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Abstract

Efforts to improve the adversarial robustness of convo-
lutional neural networks have primarily focused on devel-
oping more effective adversarial training methods. In con-
trast, little attention was devoted to analyzing the role of
architectural elements (such as topology, depth, and width)
on adversarial robustness. This paper seeks to bridge this
gap and present a holistic study on the impact of architec-
tural design on adversarial robustness. We focus on resid-
ual networks and consider architecture design at the block
level, i.e., topology, kernel size, activation, and normal-
ization, as well as at the network scaling level, i.e., depth
and width of each block in the network. In both cases,
we first derive insights through systematic ablative exper-
iments. Then we design a robust residual block, dubbed
RobustResBlock, and a compound scaling rule, dubbed Ro-
bustScaling, to distribute depth and width at the desired
FLOP count. Finally, we combine RobustResBlock and Ro-
bustScaling and present a portfolio of adversarially robust
residual networks, RobustResNets, spanning a broad spec-
trum of model capacities. Experimental validation across
multiple datasets and adversarial attacks demonstrate that
RobustResNets consistently outperform both the standard
WRNs and other existing robust architectures, achieving
state-of-the-art AutoAttack robust accuracy of 61.1% with-
out additional data and 63.7% with 500K external data
while being 2× more compact in terms of parameters. Code
is available at https://github.com/zhichao-
lu/robust-residual-network

1. Introduction
Robustness to adversarial attacks is critical for prac-

tical deployments of deep neural networks. Current re-
search on defenses against such attacks has primarily fo-
cused on developing better adversarial training (AT) meth-
ods [29, 39, 47, 50, 57]. These techniques and the insights
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Figure 1. (L) Impact of architectural components on adversar-
ial robustness on CIFAR-10, relative to that of adversarial train-
ing methods. The variations of each component are elaborated in
§4. (R) Progress of SotA robust accuracy against AutoAttack
without additional data on CIFAR-10 with ℓ∞ perturbations of
ϵ = 8/255 chronologically. We show that innovation in architec-
ture (this paper) can improve SotA robust accuracy while simulta-
neously being almost 2× more compact. Zoom in for details.

derived from them have primarily been developed by fixing
the architecture of the network, typically variants of wide
residual networks (WRNs) [56]. While a significant body
of knowledge exists on designing effective neural networks
for vision tasks under standard empirical risk minimization
(ERM) training, i.e., traditional learning without inner op-
timization needed in AT, limited attention has been devoted
to studying the role of architectural components on adver-
sarial robustness. However, as we preview in Figure 1, ar-
chitectural components can impact adversarial robustness as
much as, if not more than, different AT methods. As such,
there is a large void in practitioners’ toolboxes for designing
architectures with better adversarial robustness properties.

The primary goal of this paper is to bridge this knowl-
edge gap by (i) systematically studying the contribution
of architectural components to adversarial robustness, (ii)
identify critical design choices that aid adversarial robust-
ness, and (iii) finally construct a new adversarially robust
network that can serve as a baseline and test bed for study-
ing adversarial robustness. We adopt an empirical approach
and conduct an extensive amount of carefully designed ex-
periments to realize this goal.

We start from the well-founded observation that net-
works with residual connections exhibit more robustness
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to adversarial attacks [5], and thus, consider the family of
residual networks. Then we systematically assess the two
main aspects of architecture design, block structure and net-
work scaling, and adversarially train and evaluate more
than 1200 networks. For block structure, we consider the
choice of layers, connections among layers, types of resid-
ual connections, activation, etc. For network scaling, we
consider the width, depth, and interplay between them. To
ensure the generality of the experimental observations, we
evaluate them on three different datasets and against four
adversarial attacks. To ensure the reliability of the empiri-
cal observations, we repeat each experiment multiple times
with different random seeds. Based on our empirical ob-
servations, we identify architectural design principles that
significantly improve the adversarial robustness of residual
networks. Specifically, we make the following new obser-
vations:

❶ Placing activation functions before convolutional lay-
ers (i.e., pre-activation) is, in general, more beneficial
with adversarial training, as opposed to post-activation
used in standard ERM training. And sometimes, it can
critically affect block structures such as the basic block
used in WRNs. (§4.1.1, Figure 3a - 3c)

❷ Bottleneck block improves adversarial robustness over
the de-facto basic block used in WRNs. In addition,
both aggregated and hierarchical convolutions derived
under standard ERM training lead to improvements
under adversarial training. (§4.1.1, Figure 3d and 4).

❸ A straightforward application of SE [22] degrades ad-
versarial robustness. Note that this is unlike in standard
ERM training, where SE consistently improves perfor-
mance across most vision tasks when incorporated into
residual networks (§4.1.1, Figure 5).

❺ The performance of smooth activation functions is crit-
ically dependent on adversarial training (AT) settings
and datasets. In particular, removing BN affine param-
eters from weight decay is crucial for the effectiveness
of smooth activation functions under AT. (§4.1.2)

❹ Under the same FLOPs, deep and narrow residual net-
works are adversarially more robust than wide and
shallow networks. Specifically, the optimal ratio be-
tween depth and width is 7 : 3. (§4.2.2)

❻ In summary, architectural design contributes signifi-
cantly to adversarial robustness, particularly the block
topology and network scaling factors.

Building upon the insights above, we make the following
contributions:

• We propose a simple yet effective SE variant, dubbed
residual SE, for adversarial training. Empirically, we
demonstrate that it leads to consistent improvements in

the adversarial robustness of residual networks across
multiple datasets, attacks, and model capacities.

• We propose RobustResBlock, a novel residual block
topology for adversarial robustness. It consistently
outperforms the de-facto basic block in WRNs by ∼
3% robust accuracy across multiple datasets, attacks,
and model capacities.

• We present RobustScaling, the first compound scaling
rule to efficiently scale both network depth and width
for adversarial robustness. Technically, RobustScal-
ing can scale any architecture (e.g., ResNets, VGGs,
DenseNets, etc.). Experimentally, we demonstrate that
RobustScaling is highly effective in scaling WRNs,
where the scaled models yield consistent ∼ 2% im-
provements on robust accuracy while being ∼ 2×
more compact in terms of learnable parameters over
standard WRNs (e.g., WRN-28-10, WRNs-70-16).

• We present a new family of residual networks, dubbed
RobustResNets, achieving state-of-the-art AutoAttack
[9] robust accuracy of 61.1% without generated or ex-
ternal data and 63.7% with 500K external data while
being 2× more compact in terms of parameters.

2. Background and Related Work
This section provides a brief overview of related work.

An extended description of the relation to existing work is
provided in Appendix §A.1.
Adversarial white-box attacks. Since the first demonstra-
tion that high-performant DNNs are vulnerable to small per-
turbations in inputs (a.k.a. adversarial examples) [41], a
plethora of efforts have been devoted to crafting stronger
adversarial examples (AEs) – fast gradient sign method
(FGSM) [15] is one of the earliest methods that applies
a single gradient step to generate AEs; projected gradient
descent (PGD) [29] is a widely studied method that per-
forms well in most cases while being computationally effi-
cient; Carlini & Wagner (CW) [3] introduced an alternative
loss that exhibits strong attack performance; AutoAttack
(AA) [9] is an aggregated attack formed from an ensemble
of four complementary attacks.
Adversarial Training as a Defense. Adversarial training
(AT) has emerged as one of the most effective ways to guard
against adversarial attacks. The basic idea of AT is to lever-
age AEs during the training process of a DNN model. Early
work on AT [29] used inputs perturbed by PGD for train-
ing. Since then, AT techniques have been extended in mul-
tiple directions – customized loss functions to balance the
trade-off between natural and robust accuracy [57] or mak-
ing use of misclassified natural examples [48]; advanced AT
procedures such as early stopping to prevent robust overfit-
ting [36] and weight ensembling [7, 26, 45]; more diverse
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Figure 2. Overview of the architecture components we considered for adversarial robustness: at the network scaling level (Top), the network
has three stages, each with multiple blocks controlled by scaling parameters, i.e., depth and width; at the block level (Bottom), we explore
variants of residual blocks and their components including convolution, activation, kernel size, normalization, etc.

data for training by generative modeling [17, 38] or data
augmentation [35].
Robust Architecture. A few attempts have been made to
explore the impact of architectural components on adver-
sarial robustness. From a block structure point of view, (1)
Cazenavette et al. showed that residual connections signif-
icantly aid adversarial robustness [5]; (2) Xie et al. showed
that smooth activation functions lead to better adversarial
robustness on ImageNet [53], with a similar observation by
Pang et al. on CIFAR-10 with ResNet-18 [32]; (3) Dai et
al. identified that parameterized activation functions have
better robustness properties [10]. However, neither of these
studies verified their corresponding observations across dif-
ferent model capacities and datasets.

