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Abstract

There has been tremendous progress in generating real-

istic faces with high fidelity over the past few years. De-

spite this progress, a crucial question remains unanswered:

“Given a generative face model, how many unique identi-

ties can it generate?” In other words, what is the biomet-

ric capacity of the generative face model? A scientific ba-

sis for answering this question will benefit evaluating and

comparing different generative face models and establish

an upper bound on their scalability. This paper proposes

a statistical approach to estimate the biometric capacity of

generated face images in a hyperspherical feature space.

We employ our approach on multiple generative models,

including unconditional generators like StyleGAN, Latent

Diffusion Model, and “Generated Photos,” as well as DC-

Face, a class-conditional generator. We also estimate ca-

pacity w.r.t. demographic attributes such as gender and

age. Our capacity estimates indicate that (a) under ArcFace

representation at a false acceptance rate (FAR) of 0.1%,

StyleGAN3 and DCFace have a capacity upper bound of

1.43 × 106 and 1.190 × 104, respectively; (b) the capac-

ity reduces drastically as we lower the desired FAR with an

estimate of 1.796 × 104 and 562 at FAR of 1% and 10%,

respectively, for StyleGAN3; (c) there is no discernible dis-

parity in the capacity w.r.t gender; and (d) for some genera-

tive models, there is an appreciable disparity in the capacity

w.r.t age. Code is available at https:// github.com/ human-

analysis/capacity-generative-face-models.

1. Introduction

Generative face models have witnessed rapid progress

and broad applicability in various practical applications:

face image manipulation, animation, enhancement, syn-

thetic face generation for training models for facial anal-

ysis tasks, and generating artistic faces, to name a few.

The key desiderata for generative face models are 1) pho-

torealism, which refers to the resolution of generated faces

and fidelity of facial details, 2) diversity, which refers to

the variations in the generated faces, in terms of pose,

(a) Photorealism

(b) Diversity (c) Uniqueness

Figure 1. Three desiderata of generative face models, photoreal-

ism, diversity, and uniqueness. While there is significant work on

improving photorealism and a few attempts at improving diversity,

there is no study on the uniqueness of generated faces.

and facial attributes such as gender, age, ethnicity, and 3)

uniqueness, which refers to the distinctness of generated fa-

cial identities. Fueled by copious amounts of data, ever-

growing computational resources, and algorithmic develop-

ments, current state-of-the-art generative models can cre-

ate faces with 1) very high levels of photorealism at high-

resolutions [14, 17, 18, 16], and 2) increasing levels of di-

versity [7, 11]. Despite this tremendous progress, a crucial

question about the uniqueness of generated faces still needs

to be addressed, namely, what is the maximal number of

unique identities can a given generative face model gen-

erate? Answering this question is the central aim of this

paper. Our contribution is to objectively determine the bio-

metric capacity without generating face images at scale and

conducting exhaustive empirical evaluations.

The ability to determine capacity affords the following

benefits: 1) statistical estimates of the upper bound on the

number of identities that generative face models can gen-

erate, which would allow for the informed deployment of

such systems based on the expected scale of operation; 2)
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Figure 2. Capacity Estimation Overview: Given a generative face model, we first sample a collection of images. The images are then

embedded in a hyperspherical space corresponding to a face feature extractor. A geometric model, in terms of the ratio of hyperspherical

caps, is employed to estimate the capacity of the generative face models as a function of a desired match/no-match score threshold.

estimate the maximal scalability of a generative face model

without having to evaluate it at that scale exhaustively. Con-

sequently, capacity offers an alternative yet crucial metric

for comparing different generative face models in terms of

the uniqueness of generated facial identities.

An attractive solution for estimating the capacity of gen-

erative face models is to cast it as a packing problem1; the

maximal number of shapes that can be fit, without over-

lapping, within the geometric support of the representation

space. A loose bound on this packing problem can be ob-

tained as a ratio of the support space’s and shape’s volumes.

In the context of generative face models, the image support

can be modeled as a low-dimensional population manifold

M embedded within a high-dimensional image space P .

