
dataset was sequential we passed each 100 frames separately into their model.
For the second baseline, we used Neuro-DynaStress proposed by [1] which was
employed to predict dynamic stress distribution utilizing CNN and LSTM.
The architecture contains conv and deconv layers as encoder-decoder, Feature
alignment modules that directly pass information from encoder to decoder,
and LSTM blocks in the latent space. The results are shown in Table 6, and
the best results are highlighted in bold. PINN-Stress outperforms all other
methods when it comes to accuracy, while NeuroStress proves to be quicker
than other methods.

Table 6: Baselines comparison

Architecture (MRPE(%))

Quantity PINN-Stress  NeuroStress  StressNet  Neuro-DynaStress
Geo 1.5 1.7 5.2 2.5
Load 4.2 4.8 7.8 5.6
BC 16 18.3 25.4 20.1

Training time per sample (ms) 20 7 1500 800
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7 Conclusion

We propose NeuroStress and PINN-Stress, two models for dynamic stress
prediction based on a novel architecture, with the latter augmented with
physics-informed loss function. Our models explicitly learn both spatial and
temporal information through our spatiotemporal multiplexing (STM) mod-
ule. Experiments on simulated gusset plates show that not only are our models
accurate, but adding physics-informed loss function facilitates generalization
with respect to varying load sequences and structural geometries. PINN-Stress
is also better at estimating high stress values which is of more importance
to the structural engineering community. However, collecting sufficient data
points from real gusset plates using sensors can be expensive and noisy.
Therefore, our future efforts will be directed toward achieving lower sample
complexity under noisy conditions.

Declarations

® This research was funded in part by the National Science Foundation grant
CNS 1645783.

® There is no conflict of interest among the authors of this paper

e The dataset and codes generated and/or analyzed during the current study
are available at GitHub

References

[1] Bolandi, H., Li, X., Salem, T., Boddeti, V., Lajnef, N.: Bridging finite
element and deep learning: High-resolution stress distribution prediction
in structural components. Frontiers of Structural and Civil Engineering
(2022)

[2] Bolandi, H., Li, X., Salem, T., Boddeti, V., Lajnef, N.: Deep learning
paradigm for prediction of stress distribution in damaged structural com-
ponents with stress concentrations. Advances in Engineering Software
173, 103240 (2022)

[3] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Machine learning of linear
differential equations using gaussian processes. Journal of Computational
Physics 348, 683-693 (2017)

[4] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Numerical gaussian pro-
cesses for time-dependent and nonlinear partial differential equations.
STAM Journal on Scientific Computing 40(1), 172-198 (2018)

[5] Raissi, M., Wang, Z., Triantafyllou, M.S., Karniadakis, G.E.: Deep learn-
ing of vortex-induced vibrations. Journal of Fluid Mechanics 861, 119-137
(2019)


https://github.com/bolandih/2023_PINN_Stress

[6]

[10]

[11]

Springer Nature 2021 BTEX template

Physics Informed Neural Network for Dynamic Stress Prediction 21

Astaneh-Asl, A.: Gusset plates in steel bridges—design and evaluation.
Steel TIPS report, structural steel educational council technical informa-
tion & product services. Moraga, CA (2010)

Farimani, A.B., Gomes, J., Pande, V.S.: Deep learning the physics of
transport phenomena. arXiv preprint arXiv:1709.02432 (2017)

Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., Solenthaler,
B.: Deep fluids: A generative network for parameterized fluid simulations.
In: Computer Graphics Forum, vol. 38, pp. 59-70 (2019). Wiley Online
Library

Goh, G.B., Hodas, N.O., Vishnu, A.: Deep learning for computational
chemistry. Journal of computational chemistry 38(16), 1291-1307 (2017)

Mardt, A., Pasquali, L., Wu, H., Noé, F.: Vampnets for deep learning of
molecular kinetics. Nature communications 9(1), 1-11 (2018)

Mohammadi Bayazidi, A., Wang, G.-G., Bolandi, H., Alavi, A.H., Gan-
domi, A.H.: Multigene genetic programming for estimation of elastic
modulus of concrete. Mathematical Problems in Engineering 2014 (2014)

Sarveghadi, M., Gandomi, A.H., Bolandi, H., Alavi, A.H.: Development
of prediction models for shear strength of sfrcb using a machine learning
approach. Neural Computing and Applications 31(7), 2085-2094 (2019)

Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H., Bolandi, H.: A
new predictive model for compressive strength of hpc using gene expres-
sion programming. Advances in Engineering Software 45(1), 105-114
(2012)

Bolandi, H., Banzhaf, W., Lajnef, N., Barri, K., Alavi, A.H.: An intelligent
model for the prediction of bond strength of frp bars in concrete: A soft
computing approach. Technologies 7(2), 42 (2019)

Modarres, C., Astorga, N., Droguett, E.L., Meruane, V.: Convolutional
neural networks for automated damage recognition and damage type
identification. Structural Control and Health Monitoring 25(10), 2230
(2018)

Nie, Z., Jiang, H., Kara, L.B.: Stress field prediction in cantilevered struc-
tures using convolutional neural networks. Journal of Computing and
Information Science in Engineering 20(1), 011002 (2020)

Jiang, H., Nie, Z., Yeo, R., Farimani, A.B., Kara, L.B.: Stressgan: A
generative deep learning model for two-dimensional stress distribution
prediction. Journal of Applied Mechanics 88(5) (2021)



22

(18]

[19]

[25]

[26]

Springer Nature 2021 BTEX template

Physics Informed Neural Network for Dynamic Stress Prediction

Zhang, R., Chen, Z., Chen, S., Zheng, J., Biiyiikoztiirk, O., Sun, H.:
Deep long short-term memory networks for nonlinear structural seismic
response prediction. Computers & Structures 220, 55-68 (2019)

Do, D.T., Lee, J., Nguyen-Xuan, H.: Fast evaluation of crack growth path
using time series forecasting. Engineering Fracture Mechanics 218, 106567
(2019)

Presas, A., Valentin, D., Zhao, W., Egusquiza, M., Valero, C., Egusquiza,
E.: On the use of neural networks for dynamic stress prediction in francis
turbines by means of stationary sensors. Renewable Energy 170, 652-660
(2021)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Inferring solutions of differ-
ential equations using noisy multi-fidelity data. Journal of Computational
Physics 335, 736-746 (2017)

Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics:
Learning velocity and pressure fields from flow visualizations. Science
367(6481), 1026-1030 (2020)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential
equations. arXiv preprint arXiv:1711.10561 (2017)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of
Computational physics 378, 686-707 (2019)

Vahab, M., Haghighat, E., Khaleghi, M., Khalili, N.: A physics-
informed neural network approach to solution and identification of
biharmonic equations of elasticity. Journal of Engineering Mechanics
148(2), 04021154 (2022)

Yan, C., Vescovini, R., Dozio, L.: A framework based on physics-informed
neural networks and extreme learning for the analysis of composite
structures. Computers & Structures 265, 106761 (2022)

Chen, D., Li, Y., Liu, K., Li, Y.: A physics-informed neural network
approach to fatigue life prediction using small quantity of samples.
International Journal of Fatigue 166, 107270 (2023)

Bai, J., Rabczuk, T., Gupta, A., Alzubaidi, L., Gu, Y.: A physics-informed
neural network technique based on a modified loss function for com-
putational 2d and 3d solid mechanics. Computational Mechanics 71(3),
543-562 (2023)



29]

[30]

31]

[34]

[36]

37]

[38]

Springer Nature 2021 BTEX template

Physics Informed Neural Network for Dynamic Stress Prediction 23

Jeong, H., Bai, J., Batuwatta-Gamage, C., Rathnayaka, C., Zhou, Y.,
Gu, Y.: A physics-informed neural network-based topology optimization
(pinnto) framework for structural optimization. Engineering Structures
278, 115484 (2023)

Zhang, E., Dao, M., Karniadakis, G.E., Suresh, S.: Analyses of inter-
nal structures and defects in materials using physics-informed neural
networks. Science advances 8(7), 0644 (2022)

Fallah, A., Aghdam, M.M.: Physics-informed neural network for bend-
ing and free vibration analysis of three-dimensional functionally graded
porous beam resting on elastic foundation. Engineering with Computers,
1-18 (2023)

Bazmara, M., Silani, M., Mianroodi, M., et al.: Physics-informed neu-
ral networks for nonlinear bending of 3d functionally graded beam. In:
Structures, vol. 49, pp. 152-162 (2023). Elsevier