From a network’s scaling factors point of view, the pre-
vailing convention favors wide networks, i.e., using WRNs
instead of ResNets (RNs) [46, 57]. However, we argue
that there is no clear consensus on the impact and optimal
configurations of scaling factors for adversarial robustness.
More specifically, (1) Xie et al. hinted that compound scal-
ing with a simple strategy would produce a more robust
model than scaling up a single dimension [53]; (2) Gowal
et al. found that deeper models perform better [16]; (3)
Huang et al. studied the impact of network scaling fac-
tors and showed that reducing the capacity of the last stage
leads to better adversarial robustness [23]; (4) Mok et al.
claimed that there is no clear relationship between the width
and the depth of architecture and its robustness [30]; (5)
Zhu et al. showed that width helps robustness in the over-
parameterized regime, but depth can help only under certain
initialization [58]. However, none of these studies provided

a way to simultaneously scale depth and width.
To summarize, unlike this paper, none of the aforemen-

tioned prior works holistically study the impact of architec-
tural components, i.e., block structure and network scaling,
on adversarial robustness.

3. Preliminaries
In this section, we describe the experimental setup in

terms of the adopted architectural skeleton and the details
on training and evaluating the networks against adversarial
attacks.
Architecture Skeleton: Figure 2 shows the skeleton of the
network that we consider. It comprises a stem (i.e., a single
3 × 3 convolution) and three processing stages. Each stage
is made up of a varying number of convolutional blocks.
The first block in stages two and three uses a stride of two
to downsample the feature sizes by half. We denote the
depth (i.e., number of blocks) and width (in terms of widen-
ing factors) of i-th stage by Di and Wi, respectively. Un-
less otherwise specified, we use 3 × 3 convolution, ReLU
activation, and batch normalization as the default opera-
tions. We study the effect of the block structure (variants
of residual blocks) and the network scaling (configurations
of [D1, D2, D3] and [W1,W2,W3]) on the network’s ad-
versarial robustness, within this architectural skeleton.
Datasets: We evaluate adversarial robustness on three
datasets, CIFAR-10, CIFAR-100 and Tiny-ImageNet.
Training: We employ two training strategies in this paper:

• Baseline adversarial training (BAT): For outer mini-
mization, following prior work, models are adversar-
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ially trained for 100 epochs with a batch size of 128
using SGD with an initial learning rate of 0.1 (which
is multiplied by 0.1 at 75th and 90th epochs), momen-
tum 0.9, and weight decay 2×10−4. We consider three
different adversarial losses, SAT [29], TRADES [57]
(γ = 6), and MART [47] (λ = 5). For inner maximiza-
tion, we use 10 and 7 steps of PGD with a step-size of
α = 2/255 for CIFAR-10/-100 and Tiny-ImageNet,
respectively. The maximum perturbation strength is
set to ϵ = 8/255 to constrain the ℓ∞-norm. Unless
otherwise specified, TRADES is our default baseline.

• Advanced adversarial training (AAT): For outer mini-
mization, following [16, 17, 35], models are adversar-
ially trained with TRADES [57] for 400 epochs us-
ing SGD with Nesterov momentum and weight aver-
aging [26]. We use a batch size of 512 and an initial
learning rate of 0.2, which is decayed by a factor of
10 two-thirds-of-the-way through training. The decay
rate of weight averaging is 0.999. For inner maximiza-
tion, we follow the same procedure as in the case of
baseline AT except for the step-size α, which is set to
0.1 and decreased to 0.01 after five steps.

Evaluation: We consider multiple attacks for evaluating
adversarial robustness including, FGSM [15], 20-step PGD
(PGD20) [29], 40-step CW (CW40) [3], and AutoAttack
(AA) [9] with the same perturbation constraint ϵ = 8/255.
We repeat each experiment multiple times and compute the
mean performance to account for noise in evaluating adver-
sarial attacks. In all results, we show the mean and standard
deviation across the repetitions using markers and shaded
regions, respectively.

4. Design of Adversarially Robust ResNets
We decompose and study the architectural design of ad-

versarially robust residual networks at the block (i.e., block
topology and components) and network (i.e., scaling factors
such as depth and width) level.

4.1. Impact of Block-level Design

Designing a block involves choosing its topology, type
of convolution, activation and normalization, and kernel
size. We examine these elements independently through
controlled experiments and, based on our observations, pro-
pose a novel residual block, dubbed RobustResBlock. A
preview of RobustResBlock is provided below.

4.1.1 Block Topology

Residual Topology: Figure 2 (a, b, c) shows the pri-
mary variants of residual blocks in the literature, namely,
basic [19], bottleneck [19], and inverted bottleneck [37].
Among them, the basic block is the de-facto choice for

Summary of our Robust Residual Block

Building upon the empirical evidence from
§4.1.1 - §4.1.2, we propose a new resid-
ual block design, dubbed RobustResBlock,
to substitute the basic block in architec-
tures designed for adversarial robustness.
– Block Topology: Bottleneck block with
pre-activation, hierarchically aggregated
convolution, and our residual SE (§4.1.1).
– Activation: ReLU (§4.1.2).
– Normalization: BatchNorm (Appendix §A.2).
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studying adversarial robustness [17, 35, 48, 57]. Surpris-
ingly, the bottleneck and inverted bottleneck blocks have
rarely been employed for adversarial robustness, despite
their well-established effectiveness under standard ERM
training for image classification, object detection, etc. [42,
49]. Therefore, we revisit these residual blocks in the con-
text of adversarial robustness. And for each block, we con-
sider two variants (post-activation [19] and pre-activation
[20]) corresponding to the placement of activation functions
before and after a convolution (see Figure 2 (d, e) for an
illustration). Moreover, we consider models of different
capacities by varying the stage-wise depth Di∈{1,2,3} and
width Wi∈{1,2,3} among {4, 5, 7, 11} and {10, 12, 14, 16},
respectively.

Figure 3 compares the adversarial robustness of the
above variants of residual blocks under baseline AT. We
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(c) Inverted Bottleneck
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Figure 3. Robust accuracy of networks on C-10 with (a) basic,
(b) bottleneck, and (c) inverted bottleneck blocks, with post and
pre-activation. (d) Comparison among blocks with pre-activation.
“No residual” removes the residual connection in the basic block.

observe that (i) the basic block is susceptible to the lo-
cation of the activation function, with pre-activation lead-
ing to a substantial improvement in adversarial robustness
(Fig. 3a); (ii) performance of the bottleneck and inverted
bottleneck blocks are relatively stable w.r.t the position of
the activation function, although pre-activation provides a
slight but noticeable benefit on large-capacity models with
bottleneck blocks and small-capacity models with inverted
bottleneck blocks (Figs. 3b and 3c). Thus, we argue that
pre-activation is preferred over post-activation for adver-
sarial robustness. Figure 3d compares the three residual
blocks with pre-activation under baseline AT. We observe
that the basic block is more effective in low model-capacity
regions, while the bottleneck block is more effective in high
model-capacity regions. Finally, since the inverted bottle-
neck does not outperform the other two blocks under any
model capacity, we do not consider it any further. Addi-
tional results are available in Appendix §A.3.