Similarly, images of each identity can also be modeled as

its own manifold Mc ⊆ M. Under this setting, a bound

on the capacity of the generative model can be obtained as

a ratio of the volumes of the population and class-specific

manifolds.

Adopting the above approach to get empirical estimates

of the capacity, however, does present a few challenges:

1. Estimating the support of the population manifold M
and the class-specific manifolds Mc, especially for

high-dimensional data, such as face images, is an open

problem.

2. Obtaining reliable estimates of the volume of arbitrar-

ily shaped high-dimensional manifolds for the capacity

bound is another open problem.

In this paper, we propose a framework that addresses the

challenges mentioned above to obtain reliable estimates of

the capacity of any generative face model representation.

Our solution relies on (1) modeling the generated faces in a

low-dimensional face representation space that lies on the

surface of a hypersphere, (2) approximating the popula-

tion manifold by a hyperspherical cap in the feature space,

(3) approximating the class-specific manifolds by a hyper-

spherical cap as a function of the specified false acceptance

rate (FAR), and (4) estimating the capacity as a ratio of

the surface area of the population and class-specific hyper-

spherical caps. Figure 2 provides a pictorial illustration of

1A generalization of the well-studied sphere-packing problem.

the geometrical structure of our setting. The key contribu-

tions of this paper are:

1. A robust statistical method for estimating an upper

bound on the capacity of generative face models from

a finite number of images sampled from such models.

2. A geometrical model of capacity for faces embedded

in a hyperspherical representation space as a function

of a desired match/no-match similarity score threshold

or false acceptance rate (FAR).

3. The first practical attempt at estimating the capacity

of generative face models. We consider both uncondi-

tional (PG-GAN [14], StyleGAN family [21, 16], La-

tent Diffusion Models [28] and Generated Photos [1])

and class-conditional generators (DCFace [20]).

4. Studying the capacity of generative face models w.r.t

demographic attributes such as gender and age.

Numerical experiments suggest that our proposed ap-

proach can provide reasonable and reliable estimates of the

upper bound of capacity, even as we vary the choice of the

feature extraction space and the number of images/samples

for estimating the capacity. Finally, among the generative

face models we considered, most models do not show any

disparity in the capacity w.r.t gender, while some models

exhibit differences w.r.t age.

2. Related Work

Generative Models for Faces: Numerous generative face

models have been proposed in the literature over the past

decade. Recent models [2, 3, 10, 14, 17, 18, 31] allow high-

fidelity generation of synthetic faces. Beyond generation,

generative face models are also widely used to manipulate,

animate and enhance face images [6, 12, 22, 26, 35, 37, 38].

Such models operate by learning latent spaces that are

disentangled w.r.t different face properties and controlling

them selectively. More recently, latent variable models such

as diffusion and score-based models [24, 30, 31, 32, 33, 34]

typify the state-of-the-art in generative face models. These

models can be adapted for generating images conditioned



on other information, such as text descriptions [27]. Collec-

tively, these generative models represent the foundation of

the dramatic improvements we are witnessing in the quality

of generated faces and the broad range of emergent applica-

tions. However, despite this progress, there has been little to

no effort in studying the uniqueness of the generated iden-

tities regarding their maximal scalability. Addressing this

gap is the primary goal of this paper.

Capacity Estimation: There have been efforts to determine

the uniqueness of many biometric modalities, including fin-

gerprint, iris, and face. Pankanti et al. [25] and Zhu et

al. [41] estimated the capacity of fingerprints by deriving

an expression for estimating the probability of a false cor-

respondence between minutiae-based representations from

two arbitrary fingerprints belonging to two different fingers.

Daugman [4] proposed an information theoretic approach to

compute the capacity of IrisCode. He first developed a gen-

erative model of IrisCode based on Hidden Markov Mod-

els and then estimated the capacity of IrisCode by calculat-

ing the entropy of this generative model. Gong et al. [8]

estimated the capacity of neural network-based face rep-

resentation in high-dimensional Euclidean space. Finally,

Terhörst et al. [36] proposed a theoretical model of face ca-

pacity, which was estimated through simulations in low di-

mensions and extrapolated to higher dimensions. While the

work mentioned above focussed on estimating the capacity

for real data and feature extractors, this paper focuses on

estimating the capacity of generative face models.

