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Abstract— Autonomous robots deployed in the real world
will need control policies that rapidly adapt to environmental
changes. To this end, we propose AutoRobotics-Zero (ARZ),
a method based on AutoML-Zero that discovers zero-shot
adaptable policies from scratch. In contrast to neural network
adaption policies, where only model parameters are optimized,
ARZ can build control algorithms with the full expressive
power of a linear register machine. We evolve modular policies
that tune their model parameters and alter their inference
algorithm on-the-fly to adapt to sudden environmental changes.
We demonstrate our method on a realistic simulated quadruped
robot, for which we evolve safe control policies that avoid falling
when individual limbs suddenly break. This is a challenging
task in which two popular neural network baselines fail. Finally,
we conduct a detailed analysis of our method on a novel and
challenging non-stationary control task dubbed Cataclysmic
Cartpole. Results confirm our findings that ARZ is significantly
more robust to sudden environmental changes and can build
simple, interpretable control policies.

I. INTRODUCTION

Robots deployed in the real world will inevitably face
many environmental changes. For example, robots’ internal
conditions, such as battery levels and physical wear-and-tear,
and external conditions, such as new terrain or obstacles,
imply that the system’s dynamics are non-stationary. In these
situations, a static controller that always maps the same state
to the same action is rarely optimal. Robots must be capable
of continuously adapting their control policy in response to the
changing environment. To achieve this capability, they must
recognize a change in the environment without an external cue,
purely by observing how actions change the system state over
time, and update their control in response. Recurrent deep
neural networks are a popular policy representation to support
fast adaptation. However, they are often (1) monolithic, which
leads to the distraction dilemma when attempting to learn
policies that are robust to multiple dissimilar environmental
physics [1], [2]; (2) overparameterized, which can lead to
poor generalization and long inference time; and (3) difficult
to interpret. Ideally, we would like to find a policy that can
express multiple modes of behavior while still being simple
and interpretable.

We propose AutoRobotics-Zero (ARZ), a new framework
based on AutoML-Zero (AMLZ) [3] to specifically support
the evolution of dynamic, self-modifying control policies in a
realistic quadruped robot adaptation task. We represent these
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# wX: vector memory at address X.
def f(x, v, i):

w0 = copy(v)
w0[i] = 0
w1 = abs(v)
w1[0] = -0.858343 * norm(w2)
w2 = w0 * w0
return log(x), w1

# sX: scalar memory at address X.
# vX: vector memory at address X.
# obs, action: observation and action vectors.
def GetAction(obs, action):

if s13 < s15: s5 = -0.920261 * s15
if s15 < s12: s8, v14, i13 = 0, min(v8, sqrt(min(0, v3))), -1
if s1 < s7: s7, action = f(s12, v0, i8)
action = heaviside(v12)
if s13 < s2: s15, v3 = f(s10, v7, i2)
if s2 < s0: s11, v9, i13 = 0, 0, -1
s7 = arcsin(s15)
if s1 < s13: s3 = -0.920261 * s13
s12 = dot(v3, obs)
s1, s3, s15 = maximum(s3, s5), cos(s3), 0.947679 * s2
if s2 < s8: s5, v13, i5 = 0, min(v3, sqrt(min(0, v13))), -1
if s6 < s0: s15, v9, i11 = 0, 0, -1
if s2 < s3: s2, v7 = f3(s8, v12, i1)
if s1 < s6: s13, v14, i3 = 0, min(v8, sqrt(min(0, v0))), -1
if s13 < s2: s7 = -0.920261 * s2
if s0 < s1: s3 = -0.920261 * s1
if s7 < s1: s8, action = f(s5, v15, i3)
if s0 < s13: s5, v7 = f(s15, v7, i15)
s2 = s10 + s3
if s7 < s12: s11, v13 = f(s9, v15, i5)
if s4 < s11: s0, v9, i13 = 0, 0, -1
s10, action[i5] = sqrt(s7), s6
if s7 < s9: s15 = 0
if s14 < s11: s3 = -0.920261 * s11
if s8 < s5: s10, v15, i1 = 0, min(v13, sqrt(min(0, v0))), -1
return action

Fig. 1: Automatically discovered Python code representing an adaptable
policy for a realistic quadruped robot simulator (top–right inset). This evolved
policy outperforms MLP and LSTM baselines when a random leg is suddenly
broken at a random time. (Lines in red will be discussed in the text).

policies as programs instead of neural networks and demon-
strate how the adaptable policy and its initial parameters
can be evolved from scratch using only basic mathematical
operations as building blocks. Evolution can discover control
programs that use their sensory-motor experience to fine-
tune their policy parameters or alter their control logic on-
the-fly while interacting with the environment. This enables
the adaptive behaviors necessary to maintain near-optimal
performance under changing environmental conditions. Unlike
the original AMLZ, we go beyond toy tasks by tackling the
simulator for the actual Laikago robot [4]. To facilitate this,
we shifted away from the supervised learning paradigm of
AMLZ. We show that evolved programs can adapt during
their lifetime without explicitly receiving any supervised input
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(such as a reward signal). Furthermore, while AMLZ relied on
the hand-crafted application of three discovered functions, we
allow the number of functions used in the evolved programs
to be determined by the evolutionary process itself. To do this,
we use conditional automatically defined functions (CADFs)
and demonstrate their impact. With this approach, we find that
evolved adaptable policies are significantly simpler than state-
of-the-art solutions from the literature because evolutionary
search begins with minimal programs and incrementally adds
complexity through interaction with the task domain. Their
behavior is highly interpretable as a result.

In the quadruped robot, ARZ is able to evolve adaptable
policies that maintain forward locomotion and avoid falling,
even when all motors on a randomly selected leg fail
to generate any torque, effectively turning the leg into a
passive double pendulum. In contrast, despite comprehensive
hyperparameter tuning and being trained with state-of-the-art
reinforcement learning methods, MLP and LSTM baselines
are unable to learn robust behaviors under such challenging
conditions.

While the quadruped is a realistic complex task, simulating
the real robot is time-consuming. Due to the lack of efficient
yet challenging benchmarks for adaptive control, we created a
toy adaptation task dubbed Cataclysmic Cartpole and repeated
our analysis on this task with similar findings. In both cases,
we provide a detailed analysis of evolved control programs
to explain how they work, something notoriously difficult
with black box neural network representations.

In summary, this paper develops an evolutionary method
for the automated discovery of adaptable robotic policies
from scratch. We applied the method to two tasks in
which adaptation is critical, Quadruped Leg-Breaking and
Cataclysmic Cartpole. On each task, the resulting policies:

• surpass carefully-trained MLP and LSTM baselines;
• are represented as interpretable, symbolic programs; and
• use fewer parameters and operations than the baselines.

These points are demonstrated for each task in Section V.

II. RELATED WORK

Early demonstrations of Genetic Programming (GP) estab-
lished its power to evolve optimal nonlinear control policies
from scratch that were also simple and interpretable [5]. More
recently, GP has been used to distill the behavior of complex
neural network policies developed with Deep Reinforcement
Learning into interpretable and explainable programs without
sacrificing control quality [6]. In this work, we extend these
methods to evolve programs that can change their behavior
in response to a changing environment.

We demonstrate how to automatically discover a controller
that can context switch between distinct behavior modes
when it encounters diverse tasks, thus avoiding trade-offs
associated with generalization across diverse environmental
physics. If we can anticipate the nature of the environmental
change a robot is likely to encounter, we can simulate
environments similar to the expected changes and focus on
building multitask control policies [2], [7]. In this case, some
form of domain randomization [8] is typically employed

to expose candidate policies to a breadth of task dynamics.
However, policies trained with domain randomization often
trade optimality in any particular environment dynamics
for generality across a breadth of dynamics. This is the
problem we aim to address with ARZ. Unlike previous
studies in learning quadruped locomotion in the presence
of non-stationary morphologies (e.g., [9]), we are specifically
interested in how controllers can be automatically built from
scratch without requiring any prior task decomposition or
curriculum learning. This alleviates some burden on robotics
engineers and reduces researcher bias toward known machine
learning algorithms, opening the possibility for a complex
adaptive system to discover something new.