Aggregated and Hierarchical Convolutions: Next, we
consider two enhanced arrangements of convolution, aggre-
gated [54], and hierarchical [14], which have proven to be
effective for residual blocks under standard EMR training
on standard tasks. Aggregated and hierarchical convolu-
tions split a regular convolution into multiple parallel con-
volutions and hierarchical convolutions; see Figure 2 (g, h)
for visualizations. We incorporate both of them within the
bottleneck block. For each enhancement, experiments with
parameter sweeps were carried out to determine appropriate
values for their hyperparameters, i.e., cardinality for aggre-
gated (Figure 4a) and scales for hierarchical convolutions
(Figure 4b). Figures 4 (c, d) compare the bottleneck block
with aggregated and hierarchical convolutions under base-
line AT, respectively. We observe that the bottleneck block
consistently benefits from both enhancements and outper-
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Figure 4. (a, b) show effects of cardinality and scales for a low-
capacity model (Di = 4,Wi = 10). (c, d) Comparing aggregated
(cardinality = 4) and hierarchical (scales = 8) bottleneck to other
blocks. All results are on CIFAR-10.
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Designs (reduction ratio) #P (M) #F (G) Clean Robust (CW40)

w/o SE 265 39.0 85.47 55.07
Standard SE (r = 16) 296 39.1 84.56 (-0.91) 54.52 (-0.55)
Conv3×3-SE (r = 16) 273 39.1 85.26 (-0.21) 54.77 (-0.40)
Identity-SE (r = 16) 293 39.1 85.20 (-0.27) 54.94 (-0.13)

Our residual SE (r = 16) 296 39.1 85.75 (+0.28) 55.95 (+0.88)
Our residual SE (r = 64) 273 39.1 85.61 (+0.14) 56.05 (+0.98)

(d) Ablation study on SE integration designs.
Figure 5. (a) Standard SE block. (b) Our residual SE adds an
extra skip connection around the SE module. (c) Comparison of
residual blocks w/ and w/o our residual SE. (d) Ablation results
with relative improvement/degradation shown in parentheses.

forms the basic block across a wide spectrum of model-
capacity regions. On the other hand, aggregated convolu-
tion adversely affects adversarial robustness when paired
with the basic block. More detailed results can be found in
Appendix §A.4.

Squeeze and Excitation: Next, we consider squeeze-and-
excitation (SE) [22], which emerged as a standard compo-
nent of modern CNN architectures, such as MobileNetV3
[21], and EfficientNet [42]. However, we observe (see Ta-
ble 5d) that a straightforward application of SE, and all its
variants explored by Hu et al. [22], degrade adversarial ro-
bustness. This is unlike the case in standard ERM train-
ing, where SE consistently improves performance across
most vision tasks when added to residual networks. We
hypothesize that this may be due to the SE layer exces-
sively suppressing or amplifying channels. Therefore, we
present an alternative variant of SE, dubbed residual SE,
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Table 1. Break-down of the contribution of each identified topological enhancement. Both basic and bottleneck blocks use pre-activation.
The cardinality for aggregated conv is 4, and the scale for hierarchical conv is 8. All results are for a large model with Di = 11,Wi = 16.

Topology Complexity CIFAR-10 CIFAR-100

Basic Bottle Aggr. Hier. SE #P #F Clean PGD20 CW40 Clean PGD20 CW40

✓ 267M 38.8G 85.51±0.19 56.78±0.13 54.52±0.13 56.93±0.49 29.76±0.14 27.24±0.15

✓ 265M 39.0G 85.47±0.21 57.49±0.21 55.07±0.10 59.24±0.36 32.08±0.26 28.61±0.17

✓ ✓ 265M 39.4G 85.47±0.10 57.50±0.28 55.53±0.26 59.27±0.34 31.63±0.36 28.80±0.18

✓ ✓ ✓ 262M 39.3G 86.29±0.07 59.48±0.12 56.94±0.27 59.32±0.13 33.46±0.22 29.65±0.14

✓ ✓ ✓ ✓ 270M 39.3G 86.55±0.10 60.48±0.00 57.78±0.09 60.22±0.57 33.88±0.03 29.91±0.15

for adversarial robustness. As shown in Figure 5b, we add
another skip connection around the SE module—a simple
yet crucial modification. During adversarial training, this
extra skip connection provides additional regularization to
prevent channels from being excessively suppressed or am-
plified by SE. Figure 5c compares the basic and bottle-
neck blocks with and without residual SE under baseline
AT. Results indicate that our residual SE consistently im-
proves the adversarial robustness of both blocks across dif-
ferent model-capacity regions. Furthermore, as shown in
Table 5d, we observe that a higher reduction ratio can re-
duce the computational complexity of the SE module at the
cost of a marginal degradation in clean accuracy. Additional
results are available in Appendix §A.2.
Summary: We break down the contribution of each iden-
tified topological enhancement, namely, pre-activation, ag-
gregated and hierarchical convolutions, and residual SE in
Table 1. We demonstrate that all these enhancements can be
naturally integrated within the bottleneck topology. Empir-
ically, our final topology yields a ∼3% improvement under
baseline AT over the basic block used in WRNs, the de-
facto topology of choice for designing robust architectures.

4.1.2 Activation and Normalization

Activation: Since the first demonstration by Xie et al. [53],
several researchers [16, 32, 40] reaffirmed that smooth acti-
vation functions improve adversarial training, which in turn
improves adversarial robustness. However, these observa-
tions are primarily based on CIFAR-10 with low-capacity
models (e.g., ResNet-18 or WRN-34-10) and for a fixed set
of training hyperparameters. We hypothesize that, smooth
or not, different activation functions may perform differ-
ently depending on training hyperparameters, especially
weight decay, as observed by Pang et al. [32]. Therefore,
we revisit the adversarial robustness of smooth and non-
smooth activation functions under appropriate weight de-
cay settings. We consider ReLU (non-smooth) and three
smooth activation functions, SiLU/Swish [17, 35, 53], Soft-
plus [32, 33], and GELU [2], given their prevalence in the
literature.

We first identify a suitable weight decay value for each
activation function from {1, 2, 5} × 10−4. From results in
Figure 6 (a, b, c), we observe, under baseline AT, that (i) re-
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Figure 6. (a) - (c) Effect of weight decay on robust accuracy of
models with different activation functions on CIFAR-10. (d) -
(f) Robust accuracy of models with different activation functions
across a range of model capacities. (g) - (i) Robust accuracy under
advanced AT for different activation functions on CIFAR-10.

moving BN affine parameters from weight decay is crucial
for smooth activation; (ii) different (but in general higher)
values of weight decay are preferred by different activation
functions. Then we compare performance under their re-
spective optimal weight decay settings across a wide range
of model capacities on three datasets. Surprisingly, the re-
sults in Figure 6 (d, e, f) suggest, under baseline AT, that
smooth activation functions do not improve performance
over ReLU in most cases, which contrasts with the prevail-
ing consensus.

To verify the generality of our observations, we con-
sider advanced adversarial training as described in §3 and
repeat the experiment on CIFAR-10. Now we observe from
Figure 6 (g, h, i) that smooth activation functions, partic-
ularly SiLU/Swish, start to provide meaningful improve-
ments over non-smooth activation (i.e., ReLU) under ad-
vanced adversarial training.

