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ABSTRACT

Large pre-trained vision-language models such as CLIP provide compact and
general-purpose representations of text and images that are demonstrably effective
across multiple downstream zero-shot prediction tasks. However, owing to the
nature of their training process, these models have the potential to 1) propagate
or amplify societal biases in the training data, and 2) learn to rely on spurious
features. This paper proposes FairerCLIP, a general approach for making the
zero-shot prediction of CLIP more fair and robust to spurious correlations. We
formulate the problem of jointly debiasing CLIP’s image and text representations
in reproducing kernel Hilbert spaces (RKHSs), which affords multiple benefits:
1) Flexibility: Unlike existing approaches, which are specialized to either learn
with or without ground-truth labels, FairerCLIP is adaptable to learning in both
scenarios, 2) Ease of Optimization: FairerCLIP lends itself to an iterative opti-
mization involving closed-form solvers, which leads to 4×-10× faster training
than the existing methods, 3) Sample Efficiency: Under sample-limited conditions,
FairerCLIP significantly outperforms baselines when they fail entirely, and 4)
Performance: Empirically, FairerCLIP achieves appreciable accuracy gains on
benchmark fairness and spurious correlation datasets over their respective baselines.

1 INTRODUCTION

Vision-Language Models such as CLIP (Radford et al., 2021) learn representations of images and text
from web-scale image-text pairs where representations of related image-text pairs have high cosine
similarity. While these models have gained significant attention in recent years due to their remarkable
zero-shot classification, they are not flawless. There is growing evidence that such models suffer
from biases w.r.t. demographic (e.g., sex or skin tone) attributes (Agarwal et al., 2021; Wang et al.,
2021; Birhane et al., 2023a;b) and even non-demographic(e.g., image background or illumination)
attributes (Du et al., 2022; Zhang & Ré, 2022).
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Figure 1: Dependence graphs for debiasing.

The above-mentioned biases can be viewed from the per-
spective of dependencies between the attributes of the data.
We show these dependencies in Fig. 1: X is a dataset (e.g.,
of face images) that depends on some attributes, includ-
ing Y , the target attribute we wish to predict, and S, the
attribute that leads to bias. The goal of bias mitigation is
to ensure that the prediction Ŷ is independent of S. We group the biases into those arising from two
scenarios: (1) Y and S are dependent (Fig. 1 a): for example, high cheekbones as Y and sex as S
since males typically have higher cheekbones than females. We refer to this kind of correlation as
intrinsic dependence. (2) Y and S are independent (Fig. 1 b): for example hair color as Y and
sex as S since the hair color of a person does not depend on their sex. We refer to any observed
correlation in this case as a spurious correlation.

Several efforts (Zhang & Ré, 2022; Gao et al., 2021; Kumar et al., 2022; Kirichenko et al., 2022;
Chuang et al., 2023; Wortsman et al., 2022; An et al., 2023; Adila et al., 2023), have been made to
debias zero-shot predictions from CLIP models. However, they are limited in either one or more
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Figure 2: Overview of the train and inference phases of FairerCLIP. (a) shows the label prediction
step. When labels are not available for training, FairerCLIP uses cosine similarity between the XT

and XI , and XTS and XI to predict the target attributes and sensitive attributes, respectively. (b)
shows the inputs and outputs of the FairerCLIP in its training stage. FairerCLIP uses representation
of images and the corresponding text prompts that are constructed by target attribute (Y ) along with
the predicted labels in order to find the image and text encoders, i.e., f∗

I (.;ΘI) and f∗
T (.;ΘT ). (c)

shows the inference phase of FairerCLIP in which we use the trained image and text encoders in
order to generate debiased representations from the ones generated by CLIP.

respects: (1) Type of Bias: Existing CLIP debiasing methods only consider spurious correlations
in the data (Fig. 1 b) and do not seek to address bias induced by pairs of attributes with intrinsic
dependencies (Fig. 1 a), (2) Labels for training: All existing approaches are tailored to train/fine-
tune either with (supervised) or without (unsupervised) ground-truth labels and, as such, cannot be
employed in both scenarios, (3) Efficiency: Some approaches adopt iterative methods to debias the
features. However, they are computationally expensive to train, i.e., slow to converge, leading to high
latency and many parameters in the debiasing modules, leading to large model sizes.

We propose FairerCLIP to address the aforementioned limitations of existing debiasing approaches.
Fig. 2 shows an overview of FairerCLIP in its train and inference phase and the details of integrating
this transformation over the underlying VLM. FairerCLIP affords sufficient flexibility to be employed
for mitigating bias arising from both spurious correlations and intrinsic dependencies, and in both
scenarios, learn with or without ground-truth labels. FairerCLIP utilizes a non-parametric measure
of statistical dependence that accounts for all types of linear and non-linear relations between
the debiased representation and the sensitive attribute of interest. Our formulation lends itself to
alternating optimization, with each update having a closed-form solution, and in comparison to
baselines, enjoys fast training convergence and requires fewer parameters to train.

Summary of Contributions: (1) We demonstrate that a single general method can debias the image
and text features from frozen CLIP backbones under different scenarios more effectively than those
specialized for each scenario. The scenarios include accounting for both spurious correlations and
intrinsic dependencies (Sec. 4.2), learning with and without ground-truth labels (Sec. 4.2), and
learning from small and medium-sized datasets (App. A.5). (2) We demonstrate that kernel methods
are particularly effective compared to shallow MLPs when operating on features and optimizing
possibly competing objectives, as is the case for debiasing CLIP representations. They enjoy closed-
form solutions that allow for significant improvements in training speed, can scale to medium-sized
datasets, and are more effective under limited training data (Sec. 4.3, App. A.4, and Tab. 3 (left)).