In addition to anticipated non-stationary dynamics, another
important class of adaptation tasks in robotics is sim-to-
real transfer [11], where the robot needs to adapt policies
trained in simulation to unanticipated characteristics of the
real-world. Successful approaches to learn adaptive policies
can be categorized by three broad areas of innovation: (1)
New adaptation operators that allow policies to quickly tune
their model parameters within a small number of interactions
[10], [11], [12], [13]; (2) Modular policy structures that
separate the policy from the adaptation algorithm and/or
world model, allowing both to be learned [14], [15], [16],
[17]; and (3) Hierarchical methods that allow a diverse set
of complete or partial behaviors to be dynamically switched
in and out of use at run-time, adapting by selecting the
best strategy for the current environmental situation [9],
[2], [18]. These algorithmic models of behavioral plasticity,
modular structure, and hierarchical representations reflect the
fundamental properties of meta-learning. In nature, these
properties emerged through adaptation at two timescales
(evolution and lifetime learning) [19]. ARZ makes these two
time scales explicit by implementing an evolutionary search
loop that acts on a “genome” of code, and an evaluation that
steps through an episode which is analogous to the “lifetime”
of the robot.

III. METHODS

A. Algorithm Representation

As in the original AutoML-Zero [3], policies are rep-
resented as linear register machines that act on virtual
memory [20]. In this work, we support four types of memory:
scalar, vector, matrix, and index (e.g. s1, v1, m1, i1).
Scalar, vector, and matrix memory are floating-point, while
index memory stores integers. Algorithms are composed of
two core functions: StartEpisode() and GetAction().
StartEpisode() runs once at the start of each episode
of interaction with the environment. Its sole purpose is
to initialize the contents of virtual memory with evolved
constants. The content of these memories at any point in
time can be characterized as the control program’s state. Our
goal is to discover algorithms that can adapt by tuning their
memory state or altering their control code on-the-fly while
interacting with their environment. This adaptation, as well
as the algorithm’s decision-making policy, are implemented
by the GetAction() function, in which each instruction



executes a single operation (e.g.s0=s7*s1 or s3=v1[i2]).
We define a large library of operations (Table S2) and place no
bounds on the complexity of programs. Evolutionary search
is employed to discover what sequence of operations and
associated memory addresses appear in the GetAction()
function.

Conditional Automatically Defined Functions: In ad-
dition to StartEpisode() and GetAction(), up to 6
Conditionally-invoked Automatically Defined Functions [21]
(CADFs) may be generated in an algorithm. Each CADF
represents an additional function block, itself automatically
discovered, which is callable from GetAction(). Since each
CADF is conditionally invoked, the sequence of CADFs
executed at each timestep throughout an episode is dynamic.
This property is advantageous for multi-task learning and
adaptation because programs that can switch control code
in and out of the execution path on-the-fly are able to
dynamically integrate general, re-useable code for related
tasks and specialized code for disjoint tasks. We demonstrate
in Section IV how this improves performance for the
quadruped task. Each CADF receives 4 scalars, 2 vectors, and
2 indices as input, and execution of the function is conditional
on a < comparison of the first 2 scalars (a configuration
chosen for simplicity). The set of operations available is
identical to GetAction() except that CADFs may not call
each other to avoid infinite recursion. Each CADF uses its
own local memory of the same size and dimensionality as the
main memory used by Setup() and GetAction(). Their
memory is initialized to zero at the start of each episode and
is persistent across timesteps, allowing functions to integrate
variables over time. Post-execution, the CADF returns the
single most recently written index, scalar, and vector from
its local memory.

The policy-environment interface and evaluation procedure
are illustrated in Fig. 2. Sections V-A and V-B provide
examples of evolved programs in this representation for the
quadruped robot and Cataclysmic Cartpole task, respectively.

B. Evolutionary Search

Two evolutionary algorithms are employed in this work:
Multi-objective search with the Nondominated Sorting genetic
algorithm II (NSGA-II) [22] and single-objective search
with Regularized evolution (RegEvo) [23], [3]. Both search
algorithms iteratively update a population of candidate control
programs using an algorithmic model of the Darwinian prin-
ciple of natural selection. The generic steps for evolutionary
search are:

1) Initialize a population of random control programs.
2) Evaluate each program in the task (Fig. 2).
3) Select promising programs using a task-specific fitness

metric (See Fig. 2 caption).
4) Modify selected individuals through crossover and then

mutation (Fig. S1).
5) Insert new programs into the population, replacing some

proportion of existing individuals.
6) Go to step 2.

# StartEpisode = initialization code.
# GetAction = control algorithm.
# Sim = simulation environment.
# episodes = number of evaluation episodes.
# sX/vX/mX/iX: scalar/vector/matrix/index memory
# at address X.
def EvaluateFitness(StartEpisode, GetAction):

sum_reward = 0
for e in episodes:

reward = 0
steps = 0
# Initialize sX/vX/mX with evolved parameters.
# iX is initialized to zero.
StartEpisode()
# Set environment initial conditions.
state = Sim.Reset()
while (!Sim.Terminal()):

# Copy state to memory, will be accessible
# to GetAction.
v1 = state
# Execute action-prediction instructions.
GetAction(state)
if Sim.NumAction() > 1:

action = v4
else:

action = s3
state = Sim.Update(action)
reward += Reward(state, action)
steps += 1

sum_reward += reward
sum_steps += steps

return sum_reward/episodes, sum_steps/episodes

Fig. 2: Evaluation process for an evolved control algorithm. The single-
objective evolutionary search uses the mean episodic reward as the algorithm’s
fitness, while the multi-objective search optimizes two fitness metrics: mean
reward (first return value) and mean steps per episode (second return value).

For the purposes of this study, the most significant difference
between NSGA-II and RegEvo is their selection method.
NSGA-II identifies promising individuals using multiple
fitness metrics (e.g., forward motion and stability) while
RegEvo selects based on a single metric (forward motion).
Both search methods simultaneously evolve: (1) Initial
algorithm parameters (i.e. initial values in floating-point
memory sX, vX, mX), which are set by StartEpisode();
and (2) Program content of the GetAction() function and
CADFs.

1) Multi-Objective Search: In the Quadruped robot tasks,
the goal is to build a controller that continuously walks at
a desired pace in the presence of motor malfunctions. It is
critical that real-world robots avoid damage associated with
falling, and the simplest way for a robot to achieve this is by
standing relatively still and not attempting to move forward
after it detects damage. As such, this domain is well suited
to multi-objective search because walking in the presence
of unpredictable dynamics while maintaining stability are
conflicting objectives that must be optimized simultaneously.
In this work, we show how NSGA-II maintains a diverse
population of control algorithms covering a spectrum of
trade-offs between forward motion and stability. From this
diverse population of partial solutions, or building blocks,
evolutionary search operators (mutation and cross-over) can
build policies that are competent in both objectives. NSGA-II
objective functions and constraints for the quadruped robot



task are discussed in Section IV.
2) Single-Objective Search: The Cataclysmic Cartpole task

provides a challenging adaptation benchmark environment
without the safety constraints and simulation overhead of
the real-world robotics task. To further simplify our study
of adaptation and reduce experiment time in this task,
we adopt the RegEvo search algorithm and optimize it
for fast experimentation. Unlike NSGA-II, asynchronous
parallel workers in RegEvo also perform selection, which
eliminates the bottleneck of waiting for the entire population
to be evaluated prior to ranking, selecting, and modifying
individuals.

Crossover and Mutation Operators: We use a simple
crossover operator that swaps a randomly selected CADF
between two parent algorithms. Since all CADFs have the
same argument list and return value format, no signature
matching is required to select crossover points. If either parent
algorithm contains no CADFs, one randomly selected parent
is returned. Post-crossover, the child program is subject to
stochastic mutation, which adds, removes, or modifies code
using operators listed in Table S1.