To summarize, our empirical findings provide further
context to understand the AT conditions under which mod-
els with smooth activation functions outperform ReLU and
vice-versa. First, we showed that the adversarial robust-
ness of models with smooth activation functions is sensitive
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to AT hyperparameters, where removing BatchNorm affine
parameters from weight decay is crucial. Then, we support
the prevailing consensus by reaffirming that SiLU/Swish
outperforms ReLU under advanced AT. At the same time,
we demonstrate that ReLU outperforms smooth activation
functions in most cases (i.e., different combinations of
datasets and model capacities) under baseline AT.
Normalization: We find that standard BatchNorm outper-
forms other alternatives such as GroupNorm [52], Layer-
Norm [1], and InstanceNorm [44]. We refer the readers to
Appendix §A.5 for details and results.

4.2. Impact of Network-level Design

Architectural design at the network level involves con-
trolling the width and depth. Huang et al. [23] presented an
initial study showing the importance of network-level archi-
tectural design for adversarial robustness, from which we
draw inspiration. However, despite demonstrating the util-
ity of scaling only width or depth for adversarial robustness,
Huang et al.’s attempt to identify a compound scaling rule
to simultaneously scale depth and width was unsuccessful.
Nevertheless, we hypothesize the existence of a compound
scaling that is more effective than independent scaling by
depth or width.

We re-visit network-level scaling from a two-objective
perspective of maximizing adversarial robustness and net-
work efficiency. Specifically, we seek to design an algo-
rithm to identify an effective scaling rule for a given com-
plexity measure, e.g., FLOPs, number of parameters, etc.
First, we study the impact of these two scaling factors inde-
pendently, followed by the interplay between them. Then,
building upon the insights derived from these studies, we
present a compound scaling rule, dubbed RobustScaling,
to efficiently and effectively scale depth and width simul-
taneously for improving adversarial robustness. While Ro-
bustScaling is agnostic to any complexity measure, as an il-
lustration, we consider minimizing FLOPs to improve net-
work efficiency. A preview of RobustScaling is provided
below.

4.2.1 Independent Scaling by Depth or Width

We independently study the relationship between adversar-
ial robustness and network depth (i.e., number of blocks) or
width in terms of widening factors (i.e., number of chan-
nels). We allow the depth of each stage (Di∈{1,2,3}) to vary
among {2, 3, 4, 5, 7, 9, 11}, and the width widening fac-
tor (Wi∈{1,2,3}) to vary among {4, 6, 8, 10, 12, 14, 16, 20},
while fixing the other architecture components to the base-
line settings described in §3. As a result, the number of
layers in the resulting networks ranges from 16 to 70 in the
case of depth variations. We adversarially train all possible
networks (i.e., 73 = 343 for depth and 83 = 512 for width)

Summary of Compound Scaling (RobustScaling)

– Ratio between Depth and Width:
∑

Di :
∑

Wi =

7 : 3 such that #FLOPs
(∑

Di,
∑

Wi

)
≈ target

(§4.2.2).
– Distribution of Depth/Width among stages: D1 :

D2 : D3 = 2 : 2 : 1, W1 : W2 : W3 = 2 : 2.5 : 1 (§4.2.1).
Desired
#FLOPs

Referred
as

Stage 1 Stage 2 Stage 3
D1 W1 D2 W2 D3 W3

R
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tS
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lin

g 5G A1 14 5 14 7 7 3
10G A2 17 7 17 9 8 4
20G A3 22 8 22 11 11 5
40G A4 27 10 28 14 13 6
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D = 4, W = 10
(WRN-28-10)

D = 5, W = 12
D = 7, W = 14

D = 11, W = 16
(WRN-70-16)

A1

A2

A3
A4

8 ×  fewer #FLOPs

 1.8%
 m

ore
     robust

WRNs
WRNs scaled by
RobustScaling

WRNs
WRNs scaled by
RobustScaling

– Wide or Deep: For a targeted #FLOPs, deep
(but narrow) networks are adversarially more ro-
bust than wide (but shallow) networks.

using the baseline AT and present the results in Figs. 7a
and 7e, respectively. We highlight the networks, which we
refer to as “efficient”, “inefficient,” and “standard uniform
depth/width” settings with different colored markers from a
trade-off perspective of maximizing adversarial robustness
and minimizing network complexity (FLOPs). Empirically,
we observe that (i) there are no substantial correlations be-
tween network depth/width and adversarial robustness, im-
plying that adding more blocks or channels does not auto-
matically lead to better adversarial robustness; and (ii) at
any given computational budget, there is a significant vari-
ation in adversarial robustness, suggesting that the distribu-
tion of depth/width between the different stages needs to be
carefully selected for improving adversarial robustness.

Next, we perform a more detailed analysis of the
depth/width distribution and robust accuracy of networks.
At each level of total network depth/width, we rank the net-
works by their adversarial robustness and visualize the dis-
tribution of the number of blocks/widening factors among
the three stages. We present the results in Fig. 7 and make
the following observations, (i) networks that distribute more
blocks evenly between the first two stages and decrease the
number of blocks in the third stage are ranked at the top
(Fig. 7b), (ii) networks that distribute more blocks in the
third stage and reduce the number of blocks in the first two
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(c) Last-Ranked Networks

14 16 18 20 22
Depth

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n

Stage 1 Stage 2 Stage 3Stage 1 Stage 2 Stage 3

52.0

52.5

53.0

53.5

54.0

54.5

%
 C

W
40

 R
ob

us
t A

cc
ur

ac
y

(d) Standard Uniform Scaling
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(f) Top-Ranked Networks
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(g) Last-Ranked Networks
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(h) Standard Uniform Scaling

Figure 7. Adversarial robustness of networks with (a) 343 depth and (e) 512 width settings on CIFAR-10. Pareto-efficient models (robust
and compact) are in red squares, inefficient models (sensitive and complex) are in violet triangles, and networks with standard uniform
scaling (D1 = D2 = D3 and W1 = W2 = W3) are in brown diamonds. Rank correlation (Kendall τ ) between depth/width and robust
accuracy is annotated. Distribution among the three stages for models with the efficient (b, f), standard uniform (c, g), and inefficient (d,
h) distribution of depth and width are visualized, where the secondary y-axis with color corresponds to robust accuracy.

stages are ranked last (Fig. 7c), (iii) top-ranked networks
tend to use small widening factors in stage 3 and allocate
larger widening factors to the first two stages, particularly
the second stage (Fig. 7f), and (iv) last-ranked networks
use larger widening factors in the last stage by reducing the
widening factors of the second stage (Fig. 7g).

After that, for both depth and width, by averaging the
number of blocks/widening factor distribution in the top-
ranked models across all levels of depth/width, we iden-
tify that distributing the depth, i.e., the number of layers,
as D1 : D2 : D3 = 2 : 2 : 1 and width, in terms of widening
factors, as W1 : W2 : W3 = 2 : 2.5 : 1 across the stages leads
to robust and efficient models. Finally, for completeness,
we also show the depth (Fig. 7d) / widening factor (Fig. 7h)
distribution and robust accuracy for networks with the stan-
dard uniform depth/width settings.

4.2.2 Compound Scaling by Depth and Width

Leveraging the interplay among scaling factors (e.g., depth,
width, etc.) is particularly effective in scaling networks un-
der standard ERM training [42]. However, under adversar-
ial training, a prior attempt to identify such a compound
scaling rule was not successful [23]. To this end, we revisit
the question, does an effective compound policy for scal-
ing networks under adversarial training exist? Specifically,
we seek to identify a compound scaling policy to simulta-
neously adjust network depth and width by studying their
interplay. Building upon the independent depth/width scal-
ing rules specified in §4.2.1, for a fixed computational com-
plexity, compound scaling can be realized as a competition
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(a) 5G FLOPs
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(b) 20G FLOPs

Figure 8. (a, b) Adversarial robustness vs. contribution ratio of
depth (rD) at different FLOP levels, where rD =

∑
Di/(

∑
Di +∑

Wi). A larger rD indicates a deeper (more blocks) but narrower
(fewer channels) network.

between network depth and width for resources.