2 THE DEBIASING CLIP REPRESENTATIONS PROBLEM

Notation: Scalars are denoted by regular lower case letters, e.g. r, τ . Deterministic vectors are
denoted by boldface lowercase letters, e.g. x, s. We denote both scalar-valued and multi-dimensional
Random Variables (RVs) by regular uppercase letters, e.g. X , S. Deterministic matrices are denoted
by boldface uppercase letters, e.g. H , Θ, and the entry at ith row, jth column of matrix M is
denoted by (M)ij or mij . In or simply I denotes an n× n identity matrix, 1n or 1 and 0n or 0 are
n× 1 vector of ones and zeros, respectively. We denote the trace of any square matrix K by Tr[K].
Finite or infinite sets are denoted by calligraphy letters, e.g. H, A.

Problem Setup: We assume that the joint RV (XI , XT , Y, S) contains the pre-trained image features
XI ∈ Rd, pre-trained text features of target attribute XT ∈ Rd, target attribute Y ∈ RdY , and
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sensitive attribute S ∈ RdS . Their joint distribution will be pXI ,XT ,Y,S . Furthermore, Y and S can
belong to any finite set, such as a categorical set.

Our aim is to debias XI and XT by generating representations, ZI = fI(XI) and ZT = fT (XT ),
with no or reduced statistical dependence on S. In order to measure this dependency, we need to
employ a metric that is capable of capturing both linear and non-linear statistical dependencies.

Choice of Dependence Measure: We will adopt the simplified definition of the Hilbert-Schmidt
Independence Criterion (HSIC) (Gretton et al., 2005) introduced by Sadeghi et al. (2022), defined as,

Dep(Z, S) :=
r∑

j=1

∑
β∈US

Cov2 (Zj , β(S)) , (1)

where US is a countable orthonormal basis set for the separable universal RKHS HS , and Zj = fj(X)
for fj ∈ HX∀j = 1, ..., r. Dep(Z, S) can be estimated (see Lemma 1 in Sadeghi et al. (2022))
empirically as,

Dep(Z, S) :=
1

n2
∥ΘKXHLS∥2F , (2)

where n is the number of data samples, KX ∈ Rn×n is the Gram matrix corresponding to HX , Θ
is the encoder parameter in f(X) = Θ[kX1

,KX2
, · · · , kXn

]T , H = In − 1
n1n1

T
n is the centering

matrix, and LS is a full column-rank matrix in which LSL
T
S = KS (Cholesky factorization). While

HSIC and related measures like Maximum Mean Discrepancy (MMD) Gretton et al. (2012) have
been employed by prior fairness approaches (Bahng et al., 2020; Quadrianto et al., 2019; Jung
et al., 2021), the HSIC variation we use in Eq. (2) has several attractive properties (Sadeghi et al.,
2022). This includes a convergence rate of O(n−1/2)1, a practical ability to capture all non-linear
modes of dependencies when projecting from a high-dimensional representation to a low-dimensional
representation, and, as we demonstrate next, analytical traceability.

In addition to the above-mentioned dependence metric, we also need another metric that can mimic
the cosine similarity-based classification employed by CLIP. This metric will be used to make the
representations of images and their corresponding texts align with each other to improve the accuracy
of the predictions. As a result, we modify the definition of Dep metric in Eq. (1) and use a linear
kernel as β in Lemma 1.

Lemma 1. Let KXI
,KXT

∈ Rn×n be the Gram matrices corresponding to HXI
and HXT

, re-
spectively, i.e., (KXI

)ij = kXI
(xIi ,xIj ) and (KXT

)ij = kXT
(xTi

,xTj
), where covariance is

empirically estimated as

Cov (fj(XI), gm(XT )) ≈
1

n

n∑
i=1

fj(xIi)gm(xTi
)− 1

n2

n∑
p=1

fj(xIp)

n∑
k=1

gm(xTk
).

It follows that, the corresponding empirical estimator for Dep (ZI , ZT ) is

Dep (ZI , ZT ) =
1

n2

∥∥ΘIKXI
HKXT

ΘT
T

∥∥2
F
, (3)

where ΘI and ΘT are the parameters of the image encoder and text encoder, KXI
and KXT

are the
kernelized images and text features, respectively.

Proof. The main idea for proving equality equation 3 is to employ the representer theorem to express
fj and gm. The complete proof is available in the supplementary material.

Objective Function: After choosing the appropriate dependence measure, we now define our
objective function. Our goal is to mitigate bias in CLIP’s zero-shot predictions by debiasing the
underlying representations. This can be achieved by (1) reducing the information related to the
sensitive attribute, while (2) preserving information about the target attribute as much as possible, in

1In scenarios where only a single or few samples are available, to an extent, heavy data augmentation can
compensate for the lack of sufficient samples to accurately estimate Dep. However, this is beyond the scope of
this paper, and all our experiments are performed without data augmentation.
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the pair of generated image-text representations, and (3) keeping the image and corresponding text
representations aligned with each other.

We formulate the above-mentioned learning objective through the following optimization problem.
Definition 1.

sup
fI∈AI

r,fT∈AT
r

{
J (fI ,fT , τI , τT , τz) := Dep (ZI , Y )− τIDep (ZI , S)

+ Dep (ZT , Y )− τT Dep (ZT , S)

+ τzDep (ZI , ZT )
} (4)

where Dep(·, ·) ≥ 0 is the dependence measure of statistical dependence defined in Eq. (2), i.e.
Dep(Q,U) = 0 implies Q is independent of U (i.e., Q ⊥⊥ U ), and Dep(Q,U) > 0 implies Q is
dependent on U (i.e., Q ̸⊥⊥ U ), with larger values indicating greater degrees of dependence. τI and
τT control the contribution of the corresponding debiasing terms and τz controls the alignment of the
debiased image and text features ZI = fI(XI) and ZT = fT (XY ), respectively.

In the above definition, the terms Dep(ZI , Y ) and Dep(ZT , Y ) contribute to maximizing the statistical
dependence between the representations and the target label Y , the terms −τIDep(ZI , S) and
−τT Dep(ZT , S) assist to make the representations independent to S, and the term τzDep(ZI , ZT )
ensures that the text and image features are still aligned with each other after debiasing.