Zhao, X., Gong, Z., Zhang, Y., Yao, W., Chen, X.: Physics-informed
convolutional neural networks for temperature field prediction of heat
source layout without labeled data. Engineering Applications of Artificial
Intelligence 117, 105516 (2023)

Xu, C., Cao, B.T., Yuan, Y., Meschke, G.: Transfer learning based
physics-informed neural networks for solving inverse problems in engi-
neering structures under different loading scenarios. Computer Methods
in Applied Mechanics and Engineering 405, 115852 (2023)

Zheng, B., Li, T., Qi, H., Gao, L., Liu, X., Yuan, L.: Physics-informed
machine learning model for computational fracture of quasi-brittle mate-
rials without labelled data. International Journal of Mechanical Sciences
223, 107282 (2022)

Yao, H., Gao, Y., Liu, Y.: Fea-net: A physics-guided data-driven model for
efficient mechanical response prediction. Computer Methods in Applied
Mechanics and Engineering 363, 112892 (2020)

Das, S., Dutta, S., Putcha, C., Majumdar, S., Adak, D.: A data-driven
physics-informed method for prognosis of infrastructure systems: The-
ory and application to crack prediction. ASCE-ASME Journal of Risk
and Uncertainty in Engineering Systems, Part A: Civil Engineering 6(2),
04020013 (2020)

Wang, R., Kashinath, K., Mustafa, M., Albert, A., Yu, R.: Towards
physics-informed deep learning for turbulent flow prediction. In: Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 14571466 (2020)



24

39]

Springer Nature 2021 BTEX template

Physics Informed Neural Network for Dynamic Stress Prediction

Goswami, S., Yin, M., Yu, Y., Karniadakis, G.E.: A physics-informed
variational deeponet for predicting crack path in quasi-brittle materials.
Computer Methods in Applied Mechanics and Engineering 391, 114587
(2022)

Haghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R.: A physics-
informed deep learning framework for inversion and surrogate modeling
in solid mechanics. Computer Methods in Applied Mechanics and Engi-
neering 379, 113741 (2021)

Jin, X., Cai, S., Li, H., Karniadakis, G.E.: Nsfnets (navier-stokes flow
nets): Physics-informed neural networks for the incompressible navier-
stokes equations. Journal of Computational Physics 426, 109951 (2021)

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stu-
art, A., Anandkumar, A.: Fourier neural operator for parametric partial
differential equations. arXiv preprint arXiv:2010.08895 (2020)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural com-
putation 9(8), 1735-1780 (1997)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. Advances in
neural information processing systems 30 (2017)

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al.: Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies. A
field guide to dynamical recurrent neural networks. IEEE Press In (2001)

Werbos, P.J.: Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE 78(10), 1550-1560 (1990)

Zeyer, A., Bahar, P.; Irie, K., Schliiter, R., Ney, H.: A comparison of
transformer and lstm encoder decoder models for asr. In: 2019 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU),
pp. 8-15 (2019). IEEE

Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101 (2017)

Ke, N.R., Chiappa, S., Wang, J., Bornschein, J., Weber, T., Goyal,
A., Botvinic, M., Mozer, M., Rezende, D.J.: Learning to induce causal
structure. arXiv preprint arXiv:2204.04875 (2022)

ZAHRAEI, S.M., Heidarzadeh, M.: Destructive effects of the 2003 bam
earthquake on structures (2007)



[51]

[52]

Springer Nature 2021 BTEX template

Physics Informed Neural Network for Dynamic Stress Prediction 25

Zahrai, S.M., Bolandi, H.: Towards lateral performance of cbf with
unwanted eccentric connection: A finite element modeling approach.
KSCE Journal of Civil Engineering 18(5), 1421-1428 (2014)

Zahrai, S., Bolandi, H.: Numerical study on the impact of out-of-
plane eccentricity on lateral behavior of concentrically braced frames.
International Journal of Steel Structures 19(2), 341-350 (2019)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imper-
ative style, high-performance deep learning library. Advances in neural
information processing systems 32 (2019)



	Introduction
	Related Works
	Background
	Stress equilibrium equation
	Stress Calculation

	Method
	Architecture
	Physics Loss Function
	Differentiable grid from mesh

	Experiments and Results
	Data Generation
	Input data
	Output Data

	Metrics
	Implementation
	Results

	Ablation Studies
	Generalization
	Choice of architecture
	Baselines

	Conclusion