We formulate our goal as searching for an appropriate
ratio between total network depth and total network width
(in terms of widening factors), i.e., [∑Di :

∑
Wi], to ef-

ficiently allocate computational resources while improving
adversarial robustness. Given a target network complexity
(e.g., FLOPs budget), we systematically tune the contribu-
tion ratio of depth (i.e., rD =

∑
Di/(

∑
Di+

∑
Wi)) between

[0.3, 0.95) and compare the relative changes in robustness
under baseline AT. From the results shown in Figure 8, we
observe that adversarial robustness improves monotonically
as rD increases and peaks at approximately rD = 0.7. How-
ever, as the rD continues to increase beyond 0.7, adversar-
ial robustness starts to deteriorate rapidly. Accordingly, our
compound scaling rule, dubbed RobustScaling, is obtained
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by solving:

rD =
D1 +D2 +D3

D1 +D2 +D3 +W1 +W2 +W3

=
2D3 + 2D3 +D3

2D3 + 2D3 +D3 + 2W3 + 2.5W3 +W3
= 0.7

such that the Complexity
(∑

Di,
∑

Wi

)
≈ the target. A

pictorial illustration of the compound settings under differ-
ent FLOP budgets is provided in Figure 9a, along with the
standard settings (i.e., WRN-28-10, WRN-70-16, etc.) in
Figure 9b, the settings obtained by independently scaling
depth and width in Figures 9c and 9d, respectively. We ob-
serve that deep but narrow networks are preferred over wide
but shallow networks for adversarial robustness at a given
FLOPs budget.
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(a) Compound scaling
(
∑

Di :
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Wi = 7 : 3)

5G 10G 15G 20G 30G 40G
FLOPs

20

10

0

10

20

W
i  

   
   

   
   

   
   

 D
i

Depth Width Stage 1 Stage 2 Stage 3Stage 1 Stage 2 Stage 3

53.0

53.5

54.0

54.5

55.0

55.5

56.0

56.5

%
 C

W
40

 R
ob

us
t A

cc
ur

ac
y

(b) Standard scaling
(i.e., WRN-28-10, WRN-70-16)
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(c) Scaling by depth
(D1 : D2 : D3 = 2 : 2 : 1)
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(d) Scaling by width
(W1 : W2 : W3 = 2 : 2.5 : 1)

Figure 9. Visualization of depth and width distribution among the
three stages for (a) our compound scaling, (b) standard scaling,
and (c, d) our independent scaling by depth/width. The secondary
y-axis shows robust accuracy under baseline adversarial training.

Empirically, we compare our compound scaling to inde-
pendent scaling by depth/width, the standard scaling (i.e.,
WRN-28-10, WRN-70-16, etc.), and the existing robust
scaling from Huang et al. [23] under baseline adversarial
training in Figure 10. Note that Huang et al. [23] only re-
port one network, WRN-34-R. But we apply their (width)
scaling rule to other WRN networks at different depths and
obtain a set of WRN-R networks. We observe that, in gen-
eral, RobustScaling achieves the best trade-off between ro-
bustness and network complexity, yielding networks that
offer substantial improvements in robust accuracy over ex-
isting scaling methods while being an order of magnitude
more efficient. In particular, WRN-A1 (i.e., the least com-
plex network from RobustScaling) is 3.8× more compact
(#Params) and efficient (#FLOPs) than WRN-34-R [23]
while being similar in adversarial robustness. In addition,
WRN-A1 is more adversarially robust than WRN-70-16

50 100 150 200 250
No. of Parameters (M)

53.0

53.5

54.0

54.5

55.0

55.5

56.0

56.5

57.0

%
 C

W
40

 R
ob

us
t A

cc
ur

ac
y

D=[5, 5, 2]

D=[6, 6, 3]

D=[9, 8, 4]

D=[14, 13, 6]

W=[11, 13, 6]

W=[13, 16, 7]

W=[16, 18, 8]

W=[18, 21, 9]
D=[17, 17, 8]
W=[7, 9, 4]

D=[22, 22, 11]
W=[8, 11, 5]

D=[27, 28, 13]
W=[10, 14, 6]

Depth Width CompoundDepth Width Compound

(a) CW40 vs. #Params

10 20 30 40 50
No. of FLOPs (G)

53.0

53.5

54.0

54.5

55.0

55.5

56.0

56.5

57.0

%
 C

W
40

 R
ob

us
t A

cc
ur

ac
y

D=[6, 6, 3]

D=[9, 8, 4]

D=[14, 13, 6]

W=[13, 16, 7]

W=[16, 18, 8]
W=[18, 21, 9]D=[17, 17, 8]

W=[7, 9, 4]

D=[22, 22, 11]
W=[8, 11, 5]

D=[27, 28, 13]
W=[10, 14, 6]

Depth Width CompoundDepth Width Compound
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(c) CW40 vs. #Params
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Figure 10. (a, b) Comparison among standard scaling (blue curve),
existing robust scaling [23] (brown curve), the identified inde-
pendent depth/width scaling (orange/green curve) from §4.2.1,
and the identified compound scaling RobustScaling (red curve) on
CIFAR-10. [D1, D2, D3] and [W1, W2, W3] denote stage-wise
depth and width (in terms of widening factors) settings, respec-
tively. For independent depth scaling, we use the width settings
from the standard scaling and vice-versa for independent width
scaling. All scaling strategies are applied to WRNs (i.e., basic
residual block).

(i.e., the most complex network from the standard scaling)
while being 14× more compact and 8× more efficient. Our
findings suggest that effective compound policies do exist
for scaling networks under adversarial training, and our Ro-
bustScaling is one such realization.

5. Adversarially Robust Residual Networks

We use RobustScaling to scale our RobustResBlock to
present a portfolio of adversarially robust residual net-
works, dubbed RobustResNets, spanning a broad spectrum
of model FLOP budgets (i.e., 5G - 40G FLOPs). For ref-
erence, we name them as RobustResNet-A1 to -A4, where
the FLOPs budget is doubled for every subsequent network.
See Table 7 for detailed specifications. We then compare
RobustResNets to a set of representative robust architec-
tures proposed in the literature. These include, RobNet [18],
RACL [12], AdvRush [30], and WRN-34-R [23]. Specif-
ically, we align the network complexity of AdvRush and
RACL models by adjusting the number of repetitions of the
normal cell N and the input #channels of the first normal
cell C, denoted as (N@C).

Comparison under Baseline Adversarial Training: Ta-
ble 2 presents the results under baseline adversarial train-
ing with TRADES [57]. In general, RobustResNets consis-
tently outperform existing robust networks across multiple
datasets, attacks, and model-capacity regions. In particular,
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Table 2. Comparison of white-box adversarial robustness under baseline AT with TRADES [57]. The best results are in bold, and relative
improvements over 2nd best result in each section are in red. Results are averaged over three runs with different seeds.