Choice of Encoder: We construct the mappings through a set of r functions from RdX → R in a
reproducing kernel Hilbert space (RKHS) (HX , kX(·, ·)), e.g., RBF Gaussian kernel. Hence, the
representation Z can be expressed as,

Z = f(X) := [Z1, · · · , Zr]
T ∈ Rr, Zj = fj(X), fj ∈ HX ∀j = 1, . . . , r, (5)

where r becomes the dimensionality of the generated representation.

Our choice of RKHS is motivated by several reasons. Debiasing is inherently an optimization problem
with multiple competing objectives. In such cases, optimization is the primary bottleneck rather
than model expressivity. This was also observed in Sadeghi et al. (2022). The closed-form solution
afforded by our approach mitigates the optimization challenges (Sec. 4.3 and App. A.6). RKHS
has nice universal approximation properties and has performance comparable to shallow MLPs
while being more computationally efficient for training (Sec. 4.3), and performant under limited data
scenarios (Sec. 4.2).

3 A SOLUTION TO THE DEBIASING CLIP REPRESENTATIONS PROBLEM

Given the choice of dependence measure in Eq. (2), the optimization problem in Eq. (4) can be
expressed as,

max
fI∈Ar,fT∈Ar

{
J (fI ,fT , τI , τT , τz,XI ,XT ,Y ,S) :=

1

n2
∥ΘIKXIHLY ∥2F − τI

1

n2
∥ΘIKXIHLS∥2F

1

n2
∥ΘTKXT HLY ∥2F − τT

1

n2
∥ΘTKXT HLS∥2F

+ τz
1

n2

∥∥∥ΘIKXIHKXT Θ
T
T

∥∥∥2

F

}
(6)

Our solution to the constrained optimization problem in Eq. (6) is based on the observation that it has
a closed-form solution when either fI or fT are fixed. Let ZO be the feature corresponding to the
parameter that is fixed and f the optimization parameter of the other feature of interest. Then Eq. (6)
reduces to two optimization problems of the following general form,

max
f∈Ar

{J (f , τ, τz,X,Y ,S,ZO) :=
1

n2
∥ΘKXHLY ∥2F−τ

1

n2
∥ΘKXHLS∥2F+τz

1

n2
∥ΘKXHZO∥2F }

(7)

This is easy to see since fixing either of the parameters renders the terms in Eq. (6) with only those
parameters as constants w.r.t. the optimization variable of interest, and hence can be ignored for
finding its solution.
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w/ labels: Y = y
w/o labels: Y = ŷ
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Figure 3: FairerCLIP acts on representations extracted from a frozen CLIP model. It has two mapping
functions, fI , and fT , for the image and text representations respectively. These functions are learned
through an alternating optimization algorithm with two closed-form solvers. When ground-truth
labels are not available for training, FairerCLIP learns from pseudo-labels ŷ, which are initialized
from CLIP’s zero-shot predictions and refined iteratively. The bolded words in the input text prompts
are the information of the target task label included in the text prompts.

Theorem 2. Let the Cholesky factorization of KX be KX = LXLT
X , where LX ∈ Rn×d (d ≤ n)

is a full column-rank matrix. Let r ≤ d, then a solution to Eq. (7) is

f opt(X) = Θopt [kX(x1, X), · · · , kX(xn, X)]
T
,

where Θopt = UTL†
X and the columns of U are eigenvectors corresponding to the r largest

eigenvalues of the following generalized eigenvalue problem.

LT
X

(
HKY H − τHKSH + τzHZOZ

T
OH

)
LXu = λ

(
1

n
LT

XHLX + γI

)
u. (8)

Furthermore, the objective value of (7) is equal to
∑r

j=1 λj , where {λ1, · · · , λr} are r largest
eigenvalues of Theorem 2.

Proof. The objective in Eq. (7) can be expressed as a trace optimization problem which reduces to a
generalized eigenvalue problem (Kokiopoulou et al., 2011). See the supplementary material for a
detailed proof.

Building upon the above closed-form solution, we adopt alternating optimization to solve Eq. (6),
by fixing fI and solving for fT and vice-versa (Fig. 3). The formulation in Eq. (4) requires the
labels of the downstream target task Y and the sensitive labels S in order to learn FairerCLIP’s
parameters. While such labels are readily available for supervised learning and partially available for
semi-supervised learning (Jung et al., 2022; Chen et al., 2023), this is not the case for unsupervised
learning. Therefore, in this case, we initialize the labels Y and S by the original zero-shot predictions
Ŷ and Ŝ from CLIP (Fig. 2 a). Then we refine Ŷ by predicting it after every iterative update of fI

and fT . However, note that we do not update Ŝ in the same way since our initial prediction of Ŝ
has the most information about the label S, but as we debias the representations in the subsequent
iterations, we remove the information of S. Therefore, updated values of Ŝ will lead to inaccurate
estimates of Dep(Z, S) and affect the overall optimization. A detailed description of this procedure
is provided in Algorithm 1 in App. A.1.

3.1 A GEOMETRIC ILLUSTRATION OF FAIRERCLIP

A geometric illustration of the steps that FairerCLIP takes in order to generate the debiased represen-
tation is shown in Fig. 4. In theory, the RBF kernels used in our encoder (ϕI(X) and ϕT (X)) map
the image and text features into an infinite-dimensional space which makes the samples with different
target attributes linearly separable. In that infinite-dimensional space, the encoder that optimizes
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Figure 4: A geometric illustration of FairerCLIP training steps. The encoder utilizes ϕI(X) and
ϕT (X) kernels to map image and text features into an infinite-dimensional space, facilitating linear
separability of samples with different target attributes. The optimization process seeks a direction
aligning with Y labels, statistically independent of S, and aligned with the other representation.