3. Approach

Given a generative face model, we first sample N face

images2 from the model. These images are represented in a

vector space by extracting features from a face recognition

model. Then, we employ our statistical capacity estimation

model in the feature space and estimate capacity as a func-

tion of the corresponding face matcher’s similarity score.

This process is illustrated in Fig.2.

3.1. Image Representation

The choice of image representation critically affects the

biometric capacity estimates. We note that estimating the

capacity directly from the pixel representations of the gen-

erated images is not desirable for several reasons. First, raw

image pixels entangle identity and geometric and photomet-

ric variations. Moreover, since we aim to estimate capacity

w.r.t. unique identities instead of unique images, we need

to estimate capacity in a representation space that preserves

identity while being invariant to other factors. Thus, a face

recognition system’s feature space is a well-justified rep-

resentation choice. In summary, we posit that estimating

2We operate under the scenario where N << C, where C is the ca-

pacity.
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Figure 3. Illustration of capacity estimation concept for hyper-

spherical feature spaces. The population and identity span are

shown in green and yellow, respectively. (a) In 2D, capacity is

the ratio of the arc length of the population P and for an identity

C. (b) In 3D and higher dimensions, capacity is the ratio of the

surface areas spanned by the population and single identity.

a generator’s biometric capacity is inextricably linked to a

biometric feature extractor.

We employ state-of-the-art face feature extractors (viz.,

AdaFace [19] and ArcFace [5]) and represent each image

in the respective feature space. Such a design choice over-

comes the challenges of using a pixel representation: 1) the

features are robust to noise and other geometric (pose) and

photometric (illumination) variations and instead comprise

features related to biometric identity, and 2) the features lie

on the surface of a sphere, and as we discuss next, capacity

can be estimated reliably in this feature space.

3.2. Capacity Estimation Model

Concept: We first provide a conceptual description of our

capacity estimation approach by considering an illustrative

2D representation space. Under our choice of image repre-

sentation, the features in this 2D space lie on a circle. The

population of all faces spans an angle 2θ, while the face

images from a single identity span an angle 2ϕ. Since we

seek to estimate capacity as a function of the face matcher’s

false acceptance rate (FAR), we extend the population and

identity-specific span by an angle 2δ, which varies with the

desired FAR. Correspondingly, the angles spanned by the

population and each identity are 2(θ + δ) and 2(ϕ+ δ), re-

spectively. The capacity can now be defined as the ratio of

the arc lengths spanned by the population, r×2(θ+ δ), and

each identity, r × 2(ϕ+ δ), where r is the radius of the cir-

cle. Therefore, the capacity C(θ, ϕ, δ) = θ+δ
ϕ+δ . In 3D and

higher dimensions, the features span the surface of a sphere

instead of an arc. In this case, the capacity can be estimated

as the ratio of the surface areas subtended by the solid an-

gle 2(θ + δ) and 2(ϕ + δ). A pictorial illustration of this

conceptual idea in 2D and 3D is shown in Fig. 3.

General Case: Let Sn be a n-hypersphere or a n-sphere for



short, of radius r in n-dimensional Euclidean space, i.e.,

S
n = {x ∈ R

n : ∥x∥ = r} (1)

The area of the hypersphere An(r) is,

An(r) =
2πn/2

Γ
(

n
2

)rn−1 (2)

where, Γ is the gamma function. Let a hyperspherical cap

subtend a solid angle of 2Ω, where 0 ≤ Ω ≤ π/2. The area

AΩ
n (r) of such a hyperspherical cap is,

AΩ
n (r) =

1

2
An(r)Isin2(Ω)

(

n− 1

2
,
1

2

)

(3)

where, Ix(a, b) is the regularized incomplete beta function.