C. Algorithm Configurations and Baselines
Temporal memory is the primary mental system that allows

an organism to change, learn, or adapt during its lifetime.
In order to predict the best action for a given situation in a
dynamic environment, the policy must be able to compare
the current situation with past situations and actions. This
is because generating an appropriate action depends on the
current state and a prediction of how the environment is
changing. Our evolved algorithms are able to adapt partly
because they are stateful: the contents of their memory (sX,
vX, mX, and iX) are persistent across timesteps of an episode.

We compare ARZ against stateless and stateful baselines.
These policy architectures consist, respectively, of multilayer
perceptrons (MLP) and long short-term memory (LSTM)
networks whose parameters to be optimized are purely
continuous. Therefore, we use Augmented Random Search
(ARS) [24], which is a state-of-the-art continuous optimizer
and has been shown to be particularly effective in learning
robot locomotion tasks [12], [25]. In comparison, Proximal
Policy Optimization [26] underperformed significantly; we
omit the results and leave investigation for future work. All
methods were allowed to train until convergence with details
in Supplement S1-A.

IV. NON-STATIONARY TASK DOMAINS

We consider two different environments: a realistic sim-
ulator for a quadruped robot and the novel Cataclysmic
Cartpole. In both cases, policies must handle changes in
the environment’s transition function that would normally
impede their proper function. These changes might be sudden
or gradual, and no sensor input is provided to indicate when
a change is occurring or how the environment is changing.

A. Quadruped Robot
We use the Tiny Differentiable Simulator [27] to simulate

the Unitree Laikago robot [4]. It is a quadruped robot with 3

actuated degrees of freedom per leg. Thus the action space has
12-dimensional real values corresponding to desired motor
angles. A Proportional-Derivative controller is used to track
these desired angles. The observation space includes 37 real
values describing the angle and velocity for each joint as
well as the position, orientation, and velocity of the robot
body. Each episode begins with the robot in a stable upright
position and continues for a maximum of 1000 timesteps (10
seconds). Each action suggested by the policy is repeated for
10 consecutive steps.

The goal of the non-stationary quadruped task is to move
forward (x-axis) at 1.0 meters/second. Adaptation must handle
sudden leg-breaking in which all joints on a single, randomly
selected leg suddenly become passive at a random time within
each episode. The leg effectively becomes a double pendulum
for the remainder of the episode. The episode will terminate
early if the robot falls and this results in less return. We
design the following reward function:

r(t) = 1.0− 2 ∗ |v(t)− v̄| − ||⃗a(t)− a⃗(t− 1)||2, (1)

where the first term 1.0 is the survival bonus, v̄ is the target
forward velocity of 1 m/s, v(t) is the robot’s current forward
velocity, and a⃗(t) and a⃗(t− 1) are the policy’s current and
previous action vectors. This reward function is shaped to
encourage the robot to walk at a constant speed for as long
as possible while alleviating motor stress by minimizing the
change in the joint acceleration. In the context of multi-
objective search, maximizing the mean of Equation 1 over a
maximum of 1000 timesteps is Objective 1. To discourage
behaviors that deviate too much along the y-axis, we terminate
an episode if the robot’s y-axis location exceeds ±3.0 meters.
Objective 2 is simply the number of timesteps the robot
was able to survive without falling or reaching this y-axis
threshold. Importantly, we are not interested in policies that
simply stand still. Thus, if Objective 2 is greater than 400
and Objective 1 is less than 50, both fitnesses are set to
0. As shown in Fig. S2, these fitness constraints eliminate
policies that would otherwise persist in the population without
contributing to progress on the forward motion objective.

B. Cataclysmic Cartpole Environment

To study the nature of adaptation in more detail, we
introduce a new, highly challenging but computationally
simple domain called Cataclysmic Cartpole in which multiple
aspects of the classic Cartpole ([28]) physics are made
dynamic. Adaptation must handle the following non-stationary
properties:

• Track Angle: The track tilts to a random angle at a
random time. Because the robot’s frame of reference for
the pole angle (θ) is relative to the cart, it must figure
out the new direction of gravity and desired value of
θ to maintain balance, and respond quickly enough to
keep the pole balanced. The track angle is variable in
[-15, 15] degrees. This simulates a change in the external
environment.

• Force: A force multiplier f is applied to the policy’s
action such that its actuator strength may increase or



decrease over time. The policy’s effective action is f ×
action, where f changes over time within the range [0.5,
2]. This simulates a drop in actuator strength due to a
low battery, for example.

• Damping: A damping factor D simulates variable joint
friction by modifying joint torque as τD = −Dq̇r, where
q̇r is the joint velocity (see eqns. 2.81, 2.83 in [29]).
This simulates joint wear and tear. D changes over time
in the range [0.0, 0.15].

Each type of change is controlled by a single parameter.
We investigate two schedules for how these parameters might
change during an episode, illustrated in Fig. S4.

V. RESULTS

A. Quadruped Leg-Breaking

1) Comparison with Baselines: ARZ—with the inclusion
of CADFs—is the only method that produced a viable control
policy in the leg-breaking task. This problem is exceedingly
difficult: finding a policy that maintains smooth locomotion
and is robust to leg breaking requires 20 evolution experiment
repetitions (Fitness > 600 in Fig. 3a). In Fig. 3a, training
fitness between 500 and 600 typically indicates either (1)
a viable forward gait behavior that is only robust to 3/4
legs breaking or (2) a policy robust to any leg breaking
but which operates at a high frequency not viable for a
real robot, with its reward being significantly penalized by
fitness shaping as a result. Within the single best repeat, the
NSGA-II search algorithm produces a variety of policies with
performance trade-offs between smooth forward locomotion
(reward objective) and stability (steps objective), Fig. 3b.
From this final set of individuals, we select a single policy
to compare with the single best policy from each baseline.
Due to practical wall-clock time limits, we were only able
to train both ARS+MLP and ARS+LSTM policies up to 106

trials in total, but found that under this sample limit, even
the best ARS policy only achieved a reward of 360, much
lower than the 570 found by the best ARZ policy, suggesting
that ARZ can even be more sample efficient than standard
neural network baselines.

Fig. 4 confirms that ARZ is the only method capable of
building a controller that is robust to multiple different legs
breaking mid-episode. We plot post-training test results for
one champion ARZ policy in comparison with the single-
best controller discovered by ARS+MLP and ARS+LSTM.
ARZ’s adaption quality (as measured by mean reward) is
superior to baselines in the case of each individual leg, and
its performance on the stationary task (See "None" in Fig. 4)
is significantly better than any other method. Interestingly,
Fig. 4 indicates that the MLP also learned a policy that is
robust to the specific case of the back-right leg breaking.
Unlike ARZ, it is unable to generalize this adaptation to any
other leg. Finally, while the LSTM policy performed better
than the MLP on the stationary task, it fails to adapt to any
of the leg-breaking scenarios.

Visualizing trajectories for a sample of 5 test episodes from
Fig. 4 confirms that the ARZ policy is the only controller
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Fig. 3: CADFs speed up evolution on average and produced the best final
result. (a) shows ARZ search data recorded over 20 independent repeats
with and without the use of CADFs. The horizontal axis for (a) shows the
total number of individual programs evaluated, while the vertical axis shows
mean return (Equation 1) over 32 episodes for the single best individual
discovered so far. (b) shows Pareto fronts for the single repeats with max
reward from each experiment. Each point in (b) represents the bi-objective
fitness of one control program.
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Fig. 4: ARZ discovers the only policy that can adapt to any leg breaking.
The plot shows test results for the single best policy from ARZ and ARS
baselines (MLP and LSTM) in the mid-episode leg-breaking task. For each
leg, bars show mean reward over 100 episodes in which that leg is broken
at a randomly selected timestep. A reward < 400 in any column indicates
the majority of test episodes for that leg ended with a fall.

that can avoid falling in all scenarios, although in the case of
the front-left leg breaking, it has trouble maintaining forward
motion, Fig. 5. This is reflected in its relatively weak test
reward for the front-left leg (See Fig. 4). The MLP policy
manages to keep walking with a broken back-right leg but
falls in all other dynamic tasks. The LSTM, finally, is only
able to avoid falling in the stationary task in which all legs
are reliable.

