
Supplementary Material for
MOAZ: A Multi-Objective AutoML-Zero Framework
Ritam Guha

guharita@msu.edu
Michigan State University

East Lansing, Michigan, USA

Wei Ao
aowei@msu.edu

Michigan State University
East Lansing, Michigan, USA

Stephen Kelly
spkelly@mcmaster.ca
McMaster University

Hamilton, Ontario, Cananda

Vishnu Boddeti
vishnu@msu.edu

Michigan State University
East Lansing, Michigan, USA

Erik Goodman
goodman@msu.edu

Michigan State University
East Lansing, Michigan, USA

Wolfgang Banzhaf
banzhafw@msu.edu

Michigan State University
East Lansing, Michigan, USA

Kalyanmoy Deb
kdeb@egr.msu.edu

Michigan State University
East Lansing, Michigan, USA

ACM Reference Format:
Ritam Guha, Wei Ao, Stephen Kelly, Vishnu Boddeti, Erik Goodman, Wolf-
gang Banzhaf, and Kalyanmoy Deb. 2023. Supplementary Material for
MOAZ: A Multi-Objective AutoML-Zero Framework. In Genetic and Evo-
lutionary Computation Conference (GECCO ’23), July 15–19, 2023, Lisbon,
Portugal.ACM, NewYork, NY, USA, 3 pages. https://doi.org/10.1145/3583131.
3590391

1 FLOP COUNTS
We have approximated the Floating Point Operations (FLOP) count
for each of 65 operations used in AutoML-Zero. These counts are
listed in Table 1.

2 ADDITIONAL DESCRIPTION OF
NON-LINEAR PROBLEM

In addition to the results mentioned in the main manuscript, here
we provide some additional results that we obtained for the non-
linear problem. The non-linear problem is formulated according
to the process discussed in [1]. A teacher neural network acts as a
non-linear regression model represented as 𝐿(𝑥𝑖) = 𝑢.𝑅𝑒𝐿𝑈 (𝑀𝑥𝑖)
where 𝑀 is a random 8 × 8 matrix and 𝑢 is a random vector. In
AZ/MOAZ nomenclature, this teacher neural network can be repre-
sented as shown in Figure 1. The task of AZ/MOAZ is to rediscover
this neural network by getting signals from the dataset created by
using the teacher neural network.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590391

Table 1: The approximated number of FLOP for 65 operations
used in AutoML-Zero. 𝑉𝑆𝑖𝑧𝑒 and 𝑀𝑆𝑖𝑧𝑒 refer to the dimen-
sions of vectors and matrices used in the operations, respec-
tively.

Operators Approx. FLOP Operators Approx. FLOP
NO_OP 0 MATRIX_MAX_OP 𝑀𝑆𝑖𝑧𝑒

SCALAR_SUM_OP 1 MATRIX_ABS_OP 𝑀𝑆𝑖𝑧𝑒

SCALAR_DIFF_OP 1 MATRIX_HEAVYSIDE_OP 𝑀𝑆𝑖𝑧𝑒

SCALAR_PRODUCT_OP 1 MATRIX_CONST_SET_OP 𝑀𝑆𝑖𝑧𝑒

SCALAR_DIVISION_OP 1 SCALAR_VECTOR_PRODUCT_OP 𝑉𝑆𝑖𝑧𝑒

SCALAR_MIN_OP 1 VECTOR_INNER_PRODUCT_OP 2*𝑉𝑆𝑖𝑧𝑒
SCALAR_MAX_OP 1 VECTOR_OUTER_PRODUCT_OP 𝑉𝑆𝑖𝑧𝑒*𝑉𝑆𝑖𝑧𝑒
SCALAR_ABS_OP 1 SCALAR_MATRIX_PRODUCT_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

SCALAR_HEAVYSIDE_OP 1 MATRIX_VECTOR_PRODUCT_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

SCALAR_CONST_SET_OP 1 VECTOR_NORM_OP 2*𝑉𝑆𝑖𝑧𝑒
SCALAR_SIN_OP 1 MATRIX_NORM_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

SCALAR_COS_OP 1 MATRIX_TRANSPOSE_OP 𝑀𝑆𝑖𝑧𝑒

SCALAR_TAN_OP 1 MATRIX_MATRIX_PRODUCT_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

SCALAR_ARCSIN_OP 1 VECTOR_MEAN_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

SCALAR_ARCCOS_OP 1 VECTOR_ST_DEV_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

SCALAR_ARCTAN_OP 1 MATRIX_MEAN_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

SCALAR_EXP_OP 1 MATRIX_ST_DEV_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