Eq. (4) for ΘI and ΘT (by alternating between closed-form solvers) tries to find a direction for
mapping the image and text features that has low angular distance w.r.t. the direction of (1) Y labels
(small αIY and αTY ), (2) S⊥ (small αIS⊥ and αTS⊥ ), and (3) the other representation (small αIT ).

4 EXPERIMENTAL EVALUATION

We evaluate FairerCLIP on datasets with both spurious correlation and intrinsic dependence and
compare it to several existing baselines. In summary, the experimental results indicate that the
baseline methods are effective in mitigating spurious correlations, but they are not as effective at
mitigating the bias caused by the intrinsic dependencies. In contrast, FairerCLIP is effective and
efficient at mitigating both spurious correlations and intrinsic dependencies in CLIP’s zero-shot
predictions. In all our experiments, to overcome the O(n3) computational and O(n2) memory
complexity of the kernel matrices K, we use random Fourier features (RFF) (Rahimi & Recht, 2007).
All the implementation details are provided in App. A.3

4.1 DATASETS

We evaluate FairerCLIP on an assortment of classification tasks across many datasets. This includes
Waterbirds (Sagawa et al., 2019), which contains spurious correlations between the types of birds
and backgrounds of the images, different settings of CelebA (Liu et al., 2015) that contains more
than 200,000 face images of the celebrities in the wild annotated with 40 binary attributes and
contains both spurious correlations and intrinsic dependencies among its attributes, FairFace dataset
(Karkkainen & Joo, 2021) which contains more than 108,000 face images from 7 different race
groups (White, Black, Indian, East Asian, Southeast Asian, Middle Eastern, and Latino) collected
from the YFCC-100M Flickr dataset and labeled with race, sex, and age groups, and Chicago Face
Database (CFD) (Ma et al., 2015) which includes face images with different annotations such as
facial attributes, ethnicity, age, and sex.

4.2 EMPIRICAL RESULTS

We report the results of FairerCLIP and compare them with the performance of related baselines on
a variety of datasets and settings. Following the experimental settings of previous works (Zhang &
Ré, 2022; Koh et al., 2021; Chuang et al., 2023), we do not presume sensitive attributes (S) during
the training process but assume them in the validation dataset for hyperparameter tuning and model
selection, as proposed in Koh et al. (2021). Thus, following prior work (Zhang & Ré, 2022), for
FairerCLIP and other baselines that need S, we use the zero-shot predictions of S (Ŝ) from CLIP as
the sensitive attribute.
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4.2.1 MITIGATING INTRINSIC DEPENDENCY

To evaluate the ability of FairerCLIP to mitigate intrinsic dependency, we conduct numerical eval-
uation on the CelebA dataset with high cheekbones as the target attribute and sex as the sensitive
attribute. As discussed in Sec. 1, these two attributes are intrinsically dependent. To measure the
fairness of predictions, we employ the Equal Opportunity Difference (EOD) (Hardt et al., 2016)
metric, defined as, EOD :=

∣∣∣P (Ŷ = 1|Y = 1, S = 1)− P (Ŷ = 1|Y = 1, S = 0)
∣∣∣, where S is the

sensitive attribute, and Ŷ and Y are the predicted and the ground-truth target labels, respectively. Our
choice of EOD is justified since other fairness definitions, like Demographic Parity Violation (DPV),
are not useful in many practical scenarios (Hardt et al., 2016; Chouldechova, 2017).

Table 1: Fairness on the CelebA dataset with
intrinsic dependency. All values are in %.

Method
CLIP ResNet-50 CLIP ViT-L/14

Avg EOD Avg EOD

Zero-shot (Radford et al., 2021) 50.5 5.8 48.8 2.8
ERM Linear Probe (Kumar et al., 2022) 84.8 19.0 84.8 14.0
ERM Adapter (Gao et al., 2021) 85.3 11.0 84.6 14.0
DFR (Subsample) (Kirichenko et al., 2022) 83.2 4.2 84.1 7.4
DFR (Upsample) (Kirichenko et al., 2022) 83.6 4.1 84.1 6.6
Contrastive Adapter (Zhang & Ré, 2022) 84.2 1.0 83.6 6.3
FairerCLIP (ours) 83.4 0.02 83.8 0.005

Table 1 shows the comparison between the perfor-
mance of FairerCLIP and the baselines on the CelebA
dataset with intrinsic dependency. For this exper-
iment, we train all methods, except the zero-shot
baseline, which is included to demonstrate the level
of unfairness in the CLIP features, with the ground-
truth labels. We observe that among all baselines,
Contrastive Adapter (Zhang & Ré, 2022) performs
well and achieves appreciable EOD for the CLIP
ResNet-50 model. However, most other methods seem to even amplify the bias in the original CLIP
features while improving average accuracy. FairerCLIP performs the best in terms of debiasing,
achieving an EOD of 0.002% and 0.005% for CLIP ResNet-50 and CLIP ViT-L/14, respectively.
Overall, FairerCLIP is very effective at mitigating unfairness to a significant extent, achieving an
EOD value close to zero, while maintaining a high classification accuracy.

4.2.2 MITIGATING SPURIOUS CORRELATION

To evaluate the ability of FairerCLIP to mitigate spurious correlation, we evaluate our method on
spurious correlation benchmarks, Waterbirds and CelebA, following the experimental settings of
Zhang & Ré (2022). Since our method can work with or without ground-truth labels, we compare it
against methods from both these two categories. For performance evaluation, we use three accuracy
metrics: 1) Average accuracy (Avg.), 2) Worst-Group accuracy (WG) i.e., the lowest accuracy of all
subgroups, and 3) Gap, i.e., the difference between average and worst-group accuracy.

Table 2: Comparison of prior methods and FairerCLIP in terms of worst group accuracy (WG),
average accuracy (Avg), and their gap on the WaterBirds and CelebA datasets. For the latter, the
target and sensitive attributes are blonde hair and sex for two different variants of CLIP, CLIP
ResNet-50 and CLIP ViT-L/14, in two different settings–w/ and w/o labels. 1st / 2nd best results are
bolded / underlined.