(a) ARZ (b) MLP (c) LSTM

Fig. 5: ARZ discovers the only policy that consistently avoids falling. Plot
shows sample trajectories in each leg-breaking task. The vertical bar indicates
the change point (step 500). ▲ indicates that the robot fell over. Each plot
shows 4 test episodes in which a unique leg breaks. From top to bottom,
the affected legs are: None, Back-Left, Back-Right, Front-Left, Front-Right.

2) On Simplicity and Interpretability: The policy for the
Quadruped Leg-Breaking task discovered by evolutionary
search is presented in Fig. 1. This algorithm uses 608
parameters and can be expressed in less than 40 lines of code,



executing at most 2080 floating point operations (FLOPs)
per step. This should be contrasted with the number of
parameters and FLOPs expended in the baseline MLP/LSTM
models, which use more than 2.5k/9k parameters and 5k/18k
FLOPs per step, respectively. A detailed account of how these
numbers were obtained can be found in Section S4. We note
that each function possesses its own variables and memory,
which persists throughout the run. The initialization value for
the variables are tuned for the GetAction function, thus
counted as parameters, while they are all set to zero for f.

Here we provide an initial analysis of the ARZ policy,
leaving a full analysis and interpretation of the algorithm
to future work. The key feature of the algorithm is that it
discretizes the input into four states, and the action of the
quadruped is completely determined by its internal state and
the discrete label. The temporal transitions of the discretized
states show a stable periodic motion when the leg is not
broken, and the leg-breaking introduces a clear disruption in
this pattern, as shown in Fig. 6. This being a stateful algorithm
with multiple variables accumulating and preserving variables
from previous steps, we conjecture that the temporal pattern of
the discrete states serves as a signal for the adaptive behavior
of the quadruped.
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Fig. 6: State trajectories of various leg-breaking patterns. The leg-breaking
event is marked by a vertical red line. Note that different leg breaking patterns
result in different state trajectories. We conjecture that these trajectories
serve as signals that trigger the adaptive response in the algorithm.

We now expand upon how the continuous input signal is
discretized in the ARZ algorithm presented in Fig. 1. We first
observe that the only way the incoming observation vector
interacts with the rest of the algorithm is by forming scalar
s12, by taking an inner-product with a dynamical vector v3
(the second of the three red-colored lines of code). The scalar
s12 affects the action only through the two if statements
colored in red. Thus the effect of the input observation on the
action is entirely determined by the relative position of the
scalar s12 with respect to the two decision boundaries set
by the scalars s15 and s7. In other words, the external input
of the observation to the system is effectively discretized into
four states: 0 (s12 ≤ s15, s7), 1 (s15, s7 < s12),
2 (s7 < s12 ≤ s15) or 3 (s15 < s12 ≤ s7).

Thus external changes in the environment, such as leg

breaking, can be accurately detected by the change in the
pattern of the state trajectory, because the variables s7 and
s15 defining the decision boundary of the states form a stable
periodic function in time. We demonstrate this in Fig. 7, where
we plot the values of the three scalars s12, s15 and s7 for
front-leg breaking, whose occurrence is marked by the vertical
red line. Despite the marked change of behavior of the input
s12 after leg-breaking, we see that the behavior of the two
scalars s7 and s15 are only marginally affected. Intriguingly,
the behavior of the scalar registers s7 and s15 resemble that
of central pattern generators in biological circuits responsible
for generating rhythmic movements [30].
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Fig. 7: The scalar values s12, s15 and s7 of the quadruped during front-leg
breaking. Note the consistent periodic behavior of the scalars s15 and s7
despite leg breaking, marked by the vertical red line. The same periodicity
is observed for all leg-breaking scenarios analyzed.

The policy’s ability to quickly identify and adapt to multiple
unique failure conditions is clear in Fig. 8a, which plots the
controller’s actions one second before and after a leg breaks.
We see a clear, instantaneous change in behavior when a
leg fails. This policy is able to identify when a change has
occurred and rapidly adapt. Fig. 8b shows the particular
sequence of CADFs executed at each timestep before and
after the change, indicating that CADFs do play a role in the
policy’s ability to rapidly adjust its behavior. Indeed, only
evolutionary runs that included CADFs were able to discover
a policy robust to any leg breaking.

(a) Actions (b) CADF call sequences

Fig. 8: ARZ policy behavior changes when Front-Left leg breaks mid-episode
(step 500), as shown by the dynamics of the actions and the program control
flow due to CADFs.

B. Cataclysmic Cartpole

Introducing a novel benchmark adaptation task is an infor-
mative addition to results in the realistic quadruped simulator
because we can empirically adjust the nature of the benchmark
dynamics until they are significant enough to create an
adaptation gap: when stateless policies (i.e., MLP generalists)
fail to perform well because they cannot adapt their control
policy in the non-stationary environment (See Section S2



for details.). Having confirmed that Cataclysmic Cartpole
requires adaptation, we only examine stateful policies in this
task.

1) Comparison with Baselines: In Cataclysmic Cartpole,
we confirm that ARZ produces superior control relative to
the (stateful) ARS+LSTM baseline in tasks with a sudden,
dramatic change. Fig. 9 and 10 show testing that was done
after the search is complete. A fitness score of 800 indicates
the policy managed to balance the pole for ≈ 800 timesteps,
surviving up to the last point in an episode with any active
dynamics (See Fig. S4). "Stationary" is the standard Cartpole
task while "Force", "Damping", and "Track Angle" refer
to Cartpole with sudden or continuous change in these
parameters only (See Section IV-B). "All" is the case where all
change parameters are potentially changing simultaneously.
Legends indicate the policy type and corresponding task
type used during evolution. First, note that strong adaptable
policies do not emerge from ARZ or ARS+LSTM evolved in
the stationary task alone (See ARZ [Stationary] and LSTM
[Stationary]), implying that proficiency in the stationary task
does not directly transfer to any non-stationary configuration.
However, when exposed to non-stationary properties during
the search, ARZ and ARS+LSTM discover policies that adapt
to all sudden and continuous non-stationary tasks. ARZ is
significantly more proficient in the sudden change tasks (Fig.
10), achieving near perfect scores of ≈ 1000 in all tasks. In
continuous change, the single best LSTM policy achieves the
best multitasking performance with a stronger score than ARZ
on the Track Angle problem, and it is at least as proficient as
ARZ on all other tasks. However, unlike the LSTM network,
ARZ policies are uniquely interpretable.
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Fig. 9: Post-evolution test results in the Cataclysmic Cartpole continuous-
change task. Legend indicates policy type and search task. [All] marks
policies exposed to all tasks during evolution. ARZ and LSTM both solve
this adaptation task, and no direct transfer from stationary tasks to dynamic
tasks is observed. The best 5 policies from each experiment are shown.
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Fig. 10: Post-evolution test results in the Cataclysmic Cartpole sudden-
change task. [All] marks policies exposed to all tasks during evolution.
ARZ discovers the only policy that adapts to all sudden-change Cataclysmic
Cartpole tasks. The best 5 policies from each experiment are shown.

2) On Simplicity and Interpretability: Here we decompose
an ARZ policy to provide a detailed explanation of how it
integrates state observations over time to compute optimal

actions in a changing environment. An example of an
algorithm discovered in the ARZ [All] setting of Fig. 9
is presented in Fig. 11. Note that CADFs were not required
to solve this task and have thus been omitted from the search
space in order to simplify program analysis. What we find are
three accumulators that collect the history of observation and
action values from which the current action can be inferred.