SCALAR_LOG_OP 1 MATRIX_ROW_MEAN_OP 𝑀𝑆𝑖𝑧𝑒

VECTOR_SUM_OP 𝑉𝑆𝑖𝑧𝑒 MATRIX_ROW_ST_DEV_OP 𝑀𝑆𝑖𝑧𝑒

VECTOR_DIFF_OP 𝑉𝑆𝑖𝑧𝑒 SCALAR_GAUSSIAN_SET_OP 1
VECTOR_PRODUCT_OP 2*𝑉𝑆𝑖𝑧𝑒 VECTOR_GAUSSIAN_SET_OP 𝑉𝑆𝑖𝑧𝑒

VECTOR_DIVISION_OP 𝑉𝑆𝑖𝑧𝑒 MATRIX_GAUSSIAN_SET_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

VECTOR_MIN_OP 𝑉𝑆𝑖𝑧𝑒 SCALAR_UNIFORM_SET_OP 1
VECTOR_MAX_OP 𝑉𝑆𝑖𝑧𝑒 VECTOR_UNIFORM_SET_OP 𝑉𝑆𝑖𝑧𝑒

VECTOR_ABS_OP 𝑉𝑆𝑖𝑧𝑒 MATRIX_UNIFORM_SET_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

VECTOR_HEAVYSIDE_OP 𝑉𝑆𝑖𝑧𝑒 SCALAR_RECIPROCAL_OP 1
VECTOR_CONST_SET_OP 𝑉𝑆𝑖𝑧𝑒 SCALAR_BROADCAST_OP 1
MATRIX_SUM_OP 𝑀𝑆𝑖𝑧𝑒 VECTOR_RECIPROCAL_OP 𝑉𝑆𝑖𝑧𝑒

MATRIX_DIFF_OP 𝑀𝑆𝑖𝑧𝑒 MATRIX_RECIPROCAL_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒

MATRIX_PRODUCT_OP 𝑀𝑆𝑖𝑧𝑒*𝑀𝑆𝑖𝑧𝑒 MATRIX_ROW_NORM_OP 𝑀𝑆𝑖𝑧𝑒

MATRIX_DIVISION_OP 𝑀𝑆𝑖𝑧𝑒 MATRIX_COLUMN_NORM_OP 𝑀𝑆𝑖𝑧𝑒

MATRIX_MIN_OP 𝑀𝑆𝑖𝑧𝑒 VECTOR_COLUMN_BROADCAST_OP 𝑉𝑆𝑖𝑧𝑒

VECTOR_ROW_BROADCAST_OP 𝑉𝑆𝑖𝑧𝑒

2.1 Experimental Setting
To perform the experiments with MOAZ, we used the following
lower and upper bounds on complexity and error: the lower bound
was 0 for both objectives, whereas the upper bound was 200 for
complexity and 0.4 for error. We permit all instructions used by
the teacher neural network in the search space. A target error for
the problem (𝑒𝑇) is defined as 5 × 10−2. So, a run is considered to
be successful if it could find at least one algorithm that has less
than 5 × 10−2 error. Both AZ and MOAZ are run 30 times with

https://orcid.org/0000-0002-1375-777X
https://orcid.org/0000-0003-1449-936X
https://orcid.org/0000-0002-6071-4705
https://orcid.org/0000-0002-8918-9385
https://orcid.org/0000-0002-2419-0692
https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0001-7402-9939
https://doi.org/10.1145/3583131.3590391
https://doi.org/10.1145/3583131.3590391
https://doi.org/10.1145/3583131.3590391

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Ritam Guha, Wei Ao, Stephen Kelly, Vishnu Boddeti, Erik Goodman, Wolfgang Banzhaf, and Kalyanmoy Deb

sX/vX/mX: scalar/vector/matrix memory
at address X.
def Setup():
s2 = 0

def Predict(v0):
v2 = dot(m0, v0)
v3 = maximum(v2, v4)
s1 = dot(v3, v1)

def Learn(v0, s0):
s3 = s0 - s1
s3 = s2 * s3
v5 = s3 * v3
v1 = v1 + v5
v6 = s3 * v1
v7 = heaviside(v2, 1.0)
v6 = v7 * v6
m1 = outer(v6, v0)
m0 = m0 + m1

Figure 1: Illustration of the teacher neural network used as a
non-linear regression model for generating labels for non-
linear regression.

different random seeds. The results and some comparisons of the
performance of both frameworks are provided in Section 2.2.

2.2 Performance Comparison
The combined results for AZ and MOAZ are provided in Figure 2
and Figure 3, respectively. After combining the results for all 30
runs, the non-dominated solutions from all discovered algorithms
are identified. These solutions are marked in different colors in the
figures.

110 115 120 125 130 135 140 145
complexity

0.005

0.010

0.015

0.020

0.025

er
ro

r AZ non-PF solutions
AZ PF

Figure 2: Combined results of AZ runs. Here PF refers to the
Pareto Front of the combined results of AZ.