Given two hyperspherical caps with solid angle 2Ω1 =
2(θ+ δ) and 2Ω2 = (ϕ+ δ), their ratio, which corresponds

to our capacity estimate, is given by

C(θ, ϕ, δ) =
Isin2(Ω1)

(

n−1
2 , 1

2

)

Isin2(Ω2)

(

n−1
2 , 1

2

) (4)

Note that we only have access to cos(θ), cos(ϕ), and

cos(δ) from the cosine similarity scores between the face

features. The value of sin2(Ω1) can be estimated as,

sin2(Ω1) = 1− cos2(Ω1), where,

cos(Ω1) = cos(θ)cos(δ)− sin(θ)sin(δ)
(5)

Similarly, the value of sin2(Ω2) can be estimated as,

sin2(Ω2) = 1− cos2(Ω2), where,

cos(Ω2) = cos(ϕ)cos(δ)− sin(ϕ)sin(δ)
(6)

Given Ω1 and Ω2, the capacity from (4) is exact without

approximations. Accordingly, our capacity estimates are re-

liable to the extent that the estimates of θ and ϕ are reliable.

4. Experiments

We will estimate the capacity of multiple generative

models by employing the above theoretical capacity model

with multiple feature extractors. Then, we will study 1) ca-

pacity across different demographic groups and 2) the im-

pact of design choices on the stability of capacity estimates.

4.1. Generative Models

We consider six generative models, including five un-

conditional (four open-source and one commercial) and one

class-conditional (CC) generator, spanning a range of train-

ing datasets and model architecture combinations.

PG-GAN [14]: This was the first generative model de-

signed specifically for generating high-resolution images.

The authors also introduced the CelebA-HQ image dataset,

a high-resolution subset of the CelebA dataset with 30,000

images. PG-GAN introduced an architecture that progres-

sively increases the image’s resolution to 1024× 1024. We

used 50,000 images generated from PG-GAN.

StyleGAN2 [17]+ADA [15]: A GAN-based architecture

designed for explicit control over the style of the generated

images and to learn from a limited number of training sam-

ples using an ensemble of discriminators [21]. The model

was trained on the FFHQ dataset with images at a resolu-

tion of 1024 × 1024. We used 50,000 images generated

from StyleGAN2+ADA.

StyleGAN3 [16]: The most recent version of the StyleGAN

family of generative models was designed to mitigate the

effects of aliasing in the generator architecture. While the

photorealism of the images is similar to those from Style-

GAN2 [18], the internal representations and the learned la-

tent space were fully equivariant to translation and rotation

even at subpixel scales. We used 50,000 images from the

model trained on the FFHQ dataset.

Latent Diffusion Model [28] (LDM): A generative model

that includes an autoencoder and learns a denoising diffu-

sion probabilistic model in the autoencoder’s latent space.

We consider the LDM version trained on the CelebA-HQ

dataset at a resolution of 256 × 256. We used 50,000 im-

ages generated from LDM.

Generated Photos [1]: A commercial website that offers

synthetic images generated by a StyleGAN-based model

trained on a proprietary and curated dataset of images of

models. The training face images were captured in a photo

studio under controlled lighting conditions and with similar

variations. The studio subjects were carefully selected to

span demographic attributes like gender and ethnicity. After

generation, further processing was employed to remove the

background in the images. We used the academic version

of this dataset comprising 10,000 generated face images.

DCFace [20]: Dual Condition Face Generator is a

diffusion-based face generator. It is designed to explic-

itly control inter-class and intra-class variations of faces

through explicit control of the subject’s appearance (ID)

and external factors (style). Synthetic faces generated from

this dataset were used for training a face recognition sys-

tem. The model was trained on the FFHQ dataset. Unlike

the other generative face models we consider, DCFace is a

class-conditional (CC) face generator that affords explicit

control over the identity of the generated images. Thus, un-

like the case with the above-mentioned unconditional gen-

erators, the span of a single identity ϕ can be directly esti-

mated for DCFace. We used 100K images generated from

DCFace with 10,000 identities and ten images per identity.
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Figure 4. Age (top) and gender (bottom) statistics estimated using ArcFace for the images generated by different generative face models.

4.2. Face Feature Extractors

We employ two face feature extractors that are the

state-of-the-art models commonly used in face verifica-

tion and recognition tasks: ArcFace [5] trained on Web-

Face600K [42] and AdaFace [19] trained on MS1MV2 [9,

5]. Both feature extractors map face images to a 512-

dimensional hyperspherical feature space, i.e., n = 512.