# sX: scalar memory at address X.
# obs: vector [x, theta, x_dot, theta_dot].
# a, b, c: fixed scalar parameters.
# V, W: 4-dimensional vector parameters.
def GetAction(obs, action):

s0 = a * s2 + action
s1 = s0 + s1 + b * action + dot(V, obs)
s2 = s0 + c * s1
action = s0 + dot(obs, W)
return action

Fig. 11: Sample stateful action function evolved on the task where all
parameters are subject to continuous change (ARZ [All] in Fig. 9). Code
shown in Python.

This algorithm uses 11 variables and executes 25 FLOPs
per step. Meanwhile, the MLP and LSTM counterparts use
more than 1k and 4.5k parameters, expending more than 2k
and 9k FLOPs per step, respectively. More details for this
computation are presented section S4.

There are two useful ways to view this algorithm. First,
by organizing the values of s0, s1, and s2 at step n into
a vector Zn, which can be interpreted as a vector in latent
space of d = 3 dimensions, we find that the algorithm can
be expressed in the form: sn+1 = concat(obsn+1 , actn);
Zn+1 = Ũ ·Zn+ P̃ ·sn+1; actn+1 = ÃT ·Zn+1+W̃T ·sn+1,
with the projection matrix P̃ that projects the state vector
to the latent space, and a d × d evolution matrix Ũ . This
is a linear recurrent neural network with internal state Zn.
The second way to view the algorithm is to interpret it as
a generalization of a proportional–integral–derivative (PID)
controller. This can be done by first explicitly solving the
recurrent equations presented above and taking the continuous
limit. Introducing a single five-dimensional state vector s(t) =
[x(t), θ(t), ẋ(t), θ̇(t), act(t)], and d-dimensional vectors u, v,
and w, a five-dimensional vector p and a constant term c, the
algorithm in the continuous time limit can be written in the
form: act(t) = c+wT ·U t ·u+ pT · s(t)+ vT ·

∫ t

0
dτ U t−τ ·

P · s(τ) where P and U are the continuous-time versions of
P̃ and Ũ . In our particular discovered algorithm (Fig. 11), d
happens to be 3. Notice that the integration measure now has
a time-dependent weight factor in the integrand versus the
conventional PID controller. Further derivations, discussions,
and interpretations regarding this algorithm are presented in
the supplementary material.

VI. CONCLUSION AND DISCUSSION

We have shown that using ARZ to search simultaneously
in program space and parameter space produces proficient,
simple, and interpretable control algorithms that can perform
zero-shot adaptation, rapidly changing their behavior to
maintain near-optimal control in environments that undergo



radical change. In the remainder of this section, we briefly
motivate and speculate about future work.

CADFs and the Distraction Dilemma. In the quadruped
robot domain, we have observed that including Conditionally
invoked Automatically Defined Functions (CADFs) in our
search space improves the expressiveness of evolved control
algorithms. In the single best policy, CADFs have been used
to discretize the observation space into four states. The action
is then completely determined by the internal state of the
system and this discretized observation. One interpretation
is that this discretization helps the policy define a switching
behavior that can overcome the distraction dilemma: the
challenge for a multi-task policy to balance the reward of
excelling at multiple different tasks against the ultimate goal
of achieving generalization [1]. By contrast, searching only
in the parameter space of a hand-designed MLP or LSTM
network did not produce policies that can adapt to more than
one unique change event (i.e., a single leg breaking). A deeper
study of modular/hierarchical policies and their impact on
the distraction dilemma is left to future work.

The Cataclysmic Cartpole Task. Given the computationally
intensive nature of simulating a real robot, we felt compelled
to also include a more manageable toy task where adaptation
matters. This led to the Cataclysmic Cartpole task. We found
it useful for doing quick experiments and emphasizing the
power and interpretability of ARZ results. We hope that it
may also provide an easily reproducible environment for use
in further research.

Adapting to Unseen Task Dynamics. Looking to the future,
we have included detailed supplementary material which
raises an open and ambitious question: how can we build
adaptive control policies without any prior knowledge about
what type of environmental change may occur in the future?
Surprisingly, preliminary results with ARZ on the cataclysmic
cartpole task suggest that injecting partial-observability and
dynamic actuator noise during evolution (training) can act as
a general surrogate for non-stationary task dynamics S2. In
preliminary work, we found this to support the emergence of
policies that can adapt to novel task dynamics that were not
experienced during search (evolution). This was not possible
for our LSTM baselines. If true, this would be significant
because it implies we might be able to evolve proficient
control policies without complete prior knowledge of their
task environment dynamics, thus relaxing the need for an
accurate physics simulator. Future work may investigate the
robustness of this preliminary finding.
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Supplementary Material

S1. METHODS ADDITIONAL DETAILS

Old 
Population

New 
Population

Fig. S1: Simplified example of a population of algorithms, modified via
crossover and mutation to produce a new population. Complete list of
mutation operators is provided in Table S1

A. Baseline Details
Augmented Random Search (ARS): We used a standard implementation

from [24] and hyperparameter tuned over a cross product between:
• learning rate: [0.001, 0.005, 0.01, 0.05, 0.1, 0.5]
• Gaussian standard deviation: [0.001, 0.005, 0.01, 0.05, 0.1, 0.5]

and used a 2-layer MLP of hidden layer sizes (32,32) with Tanh non-linearity,
along with an LSTM of size 32.

Proximal Policy Optimization (PPO): We used a standard implementation
from TF-Agents [34], which we verified to reproduce standard Mujoco
results from [26]. We varied the following hyperparameters:

• nsteps ("collect sequence length"): [256, 1024]
• learning rate: [5e-5, 1e-4, 5e-4, 1e-3, 5e-3]
• entropy regularization: [0.0, 0.05, 0.1, 0.5]

and due to the use of a shared value network, we used a 2-layer MLP of
hidden layer sizes (256, 256) with ReLU nonlinearity alongside an LSTM
of size 256. Since PPO significantly underperformed (e.g., obtaining only
≈100 reward on quadruped tasks), we omitted its results in this paper to
save space.

B. Quadruped Tasks
We perform 20 independent repeats for each method with unique random

seeds. All repeats are allowed to train until convergence. NSGA-II uses parent
and child population sizes of 100 and 1000, respectively. No search restarts or
FEC are enabled. The set of operations available for inclusion in any program
are listed in Table S2. For ARS experiments, we run a hyperparameter
sweep consisting of 36 repeats with unique hyperparameters. We then run
an additional 20 repeats using the best hyperparameter configuration.

Fig. S2: A typical Pareto front early in NSGA-II search. The dashed box
shows policies that are effectively eliminated through fitness constraints.

C. Cataclysmic Cartpole Tasks
Cartpole [28], [35] is a classic control task in which a pole is attached by

an un-actuated joint to a cart that moves Left or Right along a frictionless
track, Figure S3. The observable state of the system at each timestep, s⃗(t),
is described by 4 variables including the cart position (x), cart velocity (ẋ),
pole angle relative to the cart (θ), and pole angular velocity (θ̇). We use a
continuous-action version of the problem in which the system is controlled
by applying a force ∈ [−1, 1] to the cart. The pole starts nearly upright,
and the goal is to prevent it from falling over. An episode ends when the
pole is more than 12 degrees from vertical, the cart moves more than 2.4
units from the center, or a time constraint is reached (1000 timesteps). A
reward of (1 − |θvert|/12)2 is provided for every timestep that the pole
remains upright, where θvert is a fixed reference for the angle of the pole
relative to the vertical plane. As such, the objective is to balance the pole
close to vertical for as long as possible.

θ̇

ẋ
x

θ

x

ẋ

θ̇

θ

Fig. S3: Illustration of a track angle change in the Cataclysmic Cartpole
task with the 4 variables in the state observation s⃗(t). Note that θ always
represents the angle between the pole and the line running perpendicular to
the track and cart, thus the desired value of θ to maintain balance (θvert = 0)
changes with the track angle and is not directly observable to the policy.