Model
#P
(M)

#F
(G)

CIFAR-10 CIFAR-100

Clean PGD20 CW40 AutoAttack Clean PGD20 CW40 AutoAttack

WRN-28-10 36.5 5.20 84.62±0.06 55.90±0.21 53.15±0.33 51.66±0.29 56.30±0.28 29.91±0.40 26.22±0.23 25.26±0.06

RobNet-large-v2 33.3 5.10 84.57±0.16 52.79±0.08 48.94±0.13 47.48±0.04 55.27±0.02 29.23±0.15 24.63±0.11 23.69±0.19

AdvRush (7@96) 32.6 4.97 84.95±0.12 56.99±0.08 53.27±0.03 52.90±0.11 56.40±0.09 30.40±0.21 26.16±0.03 25.27±0.02

RACL (7@104) 32.5 4.93 83.91±0.32 55.98±0.15 53.22±0.08 51.37±0.11 56.09±0.08 30.38±0.03 26.65±0.02 25.65±0.10

RobustResNet-A1 (ours) 19.2 5.11 85.46 (↑ 0.5) 58.74 (↑ 1.8) 55.72 (↑ 2.6) 54.42 (↑ 1.5) 59.34 (↑ 2.9) 32.70 (↑ 2.3) 27.76 (↑ 1.1) 26.75 (↑ 1.1)

WRN-34-12 66.5 9.60 84.93±0.24 56.01±0.28 53.53±0.15 51.97±0.09 56.08±0.41 29.87±0.23 26.51±0.11 25.47±0.10

WRN-34-R 68.1 19.1 85.80±0.08 57.35±0.09 54.77±0.10 53.23±0.07 58.78±0.11 31.17±0.08 27.33±0.11 26.31±0.03

RobustResNet-A2 (ours) 39.0 10.8 85.80 (↑ 0.0) 59.72 (↑ 2.4) 56.74 (↑ 2.0) 55.49 (↑ 2.3) 59.38 (↑ 0.6) 33.0 (↑ 1.8) 28.71 (↑ 1.4) 27.68 (↑ 1.4)

WRN-46-14 128 18.6 85.22±0.15 56.37±0.18 54.19±0.11 52.63±0.18 56.78±0.47 30.03±0.07 27.27±0.05 26.28±0.03

RobustResNet-A3 (ours) 75.9 19.9 86.79 (↑ 1.6) 60.10 (↑ 3.7) 57.29 (↑ 3.1) 55.84 (↑ 3.2) 60.16 (↑ 3.4) 33.59 (↑ 3.6) 29.58 (↑ 2.3) 28.48 (↑ 2.2)

WRN-70-16 267 38.8 85.51±0.24 56.78±0.16 54.52±0.16 52.80±0.14 56.93±0.61 29.76±0.17 27.20±0.16 26.12±0.24

RobustResNet-A4 (ours) 147 39.4 87.10 (↑ 1.6) 60.26 (↑ 3.5) 57.9 (↑ 3.4) 56.29 (↑ 3.5) 61.66 (↑ 4.7) 34.25 (↑ 4.5) 30.04 (↑ 2.8) 29.00 (↑ 2.9)

Table 3. Additional comparison of white-box adversarial robust-
ness under baseline adversarial training with SAT [29], and MART
[48]. The best results are in bold, and relative improvements are
in red. Results are averaged over three runs with different seeds.

Model
#P
(M)

#F
(G)

SAT [29] MART [48]

PGD20 CW40 PGD20 CW40

WRN-28-10 36.5 5.20 52.44±0.36 50.97±0.09 57.69±0.11 52.88±0.28

RobustResNet-A1 19.2 5.11 57.62 (↑ 5.2) 56.06 (↑ 5.1) 59.34 (↑ 1.7) 54.42 (↑ 1.5)

WRN-34-12 66.5 9.60 52.85±0.40 51.36±0.33 57.40±0.13 53.11±0.00

RobustResNet-A2 39.0 10.8 58.39 (↑ 5.5) 56.99 (↑ 5.6) 60.33 (↑ 2.9) 55.51 (↑ 2.4)

WRN-46-14 128 18.6 53.67±0.03 52.95±0.04 58.43±0.15 54.32±0.17

RobustResNet-A3 75.9 19.9 58.81 (↑ 5.1) 57.60 (↑ 4.7) 60.95 (↑ 2.5) 56.52 (↑ 2.2)

WRN-70-16 267 38.8 54.12±0.08 50.52±0.18 58.15±0.28 54.37±0.07

RobustResNet-A4 147 39.4 59.01 (↑ 4.9) 57.85 (↑ 7.3) 61.88 (↑ 3.7) 57.55 (↑ 3.2)

RobustResNet-A1 achieves 1.5% higher AutoAttack robust
accuracy with 1.7× fewer parameters than AdvRush [30],
a robust block designed by differentiable neural architec-
ture search; RobustResNet-A2 achieves 2.3% higher Au-
toAttack robust accuracy with 1.8× fewer parameters and
FLOPs than WRN-34-R [23]. Additional comparisons un-
der baseline adversarial training methods with different loss
functions (i.e., SAT [29], and MART [48]) are presented in
Table 3. We observe that the improvements afforded by Ro-
bustResNets generalize well to other loss formulations un-
der baseline adversarial training routines.
Comparison under Advanced Adversarial Training: Ta-
ble 4 presents results under advanced AT with an addi-
tional 500K unlabeled external images extracted from the
80M Tiny Images dataset [4]. RobustResNet-A1 achieves
63.70% AutoAttack robust accuracy with 19.2M parame-
ters, ranking 7th (as of 20th December, 2022) on Robust-
Bench CIFAR-10 leaderboard [8]. Note that higher-ranked
methods (i.e., top-6 on RobustBench CIFAR-10 leader-
board) use networks WRN-70-16 or WRN-106-16, which
have at least 250M more parameters than RobustResNet-
A1. Furthermore, RobustResNet-A1 is ∼ 1.2% more robust
against AutoAttack with 3.5× fewer parameters and 3.7×
fewer FLOPs than WRN-34-R [23].

Table 5 presents results under advanced adversarial train-
ing without additional data, either external (e.g., the 500K

Table 4. Comparison of white-box adversarial robustness under
advanced adversarial training with extra 500k external data [4].

Method Architecture #P (M) #F (G) AutoAttack

RST [4] WRN-28-10 36.5 5.20 59.53
AWP [51] WRN-28-10 36.5 5.20 60.04
HAT [34] WRN-28-10 36.5 5.20 62.50
Gowal et al. [16] WRN-28-10 36.5 5.20 62.80

Huang et al. [23] WRN-34-R 68.1 19.1 62.54
Ours RobustResNet-A1 19.2 (↓ 3.5×) 5.11 (↓ 3.7×) 63.70 (↑ 1.2)

data [4]) or generated by generative models (e.g., DDPM
[17]). In particular, RobustResNet-A1 achieves 1.9%
higher AutoAttack robust accuracy with 1.9× fewer pa-
rameters than state-of-the-art1 method built upon WRN-28-
10 [35]. Furthermore, RobustResNet-A2 is 6.8× more com-
pact (parameters) and 3.7× more efficient (FLOPs) while
matching the state-of-the-art AutoAttack robust accuracy.
And RobustResNet-A4 achieves 61.10% AutoAttack robust
accuracy with 39.4M parameters on CIFAR-10 against Au-
toAttack with ℓ∞ perturbations of size ϵ = 8/255—an im-
provement of 1.0% robust accuracy with 120 million fewer
parameters compared to the state-of-the-art without exter-
nal or generated data [35].

Table 5. Comparison of white-box adversarial robustness under
advanced adversarial training. Our method builds upon Rebuffi et
al. [35], which applies CutMix [55] data augmentation.

Method Architecture #P (M) #F (G) AutoAttack

TRADES [57] WRN-34-10 46.2 6.66 53.08
Rebuffi et al. [35] WRN-28-10 36.5 5.20 57.50
Ours RobustResNet-A1 19.2 (↓ 1.9×) 5.11 (∼) 59.39 (↑ 1.9)

Gowal et al. [16] WRN-70-16 267 38.8 57.20
Rebuffi et al. [35] WRN-70-16 267 38.8 60.07
Ours RobustResNet-A2 39.0 (↓ 6.8×) 10.6 (↓ 3.7×) 60.00 (∼)
Ours RobustResNet-A4 147 (↓ 1.8×) 39.4 (∼) 61.10 (↑ 1.0)

1We consider state-of-the-art without external or generated data. Note
that the “Extra data” column of the RobustBench CIFAR-10 leaderboard
only accounts for external data; please also see the description under the
“Method” column for approaches that do leverage generated data.
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6. Discussion
This paper identified specific architectural design ele-

ments that impact adversarial robustness. The reliability of
our observations has been ensured by systematically veri-
fying them on multiple datasets, across multiple adversarial
attacks, and over multiple repetitions. We affirm that the
proposed RobustResBlock, RobustScaling, and RobustRes-
Net have immediate practical relevance in designing ad-
versarially robust networks. Nonetheless, our observations
and contributions have been made through empirical exper-
iments instead of theoretical analysis. However, as is often
the case in deep learning (e.g., batch normalization [25], lot-
tery ticket hypothesis [13], etc.), theoretical analysis usually
follows empirical observations. Furthermore, most of the
theoretical studies in adversarial robustness have focused
on loss formulation. We hope this paper inspires theoret-
ical exploration of the adversarial robustness properties of
different architectural design elements as well.