ArcFace is trained for open-set face recognition by maxi-

mizing the geodesic distance between features. In contrast,

AdaFace is trained with an adaptive margin loss function

considering image quality. Both models exhibit similar face

verification accuracy for high-quality images, which is the

case with the generative images we consider in this paper.

Therefore, we do not expect the capacity estimates to de-

pend significantly on the choice of the image representation

space between the two feature spaces.

4.3. Statistics of Generated Face Images

Besides high photorealism, faces generated by an ideal

generative model must be diverse and unique. Therefore,

we calculate the age and gender statistics of each generated

dataset. Since true labels for these attributes are unknown,

we estimate these statistics using ArcFace’s predictions.

Figure 4 (top row) shows the age statistics across the dif-

ferent generative face models. We make the following ob-

servations; 1) the most prominent age group in the datasets

is 20-40, and 2) StyleGAN models, which have been trained

on the FFHQ dataset, can generate faces of young individ-

uals (ages 0-20) due to the explicit care taken during the

dataset curation to include images with a large diversity in

age. Therefore, we expect StyleGAN2+ADA and Style-

GAN3 to exhibit only a slight disparity in capacity across

the age groups. Analogously, the other models are expected

to show significant bias towards age groups 20-40.

Figure 4 (bottom row) shows the gender statistics across

the different generative face models. Except for LDM and

PGGAN, we observe that most datasets are reasonably bal-

anced w.r.t. gender, with each having slightly more images

of males than females. Hence, we expect the capacity of the

former two models to exhibit some disparity in the capacity

across gender.

4.4. Estimating population and intra-class variance

As alluded to in Section 3.2, the reliability of our capac-

ity estimates is critically dependent on the estimates of the

population variance, θ, and the intra-class variance, ϕ.

The population variance, θ, can be estimated by con-

sidering the range of cosine similarity scores spanned by all

the images from a given generative face model. We com-

pute the distance between all pairs of images in the feature

space for each dataset and identify the furthest images from

the score distribution. Furthermore, we consider the 5th per-

centile distance in the score distribution as the population

variance for the respective datasets to account for outliers

such as extremely poor-quality faces. Figure 5 shows the

similarity score distribution (log-scale) along with the score

threshold, sth, used to determine θ = cos−1(sth)
2 .

Ideally, intra-class variance, ϕ, should be estimated

from the distribution of similarity scores between images of

a single identity. However, doing so for the unconditional

face generators is challenging for two reasons. Firstly, man-

ual labeling is necessary to identify images of the same

class, which is time-consuming and error-prone. Secondly,

unlike class-conditional models like DCFace, unconditional

generative models do not afford explicitly controllable gen-

eration of images from the same identity. As such, we may

be unable to generate multiple images of the same identity

without sampling a huge number of images from such gen-

erative models. Examples of image pairs shown in Fig. 6

illustrate these challenges. For instance, even images with

the highest similarity score for StyleGAN2+ADA and LDM

do not appear to be of the same identity.

To overcome this challenge, we assume that a repre-

sentative value of the intra-class variance for the uncondi-

tional generative models can be estimated from the intra-

class variance of the face matcher corresponding to the fea-

ture extractor we employ on a reference dataset of real-faces

(LFW [13] in our experiments). Therefore, we select the
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Figure 5. Cosine similarity score (log scale) distribution across different generative models. The solid vertical line corresponds to the

threshold value for the 5th percentile, which determines the population-level variance.
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Figure 6. Image pairs with high, medium, and low similarity

among the 50,000 faces generated by StyleGAN2+ADA [21] and

LDM [28]. The similarity scores are shown next to the correspond-

ing image pair.

threshold value of 0.2125 corresponding to a FAR of 0.1%,

which is strict enough to mimic the intra-class variance, i.e.,

cos(2ϕ) of faces of a canonical identity. For DCFace, we

first estimate the inter-class variance of each identity and

select the median value (0.123 in ArcFace space).