Method / Acc.
CLIP ViT-L/14 CLIP ResNet-50

Waterbirds CelebA Waterbirds CelebA

WG (↑) Avg (↑) Gap (↓) WG (↑) Avg (↑) Gap (↓) WG (↑) Avg (↑) Gap (↓) WG (↑) Avg↑ Gap (↓)

w
/l

ab
el

s

ERM Linear Probe (Kumar et al., 2022) 65.4±0.5 97.7±0.1 32.3±0.5 30.4±1.5 94.6±0.1 64.2±1.5 13.2±0.7 94.6±0.1 81.4±0.7 13.1±0.9 94.8±0.0 81.6±0.8
ERM Adapter(Gao et al., 2021) 76.1±1.8 97.8±0.1 21.7±1.7 40.0±5.6 94.3±0.3 54.3±5.6 63.0±0.4 96.0±1.1 32.9±0.8 41.9±4.5 94.7±0.4 52.8±4.1
DFR (Subsample)(Kirichenko et al., 2022) 58.8±0.8 95.9±0.2 37.1±0.8 78.7±3.6 91.8±0.2 13.1±3.6 66.1±5.5 92.9±2.2 26.9±6.5 80.9±0.6 91.7±0.5 10.8±3.2
DFR (Upsample)(Kirichenko et al., 2022) 66.5±0.8 96.4±0.9 29.8±1.5 83.9±2.3 91.2±0.8 7.2±3.1 54.2±6.2 90.3±2.0 36.1±7.9 89.9±0.2 91.3±0.3 1.4±0.5
Contrastive Adapter (Zhang & Ré, 2022) 85.3±2.3 94.5±2.4 9.3±1.1 83.9±1.1 90.4±0.2 6.4±1.1 82.5±0.9 88.2±2.6 5.7±3.1 88.4±1.7 90.8±1.2 2.5±1.5
FairerCLIP (ours) 86.0±1.8 92.2±0.8 6.1±1.9 85.2±2.3 87.8±1.7 2.5±0.9 75.4±1.9 84.3±2.2 8.9±3.1 81.5±0.7 85±0.9 3.5±0.3

w
/o

la
be

ls Zero-shot(Radford et al., 2021) 45.3±0.0 84.4±0.0 39.1±0.0 72.8±0.0 87.6±0.0 14.9±0.0 39.6±0.0 77.3±0.0 37.7±0.0 75.9±0.0 82.3±0.0 6.4±0.0
Orth-Cali(Chuang et al., 2023) 68.8 ± 0.0 84.5 ± 0.0 15.7±0.0 76.1±0.0 86.2±0.0 10.1±0.0 74.0±0.0 78.7±0.0 4.7±0.0 82.2±0.0 84.4±0.0 2.2±0.0
FairerCLIP (ours) 78.1±1.4 85.1±1.1 7.1±2.4 86.1±0.8 88.0±1.0 1.9±0.6 74.8±1.7 81.4±0.9 6.6±2.5 80.4±1.0 84.7±0.7 4.3±0.4

Tab. 2 shows the results of our empirical evaluation. We make the following observations, (i) On CLIP
ViT-L/14, FairerCLIP has the lowest Gap and highest WG. (ii) For the CLIP ResNet-50, FairerCLIP
outperforms the baselines in the w/o labels setting but not in the w/ label setting. The discrepancy
between the performance FairerCLIP with CLIP ViT-L/14 and CLIP ResNet-50 can be attributed
to the fact that CLIP ResNet-50 features contain less information about target attributes than CLIP
ViT-L/14 features, as shown in App. A.7. Overall, the results of Tab. 2 indicate that FairerCLIP
effectively improves the worst group’s accuracy and reduces the Gap. It is noteworthy that our
approach can be applied to and is effective in both scenarios, with and without ground-truth labels,
while the baselines are specialized to operate in one or the other scenario only.
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In Tab. 3, we evaluate FairerCLIP on the FairFace dataset. Here, we consider sex and
race as the sensitive attributes and we follow the same setting as in Chuang et al. (2023).

Table 3: Comparison of FairerCLIP with base-
lines on FairFace dataset.

Method / MaxSkew@1000
CLIP ViT-B/32 CLIP ViT-L/14

Sex Race Sex Race

Zero-Shot (Radford et al., 2021) 0.206 0.743 0.206 0.768
Orth-Proj (Chuang et al., 2023) 0.146 0.755 0.349 0.605
Orth-Cali (Chuang et al., 2023) 0.102 0.638 0.200 0.461
FairerCLIP (ours) 0.097 0.408 0.099 0.428

In this setting, we use 5 target attributes and 10 text
prompts (2 prompts per attribute) that are unrelated
to the facial attributes or the sensitive attributes of the
samples; we do not have access to ground-truth labels.
An example text prompt can be “A photo of a crim-
inal person" or “A photo of a friendly person". All
the 10 specific prompts can be found in App. A.3. To
evaluate the models, we calculate MaxSkew@1000
(Geyik et al., 2019), which is used to assess the max-
imum imbalance in certain sensitive attributes within
a dataset. As is shown in Tab. 3, FairerCLIP outperforms the other baselines for both sensitive
attributes across two different CLIP backbones.

These results on the spurious correlation in Tab. 2, Tab. 3, and Tab. 1 suggest that FairerCLIP can
effectively mitigate the demographic bias caused by spurious correlation and intrinsic dependency in
the data in both w/ and w/o the ground-truth labels settings.