7. Concluding Remarks
Novel architectural designs played a critical role in the

overwhelming success of CNNs in various image analysis
tasks. Despite this knowledge, studies on adversarial ro-
bustness have primarily been limited to a handful of basic
residual networks, thus overlooking the impact of architec-
ture on adversarial robustness. However, as we demonstrate
in this paper, architectural design significantly affects adver-
sarial robustness. As an illustration, we considered residual
networks. We observed through systematically designed ex-
periments that many advancements of residual blocks for
standard ERM training translate well to improve adversar-
ial robustness under adversarial training, albeit with minor
modifications in some cases.

Based on our observations, we designed RobustResNets
as an alternative baseline for standard Wide Residual Net-
works, the de facto architecture of choice for designing ad-
versarially robust networks. RobustResNets afford signif-
icant improvements in adversarial robustness while being
more compact than state-of-the-art solutions, both without
extra data and with 500K extra data. We hope that Ro-
bustResNets can serve as a new benchmark architecture
for studying adversarial robustness and that our work in-
spires future exploration into the adversarial robustness of
the wide range of architectures that have already proven ef-
fective under standard ERM training.
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A. Appendix
A.1. Extended Description of Related Work

Relation to existing works based on NAS. Several recent
works sought to find more robust DNN architectures via
neural architecture search (NAS) – Guo et al. applied a one-
shot NAS algorithm to design the topology of a cell struc-
ture (i.e., operations and connections among them) while
leaving the network skeleton (i.e., width and depth) to hu-
man designs [18]; Mok et al. incorporated the smoothness
of a DNN model’s input loss landscape as an additional reg-
ularizer for NAS [30], among others [6, 27, 31].

These NAS-based prior arts are limited in the following
three aspects: (1) they focus on only one aspect of architec-
ture (i.e., block topology) while leaving other components

(e.g., activation, network depth, and width, etc.) to human
designs; (2) they treat the design of an adversarially robust
architecture as a black-box search problem where minimal
architectural insights can be derived; (3) NAS is computa-
tionally expensive and adversarial training makes this chal-
lenge especially acute.

In contrast, this work presents (i) a holistic study of dif-
ferent aspects of architecture, including block topology, ac-
tivation, normalization, and scaling factors (i.e., network
depth and width); (ii) through controlled and fine-grained
experiments, we deliver precise knowledge on the impacts
of these choices; (iii) empirically, we demonstrate that the
network assembled on top of our derived knowledge outper-
forms existing networks designed via NAS by at least 2.5%
robust accuracy against AutoAttack (see Table 2).
Relation to other existing works. There are recent works
that aim to gain an understanding of adversarial robust-
ness from an architectural perspective [5, 10, 16, 23, 53, 58].
Among them, [23] is most closely related to this paper. Ac-
cordingly, we provide an elaborated discussion on the re-
lation to [23] below and refer readers to the Related Work
section in §2 for an overview of these methods.

Huang et al. [23] also investigated the impact of network
width and depth via controlled experiments on the adver-
sarial robustness of adversarially trained DNN models. De-
spite a similar motivation, our work is primarily different
and enhanced in the following aspects:

1. Huang et al. only study network scaling factors (i.e.,
depth and width), while we study both block topol-
ogy and network scaling. And as we demonstrated in
this paper, both are critical architectural components
for improving adversarial robustness. Specifically, we
show that (i) improvement on block topology alone
leads to ∼ 3% more robust accuracy; (ii) improvement
on network scaling alone leads to ∼ 2.5% more ro-
bust accuracy; (iii) improvement on both block topol-
ogy and network scaling leads to 3.5 +% more robust
accuracy while being ∼ 2× more compact in terms
of parameters. All results were evaluated against Au-
toAttack and relative to WRNs, the de-facto model for
studying adversarial robustness.

2. Huang et al. explored the interplay between network
depth and width but observed that the independent
scaling rules they identified for depth and width did
not work well together and ultimately failed to de-
sign a compound rule to scale depth and width simul-
taneously2. In contrast, building upon our indepen-
dent scaling rules, we identify an effective compound
rule to simultaneously scale depth and width by prop-
erly distributing a given computational budget (e.g.,

2For more details, please refer to Section 4.3 in [23].
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Design Explanation

(a) Standard SE Place the SE module posterior to the main components of the residual block as proposed in [22].
(b) Pre-SE Place the SE module a priori, i.e., before the main components of the residual block, also tried by [22].
(c) Identity-SE Place the SE module in the skip-connection branch, also tried by [22].
(d) Conv3x3-SE Place the SE module right after the 3× 3 convolution, as done in MobileNetV3 [21].

(e) Residual SE (ours)
Add an extra skip connection around the SE module to the standard SE integration design,
similarly to the FSM module from [24].

(f)

Design Reduction
ratio

#P (M) #F (G) Clean Acc. (%) Robust Acc. (%)
PGD20 CW40

w/o SE – 265 39.0 85.47 57.49 55.07
Standard SE

r = 16

296 39.1 84.56 (-0.91) 56.87 (-0.62) 54.52 (-0.55)
Conv3×3-SE 273 39.1 85.26 (-0.21) 57.10 (-0.39) 54.77 (-0.40)
Identity-SE 293 39.1 85.20 (-0.27) 57.04 (-0.45) 54.94 (-0.13)
Pre-SE 293 39.1 85.81 (+0.34) 57.31 (-0.18) 55.32 (+0.25)

Residual SE (ours)
r = 16 296 39.1 85.75 (+0.28) 57.86 (+0.37) 55.95 (+0.88)
r = 32 281 39.1 85.22 (-0.25) 57.98 (+0.49) 55.54 (+0.47)
r = 64 273 39.1 85.61 (+0.14) 57.77 (+0.28) 56.05 (+0.98)
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Figure 11. (a) - (e) An overview of SE integration designs studied in this work. (f) Description and (g) ablation results of the SE integration
designs are shown in (a) - (e). (h) Comparing residual blocks with and without the proposed residual SE on CIFAR-10 against PGD20

attack.

FLOPs) over the number of layers and their width mul-
tipliers3. Empirically, we demonstrate that the com-
pound scaling rule further improves independent scal-
ing of depth and width by ∼ 2% and ∼ 1% more
robust accuracy against CW 40 attack for a small-
capacity model, respectively (see Figure 9).

3. The scaling rule identified by Huang et al. was
evaluated at one model capacity only (i.e., ∼ 68M
#Params), while, in this work, we demonstrate the ef-
ficacy of our scaling rules (i.e., both independent and
compound scaling rules) across a broad spectrum of
model-capacities, from 5M to 270M #Params.

4. Performance-wise, on top of using almost 2×
fewer #Params and #FLOPs, our model (i.e.,
RobustResNet-A2) consistently exhibits 1.4% - 2.4%
higher robust accuracy over the model (i.e., WRN-34-
R) scaled by Huang et al. across multiple datasets,
attacks, and training settings.

3See Section 4.2.2 for more details.

A.2. Extended Description of SE

In this section, we first provide pictorial illustrations and
descriptions of the five variations of SE that we tried in Fig-
ure 5a - 11e and Table 11f, respectively. Then, we pro-
vide additional results comparing our proposed residual SE
among the five variations of SE in Table 11g. Our resid-
ual SE is a simple yet effective variant of the standard SE
that improves adversarial robustness while all other vari-
ants fail. Finally, we present the effect of incorporating our
residual SE to both basic and bottleneck residual blocks in
Figure 11h.