4.5. Capacity of Generative Face Models

Figure 7 shows the capacity of all the generative face

models we considered in this paper as a function of the co-

sine similarity threshold, cos(δ). We note that these capac-

ity estimates are upper bounds of the actual capacity of the

generative models. The plots also show the threshold val-

ues corresponding to FAR values of 0.1%, 1%, and 10%

for the ArcFace-WebFace600K model. Although the indi-

cated threshold values are for the LFW dataset, we study

the effect of this choice in Section 5.1. We make the fol-

lowing observations from the results: 1) Most of the gener-

ative models, except “Generated Photos” and DCFace, ex-

hibit very similar capacity values as a function of the co-
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Figure 7. Comparison of capacity estimates across different gener-

ative models in the ArcFace feature space. Exact capacity values

can be found at the project page.

sine similarity. As expected, the capacity increases with the

cosine similarity threshold. 2) The capacity of the “Gen-

erated Photos” dataset, which is curated to remove poor-

quality images, is lower by one order of magnitude. This

can be explained by the fact that “Generated Photos” has

a lower population variance (notice that the lower end of

the score distribution in Fig. 5 is higher than other models).

3) The capacity of DCFace, a class-conditional model, is

lower by two orders of magnitude. This can be explained

by the larger intra-class variance of arccos(0.123) for DC-

Face vs. arccos(0.2125) (threshold at FAR of 0.1% for

unconditional generators) for StyleGAN3. 4) While the

capacity of “Generated Photos” grows exponentially with

the cosine similarity threshold, the capacity of the other

generative models grows super-exponentially. 5) At higher

FAR thresholds, “Generated Photos” has a greater capacity

than the other generative models, indicating that “Generated

Photos” generates more distinct images, i.e., in comparison,

the other models generate more similar identities.
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Figure 8. Capacity of generative models in terms of their ability to generate unique faces of different genders.

0.72 0.74 0.76 0.78

cosδ

102

103

104

105

106

107

C
ap

ac
it

y

PG-GAN

0.72 0.74 0.76 0.78

cosδ

102

103

104

105

106

107

StyleGAN2+ADA

0.72 0.74 0.76 0.78

cosδ

102

103

104

105

106

107

StyleGAN3

0.72 0.74 0.76 0.78

cosδ

102

103

104

105

106

107

LDM

0.72 0.74 0.76 0.78

cosδ

102

103

104

105

106

Generated Photos

FAR=0.10% FAR=1.00% FAR=10.00%FAR=0.10% FAR=1.00% FAR=10.00%
Age 0-10

Age 10-20

Age 20-30

Age 30-40

Age 40-50

Age 50-60

Age 60-70

Figure 9. Capacity of generative models in terms of their ability to generate unique faces at different age groups.

4.6. Capacity Across Demographic Attributes

We study the capacity of the generative face models for

different demographic attributes such as gender and age. In

the ideal case, generative models should be able to gener-

ate a similar number of identities across all demographic

labels. Figure 8 shows the capacity w.r.t gender3. We ob-

serve that none of the models exhibit noticeable disparity in

the capacity estimate for gender across all cosine similarity

thresholds. This is due to the good coverage of males and

females in the CelebA-HQ and FFHQ datasets on which the

generative models were trained.

Figure 9 shows capacity w.r.t age groups. Unlike the case

with gender, here we observe a discernable disparity in ca-

pacity across age groups, especially for “Generated Pho-

tos”, PG-GAN, and LDM. Both PG-GAN and LDM are

trained on CelebA-HQ, which does not have many images

of faces under age 20. As a result, the age distribution in the

generated images (see Figs. 4a and 4d) and the capacity for

that age group are lower than the other age groups. At the

same time, “Generated Photos” is trained on curated data

collected in a studio and includes a few but not many sub-

jects under the age of 20 (see Fig. 4e). StyleGAN2+ADA

and StyleGAN3, on the other hand, have been trained on the

FFHQ dataset, which was deliberately constructed to have

diverse images spanning different age groups. This is also

apparent in the age distribution (see Fig. 4b and 4c) of the

images generated from these models.

3In this work, we only considered two genders.
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Figure 10. Effect of reference dataset for determining intra-class

variance on the capacity estimate.

5. Ablation Study

Here, we study the effect of our design choices on the

stability and reliability of the capacity estimates.