Next, we consider a more challenging task to evaluate the data-efficiency of FairerCLIP.
We use CFD images with attractive and sex as the target and sensitive group attributes.
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Figure 5: Results of FairerCLIP
and baselines on CFD

The former is a continuous label, which we binarize by using
the mean value of all samples as a threshold. Moreover, the
sex attribute is a binary label. This task presents challenges in
two aspects. First, the number of samples in this dataset is very
small (597 samples), which may not be sufficient for training
some of the baselines. Second, the performance of the zero-
shot classifier for this case shows that the features generated
by the CLIP model are not well separated, rendering it difficult
to correctly predict Ŝ (see Appendix A.8). Fig. 5 shows the
results of this experiment. We first observe that all the baselines
almost completely fail at mitigating the bias for the worst group.
In contrast, FairerCLIP’s performance is satisfyingly better,
both in terms of the WG and Avg. Furthermore, the Gap is
significantly lower (21.8% vs 53.7% for (Zhang & Ré, 2022)).

4.3 COMPUTATIONAL EFFICIENCY OF TRAINING

To show the computational efficiency of FairerCLIP we report and compare the

Table 4: Training time comparison (in seconds).

Method Waterbirds CelebA

Contrastive Adapter(Zhang & Ré, 2022) 1202 20602
ERM Linear Probe(Kumar et al., 2022) 157 2437
ERM Adapter(Gao et al., 2021) 161 1924
DFR (Subsample)(Kirichenko et al., 2022) 128 1878
DFR (Upsample)(Kirichenko et al., 2022) 176 2662
FairerCLIP (ours) 32 222

training time of FairerCLIP and other baselines in
Tab. 4. The results show that FairerCLIP is an order
of magnitude faster than most baselines and is al-
most two orders of magnitude faster than Contrastive
Adapter (Zhang & Ré, 2022). The underlying model
for this experiment is CLIP ViT-L/14, and all the
numbers are measured on the same machine.

5 ABLATION STUDIES

We conduct systematic ablation studies under different settings to investigate the effectiveness
of individual components of our approach. The settings include spurious correlation, intrinsic
dependency experiments, and scenarios where ground-truth labels are unavailable. The results are
shown in Tab. 5, where Tab. 5 (left) shows results of training w/ labels and Tab. 5 (right) shows
training w/o labels. In the following, we describe each of these studies. For more ablation studies
please refer to Appendix A.6.

Effect of Dep(Z, Y ) term: Here we study the effect of Dep(Z, Y ) by only retaining Dep(Z, Y ) in
the objective. In this case, theWG drops by 14.5% for the group robustness experiment and the EO
increases to 0.195% for the fairness experiment. Although the new features were still able to maintain
good separation w.r.t. Y , they lost their debiasing ability to a large extent.
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Table 5: Ablation study w/ (left) and w/o (right) ground-truth labels on the CelebA dataset for
different target attributes with sex as the sensitive attribute. We compare the effect of different
components and parameters of FairerCLIP on its performance. Both Dep(ZI , ZT ) and Dep(Z, Y )
prove to be necessary and effective in maximizing the metrics. All values are in %.

Method
Blonde Hair High cheekbones

WG Avg Gap Avg EOD

Dep(Z, Y ) only (τ = 0) 72.2 89.8 17.6 83.8 6.4
w/o Dep(ZI , ZT ) (τz = 0) 87.0 88.7 1.7 83.8 0.2
FairerCLIP 86.7 89.3 2.6 83.8 0.005

Method
Blonde Hair

WG Avg Gap

Dep(Z, Y ) only (τ = 0) 75.0 87.7 12.7
w/o Dep(ZI , ZT ) (τz = 0) 81.8 86.1 4.3
w/o updating ŷ 81.1 87.3 6.2
FairerCLIP 86.1 88.8 2.7

Effect of Dep(ZI , ZT ) term: We remove Dep(ZI , ZT ) to investigate its effect on the alignment
between the image and text embeddings. Results show that while maintaining a similar WG, there is
a decrease in Avg for both the w/ and w/o ground-truth settings. This result reflects the contribution
of this component to improving the predictions. Similarly, the results for the fairness experiment
show that Dep(ZI , ZT ) also aids the debiasing ability of FairerCLIP.

Effect of updating Ŷ : In this experiment, we predict Ŷ once and fix it through the training process.
Updating it during the training iterations has a considerable impact on WG accuracy. The initial
accuracy on this group was 72.8% (zero-shot classifier). Using the same initial Ŷ during training
improves the accuracy to 81.1% while updating Ŷ while training improves it further to 86.1%.

6 RELATED WORK

CLIP and Bias: Recent advancements in CLIP like models utilize multimodal data to learn represen-
tations that demonstrably generalize well to many downstream tasks and associated datasets (Radford
et al., 2021; Desai & Johnson, 2021; Singh et al., 2022; Zellers et al., 2021; Zhang et al., 2021; Alayrac
et al., 2022). Radford et al. (2021) demonstrates that utilizing a simple pretraining task with massive
amounts of image-text pairs collected from the Internet, the model can learn strong transferability on
different downstream tasks. FLAVA (Singh et al., 2022) learns representations by jointly pretraining
on both unimodal and multimodal data. Alayrac et al. (2022) demonstrates excellent generalization
performance in few-shot and zero-shot scenarios. However, there is growing evidence that these
models also suffer from spurious correlations and bias towards certain demographic groups. For
instance, Chuang et al. (2023) showed that textual prompt embeddings capture spurious correlations.
In addition, Agarwal et al. (2021) discovered that zero-shot prediction from CLIP representations
showed a high misclassification rate for certain races. Similarly, Wolfe et al. (2022) observed that
CLIP embeddings exhibit stereotypes about sex and race. Complementing these observations, we
observe that CLIP exhibits high levels of demographic bias on the CFD and CelebA datasets.

Debiasing CLIP: Several approaches have been proposed to debias CLIP embeddings. Wang et al.
(2021) addressed bias in image search by combining balanced sampling and pruning spuriously
correlated embeddings. Wang et al. (2022) proposed a two-stage method that used learnable word
vector prefixes and a re-representation Matrix for debiasing image retrieval problems. Berg et al.
(2022) jointly trained an adversarial classifier and image-text contrastive loss, effectively reducing
different bias measures. Zhang & Ré (2022) employed a contrastive adapter training strategy to
enhance group robustness. Following the group robustness evaluation, Chuang et al. (2023) proposed
to remove bias from text embeddings by projecting out the biased direction with text data only.
Seth et al. (2023) adapted an additive residual learner module that separates the protected attribute
information from the image representation generated by the visual encoder of CLIP.