1) Sudden: A sudden change in each change parameter occurs at a
unique random timestep in [200, 800], Figure S4a.

2) Continuous: Each parameter changes over a window with random,
independently chosen start and stop timesteps in [200, 800], Figure
S4b.

For the ARZ methods, we execute 10 repeats of each experiment with
unique random seeds. For ARS, we run a hyperparameter sweep consisting
of 36 repeats with unique hyperparameters. In each case, we select 5 repeats
with the best search fitness and test the single best policy from each. Plots
show mean fitness over 100 episodes for each policy in each task.

S2. ADDITIONAL EXPERIMENTS: CATACLYSMIC
CARTPOLE

A. Adaptation Gap
In this section we use stateless policies (ARZ and MLP) to confirm

that Cataclysmic Cartpole dynamics are significant enough to create an
adaptation gap: when stateless policies (i.e. generalists) fail to perform
well because they cannot adapt their control policy in the non-stationary
environment. As mentioned in Section III-C our evolved algorithms are
able to adapt partly because they are stateful: the contents of their memory
(sX, vX, mX, and iX) are persistent across timesteps of an episode. The
representation can easily support stateless algorithms simply by forcing the
policy to wipe its memory content and re-initialize constants at the beginning
of the GetAction() function (See Figure 2).

Fig. S5 indicates that, in the continuous change environment, the stateless
baselines (MLP and ARZ stateless) fail to achieve sufficient fitness (≈ 800)
when all types of change occur simultaneously (ALL). This confirms that the
continuous change paradigm provides a suitably challenging non-stationary
problem environments to study adaptation and life-long learning. In the
sudden change task (Figure S6), the MLP baseline still fails. Surprizingly,
ARZ can discover stateless policies that succeed under this type of non-
stationarity.



Operator Allowed Functions Prob Description
Insert Instruction GetAction() CADF() 0.5 Insert randomly generated instruction at uniformly sampled line number
Delete Instruction GetAction() CADF() 1.0 Delete the instruction at a uniformly sampled line number
Randomize Instruction GetAction() CADF() 1.0 Randomize the instruction at a uniformly sampled line number
Randomize Function GetAction() CADF() 0.1 Randomly shuffles all lines of code
Randomize constants StartEpisode() 0.5 Modify a fraction (0.2) of uniformly sampled constants in a uniformly sampled

instruction. For each constant, add noise sampled from N (0, 0.052).
Randomize Parameter GetAction() CADF() 0.5 Randomize a uniformly sampled parameter in a uniformly sampled instruction
Randomize dim indices GetAction() CADF() 0.5 Randomize a fraction (0.2) of uniformly sampled dim indices in a uniformly sampled

instruction. Each chosen dim index is set to a new integer uniformly sampled from
[0, dim) where dim is the size of the memory structure being referenced.

TABLE S1: Mutation operators. Prob column lists the relative probability of applying each operation. For example, the Delete Instruction op will be applied
twice as often as the Insert instruction.
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Fig. S4: A typical randomly-created change schedule.
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Fig. S5: Stateless baselines fail to achieve sufficient fitness (≈ 800) when
all types of change occur simultaneously (ALL). The plot shows test results
for stateless baselines in the Cataclysmic Cartpole continuous change
tasks. The legend indicates policy type and search task. "Stationary" is the
standard Cartpole task while "Force", "Damping", and "Track Angle" refer
to Cartpole with continuous change in these parameters only (See Section
IV-B). "All" is the case where all change parameters are potentially changing
simultaneously. Y-axis is the average reward of 100 episodes in each task.
See Section S2-A for discussion.

B. Adapting to Unseen Dynamics in Cataclysmic Cartpole
How can we build adaptive control policies without any prior knowledge

about what type of environmental change might occur? Surprisingly, for
ARZ, we find that injecting partial-observability and dynamic actuator noise
during evolution (training) can act as a general surrogate for non-stationary
task dynamics, supporting the emergence of policies that can adapt to novel
task dynamics that were not experienced during evolution. This was not
possible for our LSTM baselines. It is a significant finding that deserves more
attention in future work because it implies we can potentially evolve proficient
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Fig. S6: ARZ can discover stateless policies that succeed in the sudden change
tasks. The plot shows test results for stateless baselines in the Cartpole
sudden change tasks. The legend indicates policy type and search task.
"Stationary" is the standard Cartpole task while "Force", "Damping", and
"Track Angle" refer to Cartpole with continuous change in these parameters
only (See Section IV-B). "All" is the case where all change parameters are
potentially changing simultaneously. Y-axis is the average reward of 100
episodes in each task. See Section S2-A for discussion.

control policies without complete prior knowledge of their task environment
dynamics, thus relaxing the need for an accurate physics simulator.

If we assume that no simulator is available for any of the non-stationary
tasks in Cataclysmic Cartpole (Force, Damping, Track Angle), can we still
build policies that cope with these changes? From a policy’s perspective,
changes to the physics of the environment will (1) change the meaning
of its sensor observations (e.g. pole angle sensor value (θ) corresponding
to vertical suddenly changes); and/or (2) change the effect of its actions
(e.g. a particular actuator value suddenly has a much greater effect on the
cart’s trajectory). To prepare policies for these uncertainties, we evolve
them with non-stationary noise applied to their actions and introduce a
partially-observable observation space. Specifically, we modify the task to
add:

• Actuator Noise: Each action value v is modified such that v = v+ n,
where n is sampled from a Gaussian distribution with mean that varies
in [-2, 2] following the continuous change schedule in Figure S4b.

• Partial Observability: Positional state variables (cart position (x) and
pole angle relative to the cart (θ)) are set to zero prior to passing the
state observation to the policy.

Our hypothesis is that this will encourage policies to rely less on their
observations and actions, and as a result they might build a stronger, more
dynamic internal world-model to predict how their actions will affect future
states. That is, there is more pressure to model the environment’s dynamic
transition function. In Figure S7, ARZ [PO + Act Noise] shows test results
for an ARZ experiment that uses the stationary task simulator during
evolution (i.e. the unmodified Cartpole environment) but applies actuator
noise and partial observability as described above. Remarkably, these evolved
policies are able to adapt reasonably well under all non-stationary tasks
in the Cataclysmic Cartpole environment, achieving an average reward of
≥ 700 in all tasks. Using the same search configuration, ARS does not
discover parameters for an LSTM network that supports adaptation to all
non-stationary tasks (LSTM [PO + Act Noise]).

In summary, preliminary data presented in this section suggests that
adding partial-observability and actuator noise to the stationary Cartpole
task during search allows ARZ to discover policies that can adapt to unseen
non-stationary tasks, a methodology that does not work for ARS with LSTM
networks. We leave comprehensive analysis of these findings to future work.

S3. CARTPOLE ALGORITHM ANALYSIS
Here we analyze the algorithm presented in Figure 11:
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Fig. S7: ARZ can discover policies that adapt to unseen tasks. The plot shows
post-evolution test results for adapting policies in the Cartpole continuous
change tasks. The legend indicates policy type and search task. [All]
indicate policies were exposed to all tasks during evolution. [PO + Act
Noise] indicates policies were evolved with partial observability and action
noise on the stationary task, while the dynamic change tasks were unseen
until test. Y-axis is the average reward of 100 episodes in each task. See
Section S2-B for discussion.

# sX: scalar memory at address X.
# obs: vector [x, theta, x_dot, theta_dot].
# a, b, c: fixed scalar parameters.
# V, W: 4-dimensional vector parameters.
def GetAction(obs, action):

s0 = a * s2 + action
s1 = s0 + s1 + b * action + dot(V, obs)
s2 = s0 + c * s1
action = s0 + dot(obs, W)
return action

Fig. S8: Sample stateful action function evolved on the Cataclysmic Cartpole
task where all parameters are subject to continuous change (ARZ [All] in
Fig. 9). Code shown in Python. This figure is a repeat of Figure 11.