5.1. Effect of reference dataset choice

As alluded to in Section 4.4, our capacity estimation

algorithm for unconditional generators relies on the intra-

class cosine distance of the face feature extractor. We

used LFW as the reference dataset to determine the intra-

class variance for the results presented in the previous

section. Here we consider four other commonly used

face verification benchmark datasets: (1) CFP-FP [29],

(2) CALFW [40], (3) AgeDB [23], (4) CPLFW [39] and

utilize the threshold corresponding to 0.1% FAR as a proxy

for intra-class variance.

Figure 10 shows the trend in the capacity estimate due to

variation of the reference dataset for each feature extractor.

Observe that the capacity estimate at FAR of 0.1% varies

with the reference dataset’s choice to determine the intra-

class variance. We hypothesize that this phenomenon is due
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Figure 11. Effect on the choice of feature extractor on the capacity estimates. The capacity is slightly lower for AdaFace compared to

ArcFace, but the trend is identical. Exact capacity values can be found at the project page.

to the varying levels of intra-class diversity across the dif-

ferent datasets. As expected, the capacity of DCFace does

not depend on the reference dataset since it is a conditional

generator, and its intra-class variance is directly estimated

from the class-conditional samples.

(a) Cosine Similarity Range (b) Capacity

Figure 12. Variation with the number of generated images

5.2. Effect of sample size

Another design choice is the number of images from

the generative models necessary for estimating the capac-

ity. Ideally, we should be able to estimate it without ex-

haustively generating many images. Therefore, we estimate

capacities from smaller subsets of the 50,000 images we

generated for StyleGAN2+ADA and compare them against

each other. Figures 12a and 12b show population variance

and capacity estimates, respectively, as a function of the

number of images. We observe a slight variation in the pop-

ulation variance as more images are used. However, the

capacity estimates are stable even with only 10,000 images.

In our approach, the capacity estimate depends on the pop-

ulation and intra-class variance, of which, for unconditional

generators, only the former is affected by the number of

generated images used to estimate the population variance.

5.3. Effect of feature extractor choice

Finally, we looked at how the choice of feature space

affected the representation of generated images and their

estimated capacity. We tested two advanced models, Arc-

Face [5] and AdaFace [19], to accomplish this. Figure 11

shows the capacity of the two feature extractors for vari-

ous generative models. We observe that AdaFace has a

slightly lower capacity than ArcFace, but both models share

the same trend across all the generative models. This is ex-

pected since the difference between ArcFace and AdaFace

is primarily the margin of separation between image iden-

tities based on the quality of the images. For high-quality

images, both models perform similarly in terms of verifica-

tion performance as well as capacity.

6. Concluding Remarks

There are three aspects of interest in generative face

models: photorealism (resolution and facial details), diver-

sity (geometric, photometric, and demographic variations),

and uniqueness (number of distinct identities). While sig-

nificant attention has been paid to photorealism and, to an

extent, diversity, no attention has been paid to the unique-

ness problem addressed in this paper. The generated face

images were represented in a hyperspherical space of a fea-

ture extractor, and an exact formula for estimating an up-

per bound on the capacity as a function of a desired false

acceptance rate in this space was presented. Empirically,

we estimated the capacity of multiple generative face mod-

els across demographic attributes like age and gender. For

the StyleGAN family of models, numerical results yielded

a capacity of 1.43 million at a FAR of 0.1%, which drops

quickly to 562 at 10%. The generative face models did

not exhibit any disparities in capacity w.r.t gender, while

some models exhibited capacity variations across different

age groups. Finally, we demonstrated that our capacity esti-

mates are robust to the number of image samples and choice

of feature space.

As generative face models make rapid strides in their

photorealism and witness wider adoption, quantifying their

capacity is a significant problem, both from an analytical

and practical perspective. However, due to the challeng-

ing nature of finding a closed-form expression for capacity,

we represent the images in the hyperspherical space of a

state-of-the-art feature extractor and make simplifying as-

sumptions on the distribution of the intra-class variance in

that space. Experimental results demonstrate that our ap-

proach can provide reasonable capacity estimates. Relax-

ing the assumptions of the approach presented here is an

exciting direction for future work, leading to even tighter

capacity estimates.
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