7 CONCLUDING REMARKS

This paper proposed FairerCLIP to mitigate bias in zero-shot predictions from CLIP. It is versatile
enough to mitigate bias caused by both spurious correlations and intrinsic dependencies in data and
can be trained with or without ground-truth labels. Our key idea was to model the CLIP debiasing
problem in reproducing kernel Hilbert spaces and employ a non-parametric statistical dependence
measure that considers all linear and non-linear relations between the representation and the attribute
of interest. Our solution in the form of an alternating optimization algorithm is effective across a
diverse set of datasets, including Waterbirds, CelebA, FairFace, and the Chicago Face Database,
spanning a variety of intrinsic dependencies and spurious correlations among attributes. Lastly,
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kernel-based approaches are underrepresented in current learning solutions, and FairerCLIP shows
their strong potential for the type of task considered in this paper due to its flexibility, ease of
optimization, and promising performance.
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A APPENDIX

In our main paper, we proposed FairerCLIP to debias the text and image features from pre-trained
vision-language models. Here, we provide some additional analysis to support our main results. The
supplementary material is structured as follows:

1. Representation Disentanglement and Training Algorithm in App. A.1
2. Proofs Lemmas and Theorems in App. A.2
3. Implementation details in App. A.3
4. Analysis of analytical computational complexity and memory complexity in App. A.4
5. Effect of data size on the performance of FairerCLIP in App. A.5
6. More ablation studies in App. A.6
7. Comparison of CLIP ViT-L/14 and CLIP ResNet-50 in App. A.7
8. Comparison of more than 100 Zero-Shot CLIP models on CFD in App. A.8

A.1 TECHNIQUAL DETAILS

Representation Disentanglement: In order to ensure that the mapping functions avoid learning
representations with redundant information where different dimensions are highly correlated to
each other, we seek a compact (Bengio et al., 2013) debiased embedding space. Therefore, we
impose additional constraints on the representation. Specifically, we constrain the search space of the
mapping functions f(·) to learn a disentangled representation (Bengio et al., 2013) as follows

Ar :=
{
(f1, · · · , fr)

∣∣ fi, fj ∈ HX , Cov (fi(X), fj(X)) + γ ⟨fi, fj⟩HX
= δi,j

}
. (9)

In the above set, Cov (fi(X), fj(X)) part enforces the covariance matrix of Z = f(X) to be an
identity matrix and encourages the variance of each entry of Z to be one and different entries of Z to
be uncorrelated with each other. The regularization part, γ ⟨fi, fj⟩HX

encourages the components
of the mapping functions to be of unit norm and as orthogonal as possible to each other. These
constraints also aid with numerical stability during empirical estimation (Fukumizu et al., 2007).

Training Algorithm: Details of FairerCLIP training is presented in Algorithm 1. FairerCLIP uses
representation of images, representation of texts corresponding to target attribute labels (XTY ) and
representation of text corresponding to sensitive attribute labels (XTS) as its inputs. FairerCLIP goal
is to find the image encoder (f∗

I ) and text encoder (f∗
T ) that can map the biased features generated

by the CLIP to a debiased representation space. The training algorithm starts with initializing the
label predictions. Since this algorithm is used for scenarios which we do not have access to the
ground-truth labels of target attributes and sensitive attributes, we need to predict them by zero-shot
classification from CLIP features. However, in scenarios where we have access to the true labels of
the target attribute, we can skip the pseudo Y initialization step and use the ground-truth Y instead.
In the last step of initialization, we need to initialize the representation of images since we are using
an alternating method to optimize the parameters of both the image encoder and text encoder. After
the initialization step, we start to train both models in an alternating fashion. After each iteration of
optimization, we update our prediction of Y labels. After reaching the stop condition, the training
process is stopped.

A.2 PROOFS

Lemma 1. Let KXI
,KXT

∈ Rn×n be the Gram matrices corresponding to HXI
and HXT

, re-
spectively, i.e., (KXI

)ij = kXI
(xIi,xIj) and (KXT

)ij = kS(xTi,xTj), where covariance is
empirically estimated as

Cov (fj(XI), gm(XT )) ≈
1

n

n∑
i=1

fj(xIi)gm(xTi
)− 1

n2

n∑
p=1

fj(xIp)

n∑
k=1

gm(xTk
).

It follows that, the corresponding empirical estimator for Dep (ZI , ZT ) is

Dep (ZI , ZT ) =
1

n2

∥∥ΘIKXI
HKXT

ΘT
T

∥∥2
F
, (10)
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Algorithm 1: FairerCLIP Training Without Labels

Input: XI ∈ Rn×d, XTY ∈ R|Y |×d, XTS ∈ R|S|×d, m ∈ N
Output: f∗

I , f∗
T

Initialize:
Ŷ (0) ←

{
∀xI ∈XI ,xTY ∈XTY

∣∣∣argmax
xTY

xT
I xTY

∥xI∥∥xTY ∥

}
; /* initialize pseudo Y */

Ŝ ←
{
∀xI ∈XI ,xTS ∈XTS

∣∣∣argmax
xTS

xT
I xTS

∥xI∥∥xTS∥

}
; /* initialize pseudo S */

Z
(0)
I ← {f∗

I (XI)|f∗
I ← argmax

fI

J(fI , τI , 0,XI , Ŷ
(0), Ŝ,0)}; /* equation 7 */

i← 0;
while i < m do

Z
(i+1)
TY ← {f∗

T (XTY )|f∗
T ← argmax

fT

J(fT , τT , τz,XTY , Ŷ (i), Ŝ,Z
(i)
I )}; /* solve

equation 7 */

Z
(i+1)
I ← {f∗

I (XI)|f∗
I ← argmax

fI

J(fI , τI , τz,XI , Ŷ
(i), Ŝ,Z

(i)
TY )}; /* solve equation 7

*/

Ŷ (i+1) ←
{
∀zI ∈ Z

(i+1)
I ,zTY ∈ Z

(i+1)
TY

∣∣∣argmax
zTY

zT
I zTY

∥zI∥∥zTY ∥

}
; /* refine pseudo Y */

i← i+ 1
end

Proof.