The distribution of errors and complexity is depicted in Figures
Figure 4 and Figure 5, respectively. As the error range is [0, 0.4],
MOAZ has found a good distribution of solutions in the specified
range. In contrast, most of the AZ solutions are concentrated toward
the 0-error region. Similarly, for the complexity of solutions, MOAZ
has found complexities in the range of [50, 140] whereas all the

60 80 100 120 140
complexity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

er
ro

r MOAZ non-PF solutions
MOAZ PF

Figure 3: Combined results of MOAZ runs. Here PF refers to
the Pareto Front of the combined results of AZ.

solutions are beyond 100 complexity in the case of AZ. One of the
interesting applications of finding a broad distribution is platform-
based designs. Depending on different platforms, users might want
to use different solutions. If the computational capability of a plat-
form is on the lower side, the users can use a low-complexity model
with some trade-off in accuracy. This is not possible with AZ so-
lutions because AZ does not take into account complexity. The
solutions of MOAZ are statistically significant compared to the AZ
solutions both in terms of error and complexity with 𝑝-value in the
order of 10−9.

MOAZ AZ
framework

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

er
ro
r

framework
MOAZ
AZ

Figure 4: Swarm Plot comparison between AZ and MOAZ for
error. In this plot, if the algorithms have equal errors, they
are placed on the same line side-by-side.

2.3 Discovered Algorithms
It is not possible to show all the algorithms discovered by both
AZ and MOAZ. In this subsection, we are showing one represen-
tative algorithm for each of the frameworks. The AZ solution is
shown in Figure 6 and the MOAZ solution is presented in Figure 7.
There are not many differences between these representative algo-
rithms, apart from the initialization in the Setup component. MOAZ
solution initializes just the two layers in the neural network but
AZ solution initializes some other vectors as well. Please note that
these are discovered algorithms with more than 99% accuracy. Some

Supplementary Material for
MOAZ: A Multi-Objective AutoML-Zero Framework GECCO ’23, July 15–19, 2023, Lisbon, Portugal

MOAZ AZ
framework

60

80

100

120

140

co
m
pl
ex
ity

framework
MOAZ
AZ

Figure 5: Swarm Plot comparison between AZ and MOAZ
for complexity. In this plot, if the algorithms have equal
complexity, they are placed on the same line side-by-side.

of these algorithms are very close to the teacher neural network.
MOAZ also provides other solutions which are not this close to
the teacher neural network but trade off some accuracy for the
complexity.

sX/vX/mX: scalar/vector/matrix memory
at address X.
def Setup():
v8 = gaussian(2.24632, 0.0306014, 𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
m0 = gaussian(0.0295614, 0.0271724, (𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠,

𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)) # 1st layer weights
s3 = 0.0350772 # Learning rate
v4 = gaussian(0.785895, 0.783264, 𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
v2 = gaussian(-0.39658, 0.93701, 𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠) # 2nd layer

weights
def Predict(v0): # v0: features
v3 = dot(m0, v0) # Apply 1st layer weights
v4 = maximum(v3, v6) # Apply ReLU
s1 = dot(v4, v2) # Apply 2nd layer weights

def Learn(v0, s0): # s0: labels, s1: predictions
s4 = s0 - s1 # Compute error
s4 = s3 * s4 # Scale by learning rate
v6 = s4 * v8
v2 = v2 + v6 # Update 2nd layer weights.
v7 = s4 * v2
v8 = heaviside(v3, 1.0) # ReLU gradient
v7 = v8 * v7
m1 = outer(v7, v0)
m0 = m0 + m1 # Update 1st layer weights.

Figure 6: Illustration of a working algorithm for non-linear
regression discovered by AZ with a complexity 107.

REFERENCES
[1] Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: Evolving machine

learning algorithms from scratch. In International Conference on Machine Learning,
pages 8007–8019. PMLR, 2020.

sX/vX/mX: scalar/vector/matrix memory
at address X.
def Setup():
v2 = gaussian(-0.0635549, 0.51511, 𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠) # 2nd

layer weights
m0 = gaussian(0.0391599, 0.0467162, (𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠,

𝑛𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)) # 1st layer weights
s3 = 0.0237734 # Learning rate

def Predict(v0): # v0: features
v3 = dot(m0, v0) # Apply 1st layer weights
v4 = maximum(v3, v5) # Apply ReLU
s1 = dot(v4, v2) # Apply 2nd layer weights

def Learn(v0, s0): # s0: labels, s1: predictions
s4 = s0 - s1 # Compute error
s4 = s3 * s4 # Scale by learning rate
v6 = s4 * v4
v2 = v2 + v6 # Update 2nd layer weights.
v7 = s4 * v2
v8 = heaviside(v3, 1.0) # ReLU gradient
v7 = v8 * v7
m1 = outer(v7, v0)
m0 = m0 + m1 # Update 1st layer weights.

Figure 7: Illustration of a working algorithm for non-linear
regression discovered by MOAZ with a complexity of 95.

	1 FLOP counts
	2 Additional Description of Non-linear Problem
	2.1 Experimental Setting
	2.2 Performance Comparison
	2.3 Discovered Algorithms

	References