A.3. Additional Results of Block Topology

In this section, we first provide a visual comparison
between post-activation and pre-activation in Figure 12a,
where the standard post-activation [19] places the activation
function after the weights. In contrast, the pre-activation
proposed by [20] places the activation function before the
weights. Then, we compare the effectiveness of these two
arrangements of activation for a non-residual block (i.e.,
VGG block) on CIFAR-10 in Figure 12b, followed by com-
parison over variants of residual blocks with pre-activation
on CIFAR-10 against PGD20 attack in Figure 12c.
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(b) Non-residual block
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Figure 12. (a) A pictorial illustration of the standard post-
activation (Top) and pre-activation arrangements (Bottom). (b)
Comparing post- and pre-activation for a non-residual block (i.e.,
VGG block) on CIFAR-10. (c) Comparison among variants of a
residual block with pre-activation on CIFAR-10 against PGD20 at-
tack.

A.4. Additional Results of Aggregated and Hierar-
chical Convolutions

This section presents pictorial illustrations of aggregated
and hierarchical convolutions in Figures 13a and 14a, re-
spectively. Additional results showing the effects of hy-
perparameters cardinality (for aggregated convolution) and
scales (for hierarchical convolution) are presented in Fig-
ures 13 (b, c, d) and 14 (b, c, d). Finally, we show the impact
of aggregated convolution for the basic block in Figure 15,
where we observe that aggregated convolution adversely af-
fects the robustness of the basic block.

A.5. Impact of Normalization

This section investigates the relationship between nor-
malization methods and adversarial robustness. In addition
to the baseline of Batch Normalization (BN), we consider
three other normalization methods, i.e., Group Normaliza-
tion (GN) [52], and Instance Normalization (IN) [44]. We
also confine all blocks in a DNN model to use a single
choice of normalization method and repeat the experiment
for each technique three times. The experimental results are
summarized in Table 6. The baseline normalization method
(i.e., BN) outperforms all other alternative normalization
methods, particularly on Tiny-ImageNet.

A.6. Impact of Convolution Kernel Size

Larger kernel sizes have been shown to be beneficial on
standard problems [11,28,43] under standard ERM training.
We evaluate large kernel sizes for adversarial robustness.
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(c) Di = 7,Wi = 14
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Figure 13. (a) Aggregated convolution that splits a regular convo-
lution into multiple parallel convolutions (cardinality). Results are
then concatenated. (b, c, d) show the robustness of models from
three different capacity regions.
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Figure 14. (a) Hierarchical convolution that splits a regular convo-
lution into multiple hierarchically connected convolutions (scales).
Results are then concatenated. (b, c, d) show the robustness of
models from three different capacity regions.
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Figure 15. The impact of aggregated convolution for the basic
block. Results show the robustness of the model with Di =
4,Wi = 10.

Specifically, we allow the kernel size Ki∈{1,2,3} for each
stage to be among {3×3, 5×5, 7×7, 9×9} while using the
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(b) CIFAR-10, PGD20
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(c) CIFAR-10, CW40
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(d) CIFAR-10, AutoAttack
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(e) CIFAR-100, FGSM
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(f) CIFAR-100, PGD20
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(g) CIFAR-100, CW40
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(h) CIFAR-100, AutoAttack
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(i) Tiny-ImageNet, FGSM
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(j) Tiny-ImageNet, PGD20
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(k) Tiny-ImageNet, CW40
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(l) Tiny-ImageNet, AutoAttack

Figure 16. Heat maps visualizing the relationship between kernel sizes and adversarial robustness on CIFAR-10, CIFAR-100, and Tiny-
ImageNet (from top to bottom) against FGSM, PGD20, CW40, and AutoAttack (from left to right).
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(a) CIFAR-10, FGSM

3×3 5×5 7×7 9×9
Kernel Size

42

44

46

48

50

52

54

56

%
 P

G
D

20
 R

ob
us

t A
cc

ur
ac

y

32×32
64×64

96×96
128×128

32×32
64×64

96×96
128×128

(b) CIFAR-10, PGD20
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(c) CIFAR-10, CW40
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(d) CIFAR-10, AutoAttack
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(e) Tiny-ImageNet, FGSM
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(f) Tiny-ImageNet, PGD20
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(g) Tiny-ImageNet, CW40
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Figure 17. The adversarial robustness of different kernel sizes for higher resolution images on CIFAR-10 (Top) and Tiny-ImageNet
(Bottom) against FGSM, PGD20, CW40, and AutoAttack (from left to right).

default options for all other settings as described in §3. We
evaluate all the 43 = 64 possible networks with all possible
settings for the kernel size. Figure 16 shows our results. We
observe that, in general, a larger kernel size does not neces-
sarily lead to better adversarial robustness. We repeat the
experiment at higher image resolutions to verify if this ob-
servation is specific to low-resolution images. Specifically,

we upsample the images to the following sizes: {64 × 64,
96×96, 128×128}. We constrain all stages to use a canoni-
cal kernel size and use a stride of two in the first block of the
first stage when the image resolution is higher than 64×64.
Figure 17 presents these results. Empirically, we observe
that larger kernels start to improve adversarial robustness
noticeably when the image size increases to 128×128, par-
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Table 6. The adversarial robustness of the considered normaliza-
tion methods. We highlight the best results of each section in bold.

CIFAR-10 CIFAR-100 Tiny-ImageNet Ave.
RankNat. PGD20 CW40 AA Nat. PGD20 CW40 AA Nat. PGD20 AA

BN 85.11 55.36 53.02 51.43 55.77 29.91 26.23 25.35 42.09 20.68 16.25 1.5
GN 85.28 55.82 52.76 51.23 56.60 29.86 26.26 25.09 30.99 16.87 13.01 1.7
IN 85.34 54.49 50.82 49.34 56.56 28.41 24.17 22.68 17.25 10.69 8.18 2.7

ticularly on Tiny-ImageNet. However, adversarial robust-
ness on upsampled images is consistently worse than that of
smaller images. Thus, we argue that a kernel size of 3 × 3
remains the preferred choice for adversarial robustness.

A.7. Extended discussion of RobustResNets

In this section, we provide detailed specifications of
RobustResNetA1 - A4 in Table 7.
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Table 7. The specifications of RobustResNets. The stage wise setting is presented using
[
k × k, #Ch

]
, where k denotes the convolution

filter size, #Ch denotes the number of output channels, and
[
·
]

indicates our RobustResBlock identified in §4.1.

Output scale RobustResNet-A1 RobustResNet-A2 RobustResNet-A3 RobustResNet-A4

Stem 32× 32 3 × 3, 16, stride 1

Stage 1 32× 32

1 × 1, 160
3 × 3, 80

1 × 1, 320

 × 14

1 × 1, 224
3 × 3, 224
1 × 1, 448

 × 17

1 × 1, 256
3 × 3, 256
1 × 1, 512

 × 22

1 × 1, 320
3 × 3, 320
1 × 1, 640

 × 27

Stage 2 16× 16

1 × 1, 448
3 × 3, 448
1 × 1, 896

 × 14

 1 × 1, 576
3 × 3, 576

1 × 1, 1152

 × 17

 1 × 1, 704
3 × 3, 704

1 × 1, 1408

 × 22

 1 × 1, 896
3 × 3, 896

1 × 1, 1792

 × 28

Stage 3 8× 8

1 × 1, 384
3 × 3, 384
1 × 1, 768

 × 7

 1 × 1, 512
3 × 3, 512
1 × 1, 1024

 × 8

 1 × 1, 640
3 × 3, 640

1 × 1, 1280

 × 11

 1 × 1, 768
3 × 3, 768

1 × 1, 1536

 × 13

Tail 1× 1 Global average pool
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