Organizing the values of µ = s0, ν = s1 and ξ = s2 at step n into a
vector:

Zn = (µn, νn+1, ξn)
T ,

and concatenating the observation vector at step n + 1 and the action at
step n into a state vector sn+1:

sn+1 = (xn+1, θn+1, ẋn+1, θ̇n+1, actn)T ,

we can re-write the value of these accumulators at step n in the following
way:

sn+1 = concat(obsn+1 , actn)

Zn+1 = Ũ · Zn + P̃ · sn+1 , (2)

actn+1 = ÃT · Zn+1 + W̃T · sn+1 .

The particular variables used in this formula map to the parameters of Figure
11 as follows:

Ũ =

0 0 a
0 1 a
0 c a(1 + c)

 ,

P̃ =

 0 0 0 0 1
V1 V2 V3 V4 b+ 1
cV1 cV2 cV3 cV4 a+ bc+ c

 ,

Ã = (1, 0, 0)T ,

W̃ = (W1, W2, W3, W4, 0)T .

The numerical values of the parameters of the model found are given by

a = −0.549 , b = −0.673 , c = 0.082 ,

V = (−1.960, −0.7422, 0.7373, −5.284)T ,

W = (0.0, 0.365, 2.878, 2.799)T .

Equation (2) can be viewed as a linear recurrent model, where Zn is the
internal state of the model. The action at the n-th step is obtained as a linear
function of the internal state, the observation vector and the action value at
the previous step. An interesting aspect of the particular model found is that
the matrix Ũ by construction has eigenvalues 0, 1 and a(1 + c) ≈ −0.594.

Equation (2) being a simple linear model, we may write actn+1 explicitly
as a sum:

actn =ÃT · Ũn · Z0 + W̃T · sn

+ ÃT ·
n∑

i=0

Ũn−i · P̃ · si .

When taking the continuous limit of this expression, there is a subtlety in
that the sn+1 vector is obtained by composing the observation vector at
time step n+ 1 and the action value at time step n. We can nevertheless
be careful to redefine s to be made up of concurrent components and still
arrive at an expression which in the continuous limit, takes the form:

act(t) =c+ wT · Ut · u+ pT · s(t)

+ vT ·
∫ t

0
du Ut−u · P · s(u) . (3)

We note that when we set U = Id this expression straightforwardly reduces
to a PID controller-like model:

act(t) =(c+ wT · u) + pT · s(t) + (vT · P ) ·
∫ t

0
dus(u) .

An instructive way of re-writing Equation (3) is to explicitly use the
eigenvalues e−ωk of U . The equation can be re-parameterized as

act(t) =c+

d∑
k=1

cke
−ωkt + pT · s(t)

+

d∑
k=1

vTk ·
∫ t

0
du e−ωk(t−u)s(u) .

Here it is clear that the expression is a straightforward generalization of
the PID controller, where only the weight-one cumulant of the history is
utilized to compute the action. Now, a multitude of cumulants with distinct
decay rates can be utilized.

S4. COMPLEXITY COMPARISON

A. Baselines

As noted in section S1, MLP and LSTM networks have been trained with
ARS as baselines for the adaptation tasks in the paper. We can estimate a
lower bound for the number parameters and floating point operations required
for each model by only counting the matrix variables for the parameter count
and matrix multiplications for the floating point operations. This negelects
the bias variables and non-matrix multiplication ops such as application of
non-linearities or vector component-wise multiplications.

Given the input dimension din, the output dimension dout and the internal
dimension d, we find that the number of parameters and the floating point
operations for the MLP and LSTM model per step is given by:

FLOPSMLP ≈ 2× ParamsMLP > 2d(din + d+ dout) (4)
FLOPSLSTM ≈ 2× ParamsLSTM > 2d(4din + 4d+ dout) (5)

B. Quadruped Leg-Breaking

The algorithm presented in Figure 1 contains 16 + 16 × 37 = 608
parameters and executes a maximum of 54 × 37 + 82 = 2080 floating
point ops per step, where we have counted all operations acting on floats
or pairs of floats, assuming that all of the “if" statements pass. The input
and output dimensions of the tasks are 37 and 12, while the ARS-trained
models have internal dimensions d = 32. Using the formulae above, we
see that the MLP model contains over 2592 parameters and uses more than
5184 FLOPs. Meanwhile the LSTM model uses more than 9216 parameters
and 18432 FLOPs.

C. Cataclysmic Cartpole

The algorithm presented in Figure 9 contains 11 parameters and executes
25 floating point ops per step. The input and output dimensions of the tasks
are 4 and 1, with internal dimensions d = 32 for the neural networks. The
MLP model contains over 1184 parameters and uses more than 2368 FLOPs.
The LSTM model uses more than 4604 parameters and 9280 FLOPs.



D. Discussion
The efficiency of ARZ policies stems from two characteristics of the

system. First, like many genetic programming methods, ARZ builds policies
starting from simple algorithms and incrementally adds complexity through
interaction with the task environment (e.g., [5], [20]). This implies that the
computational cost of action inference is low early in evolution, and only
increases as more complex structures provide fitness gains. In other words,
the search is bound by incremental growth. Second, in ARZ, mutation is
twice as likely to remove an instruction than insert an instruction (See Table
S1), which has been found to have a regularization effect on the population
[3].

S5. SEARCH SPACE ADDITIONAL DETAILS
Supplementary Table S2 describes the set of operations in our search

space. Note that no matrix operations were used for the quadruped robot
domain.

TABLE S2: Ops vocabulary. s, v⃗ and M denote a scalar, vector, and matrix, resp. Early-alphabet letters (a, b, etc.) denote memory addresses. Mid-alphabet
letters (e.g. i, j, etc.) denote vector/matrix indexes (“Index” column). Greek letters denote constants (“Consts.” column). U(α, β) denotes a sample from a
uniform distribution in [α, β]. N (µ, σ) is analogous for a normal distribution with mean µ and standard deviation σ. 1X is the indicator function for set
X . Example: “M(i,j)

a = U(α, β)” describes the operation “assign to the i,j-th entry of the matrix at address a a value sampled from a uniform random
distribution in [α, β]”.

Op Code Input Args Output Args Description
ID Example Addresses Consts. Address Index (see caption)

/ types / type

OP1 no_op – – – – –
OP2 s2=s3+s0 a,b / scalars – c / scalar – sc = sa + sb

OP3 s4=s0-s1 a,b / scalars – c / scalar – sc = sa − sb

OP4 s8=s5*s5 a,b / scalars – c / scalar – sc = sa sb

OP5 s7=s5/s2 a,b / scalars – c / scalar – sc = sa/sb

OP6 s8=abs(s0) a / scalar – b / scalar – sb = |sa|
OP7 s4=1/s8 a / scalar – b / scalar – sb = 1/sa

OP8 s5=sin(s4) a / scalar – b / scalar – sb = sin(sa)

OP9 s1=cos(s4) a / scalar – b / scalar – sb = cos(sa)

OP10 s3=tan(s3) a / scalar – b / scalar – sb = tan(sa)

OP11 s0=arcsin(s4) a / scalar – b / scalar – sb = arcsin(sa)

OP12 s2=arccos(s0) a / scalar – b / scalar – sb = arccos(sa)

OP13 s4=arctan(s0) a / scalar – b / scalar – sb = arctan(sa)

OP14 s1=exp(s2) a / scalar – b / scalar – sb = esa

OP15 s0=log(s3) a / scalar – b / scalar – sb = log sa

OP16 s3=heaviside(s0) a / scalar – b / scalar – sb = 1R+ (sa)

OP17 v2=heaviside(v2) a / vector – b / vector – v⃗
(i)
b = 1R+ (v⃗ (i)

a ) ∀i
OP18 m7=heaviside(m3) a / matrix – b / matrix – M

(i,j)
b = 1R+ (M(i,j)

a ) ∀i, j
OP19 v1=s7*v1 a,b / sc,vec – c / vector – v⃗c = sa v⃗b

OP20 v1=bcast(s3) a / scalar – b / vector – v⃗
(i)
b = sa ∀i

OP21 v5=1/v7 a / vector – b / vector – v⃗
(i)
b = 1/v⃗ (i)

a ∀i
OP22 s0=norm(v3) a / scalar – b / vector – sb = |v⃗a|
OP23 v3=abs(v3) a / vector – b / vector – v⃗

(i)
b = |v⃗ (i)

a | ∀i
OP24 v5=v0+v9 a,b / vectors – c / vector – v⃗c = v⃗a + v⃗b

OP25 v1=v0-v9 a,b / vectors – c / vector – v⃗c = v⃗a − v⃗b

OP26 v8=v1*v9 a,b / vectors – c / vector – v⃗ (i)
c = v⃗ (i)

a v⃗
(i)
b ∀i

OP27 v9=v8/v2 a,b / vectors – c / vector – v⃗ (i)
c = v⃗ (i)

a /v⃗
(i)
b ∀i

OP28 s6=dot(v1,v5) a,b / vectors – c / scalar – sc = v⃗ T
a v⃗b

OP29 m1=outer(v6,v5) a,b / vectors – c / matrix – Mc = v⃗a v⃗ T
b

OP30 m1=s4*m2 a,b / sc/mat – c / matrix – Mc = sa Mb

OP31 m3=1/m0 a / matrix – b / matrix – M
(i,j)
b = 1/M(i,j)

a ∀i, j
OP32 v6=dot(m1,v0) a,b / mat/vec – c / vector – v⃗c = Ma v⃗b

OP33 m2=bcast(v0,axis=0) a / vector – b / matrix – M
(i,j)
b = v⃗ (i)

a ∀i, j
OP34 m2=bcast(v0,axis=1) a / vector – b / matrix – M

(j,i)
b = v⃗ (i)

a ∀i, j
OP35 s2=norm(m1) a / matrix – b / scalar – sb = ||Ma||
OP36 v4=norm(m7,axis=0) a / matrix – b / vector – v⃗

(i)
b = |M(i,·)

a | ∀i
OP37 v4=norm(m7,axis=1) a / matrix – b / vector – v⃗

(j)
b = |M(·,j)

a | ∀j
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Table continues on the next page.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



TABLE S2: Ops vocabulary (continued)

Op Code Input Args Output Args Description
ID Example Addresses Consts Address Index (see caption)

/ types / type

OP38 m9=transpose(m3) a / matrix – b / matrix – Mb = |MT
a |

OP39 m1=abs(m8) a / matrix – b / matrix – M
(i,j)
b = |M(i,j)

a | ∀i, j
OP40 m2=m2+m0 a,b / matrixes – c / matrix – Mc = Ma + Mb

OP41 m2=m3-m1 a,b / matrixes – c / matrix – Mc = Ma − Mb

OP42 m3=m2*m3 a,b / matrixes – c / matrix – M(i,j)
c = M(i,j)

a M
(i,j)
b ∀i, j

OP43 m4=m2/m4 a,b / matrixes – c / matrix – M(i,j)
c = M(i,j)

a /M
(i,j)
b ∀i, j

OP44 m5=matmul(m5,m7) a,b / matrixes – c / matrix – Mc = Ma Mb

OP45 s1=minimum(s2,s3) a,b / scalars – c / scalar – sc = min(sa, sb)

OP46 v4=minimum(v3,v9) a,b / vectors – c / vector – v⃗ (i)
c = min(v⃗ (i)

a , v⃗
(i)
b ) ∀i

OP47 m2=minimum(m2,m1) a,b / matrixes – c / matrix – M(i,j)
c = min(M(i,j)

a ,M
(i,j)
b ) ∀i, j

OP48 s8=maximum(s3,s0) a,b / scalars – c / scalar – sc = max(sa, sb)

OP49 v7=maximum(v3,v6) a,b / vectors – c / vector – v⃗ (i)
c = max(v⃗ (i)

a , v⃗
(i)
b ) ∀i

OP50 m7=maximum(m1,m0) a,b / matrixes – c / matrix – M(i,j)
c = max(M(i,j)

a ,M
(i,j)
b ) ∀i, j

OP51 s2=mean(v2) a / vector – b / scalar – sb = mean(v⃗a)

OP52 s2=mean(m8) a / matrix – b / scalar – sb = mean(Ma)

OP53 v1=mean(m2,axis=0) a / matrix – b / vector – v⃗
(i)
b = mean(M(i,·)

a ) ∀i
OP54 v3=std(m2,axis=0) a / matrix – b / vector – v⃗

(i)
b = stdev(M(i,·)

a ) ∀i
OP55 s3=std(v3) a / vector – b / scalar – sb = stdev(v⃗a)

OP56 s4=std(m0) a / matrix – b / scalar – sb = stdev(Ma)

OP57 s2=C1 – γ a / scalar – sa = γ

OP58 v3[5]=C2 – γ a / vector i v⃗ (i)
a = γ

OP59 m2[5,1]=C1 – γ a / matrix i, j M(i,j)
a = γ

OP60 s4=uniform(C2,C3) – α, β a / scalar – sa = U(α, β)

OP61 m2=m4 a / matrix – b / matrix – Mb = Ma

OP62 v2=v4 a / vector – b / vector – v⃗b = v⃗a

OP63 i2=i4 a / index – b / index – ib = ia

OP64 v2=power(v5,v3) a,b / vectors – c / vector – v⃗ (i)
c = power(v⃗ (i)

a , v⃗
(i)
b ) ∀i

OP65 v3=m2[:,1] a,b / matrix,index – c / vector – v⃗c = M
(·,jb)
a

OP66 v3=m2[1,:] a,b / matrix,index – c / vector – v⃗c = M
(ib,·)
a

OP67 s3=m2[1,5] a,b,c / m,i,i – d / scalar – sd = M
(ib,jc)
a

OP68 s3=v2[5] a,b / vector,index – c / scalar – sc = v⃗
(ib)
a

OP69 v3=0 – – a / vector – v⃗a = 0

OP70 s5=0 – – a / scalar – sa = 0

OP71 i2=0 – – a / index – ia = 0

OP72 v2=sqrt(v5) a / vector – b / vector – v⃗
(i)
b = sqrt(v⃗ (i)

a ) ∀i
OP73 v2=power(v5,2) a / vector – b / vector – v⃗

(i)
b = power(v⃗ (i)

a , 2) ∀i
OP74 s1=sum(v5) a / vector – b / scalar – sb = sum(v⃗ (i)

a ) ∀i
OP75 s5=sqrt(s1) a / scalar – b / scalar – sb =

√
sa

OP76 s3=s0*s2+s5 a,b,c / scalars – d / scalar – sd = sa ∗ sb + sc

OP77 s2=s4*C1 a / scalar γ b / scalar – sb = sb ∗ γ

OP78 m2[1,:]=v3 a / vector – b / matrix i M
(i,·)
b = v⃗a

OP79 m2[:,1]=v3 a / vector – b / matrix i M
(·,j)
b = v⃗a

OP80 i3 = size(m1, axis=0) - 1 a / matrix – b / index – ib = size(M(i,·)
a ) − 1

OP81 i3 = size(m1, axis=1) - 1 a / matrix – b / index – ib = size(M(·,j)
a ) − 1

OP82 i3 = len(v1) - 1 a / vector – b / index – ib = len(v⃗a) − 1

OP83 s1 = v0[3] * v1[3] + s0 a,b,c,d / v,v,s,i – e / scalar – se = v⃗
(id)
a ∗ v⃗

(id)

b + sc

OP84 s3=dot(v0[:5],v1[:5]) a,b,c / v,s,i – d / scalar – sd = v⃗ T (:ic+1)
a v⃗

(:ic+1)
b
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