Dep(ZI , ZT ) :=

r∑
m=1

r∑
j=1

{
1

n

n∑
i=1

fj(xIi)gm(xTi
)− 1

n2

n∑
p=1

fj(xIp)

n∑
k=1

gm(xTk
)

}2

=

r∑
m=1

r∑
j=1

{ 1

n
θT
IjKXI

KXT
θTm

− 1

n2
θT
IjKXI

1n1
T
nKXT

θTm

}2

=

r∑
m=1

r∑
j=1

{
1

n
θT
IjKXI

HKXT
θTm

}2

=

r∑
m=1

1

n2
∥ΘIKXI

HKXT
θTm∥22

=
1

n2

∥∥ΘIKXI
HKXT

ΘT
T

∥∥2
F

(11)

Theorem 2. Let the Cholesky factorization of KX be KX = LXLT
X , where LX ∈ Rn×d (d ≤ n)

is a full column-rank matrix. Let r ≤ d, then a solution to

max
f∈Ar

{J (f , τ, τz,X,Y ,S,ZO) :=
1

n2
∥ΘKXHLY ∥2F−τ

1

n2
∥ΘKXHLS∥2F+τz

1

n2
∥ΘKXHZO∥2F }

(12)
is

f opt(X) = Θopt [kX(x1, X), · · · , kX(xn, X)]
T

where Θopt = UTL†
X and the columns of U are eigenvectors corresponding to the r largest

eigenvalues of the following generalized eigenvalue problem.

LT
X

(
HKY H − τHKSH + τzHZOZ

T
OH

)
LXu = λ

(
1

n
LT

XHLX + γI

)
u. (13)

Furthermore, the supremum value of the objective function is equal to
∑r

j=1 λj , where {λ1, · · · , λr}
are r largest eigenvalues of equation 13.
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Proof. Using the representer theorem, the disentanglement property in

Ar :=
{
(f1, · · · , fr)

∣∣ fi, fj ∈ HX , Cov (fi(X), fj(X)) + γ ⟨fi, fj⟩HX
= δi,j

}
. (14)

can be expressed as

Cov (fi(X), fj(X)) + γ ⟨fi, fj⟩HX

=
1

n

n∑
k=1

fi(xk)fj(xk)−
1

n2

n∑
k=1

fi(xk)

n∑
m=1

fj(xm) + γ ⟨fi, fj⟩HX

=
1

n

n∑
k=1

n∑
t=1

KX(xk,xt)θit

n∑
m=1

KX(xk,xm)θjm − 1

n2
θT
i KX1n1

T
nKXθj + γ ⟨fi, fj⟩HX

=
1

n
(KXθi)

T
(KXθj)−

1

n2
θT
i KX1n1

T
nKXθj + γ

〈
n∑

k=1

θikkX(·,xk),

n∑
t=1

θitkX(·,xt)

〉
HX

=
1

n
θT
i KXHKXθj + γ θT

i KXθj

=
1

n
θT
i LX

(
LT

XHLX + nγ I
)
LT

Xθj

= δi,j .

As a result, f ∈ Ar is equivalent to

ΘLX

( 1

n
LT

XHLX + γI
)

︸ ︷︷ ︸
:=C

LT
XΘT = Ir,

where Θ :=
[
θ1, · · · ,θr

]T ∈ Rr×n.

Let V = LT
XΘT and consider the optimization problem in equation 7:

sup
f∈Ar

1

n2

{
∥ΘKXHLY ∥2F − τ ∥ΘKXHLS∥2F + τz ∥ΘKXHZO∥2F

}
= sup

f∈Ar

1

n2

{
Tr

{
ΘKXHKY HKXΘT

}
− τTr

{
ΘKXHKSHKXΘT

}
+ τzTr

{
ΘKXHZOZ

T
OHKXΘT

}}
= max

V TCV =Ir

1

n2
Tr

{
ΘLXBLT

XΘT
}

= max
V TCV =Ir

1

n2
Tr

{
V TBV

}
(15)

where

B := LT
X

(
HKY H − τHKSH + τzHZOZ

T
OH

)
LX

It is shown in Kokiopoulou et al. (2011) that an2 optimizer of (15) is any matrix U whose columns
are eigenvectors corresponding to r largest eigenvalues of generalized problem

Bu = τ Cu (16)

and the maximum value is the summation of r largest eigenvalues. Once U is determined, then, any
Θ in which LT

XΘT = U is optimal Θ (denoted by Θopt). Note that Θopt is not unique and has a
general form of

ΘT =
(
LT

X

)†
U +Λ0, R(Λ0) ⊆ N

(
LT

X

)
.

However, setting Λ0 to zero would lead to minimum norm for Θ. Therefore, we opt Θopt =

UTL†
X .

2Optimal V is not unique.
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A.3 IMPLEMENTATION DETAILS

We conducted our experiment on CelebA, Waterbirds, FairFace, and the Chicago Face Dataset (CFD).
For CelebA and Waterbirds, we follow their official train/val/test splits and only use ground truth
labels from the val split for hyperparameter tuning. For CFD, since there is no official dataset split,
we randomly split it with a ratio of 0.5/0.1/0.4 for train/val/test. Following the standard setting Zhang
& Ré (2022), we use val split to decide the optimal τ , τz , and dimensionality of the random Fourier
features (RFF). For CelebA, the optimal τ , τz , and RFF dimensions are 0.8, 0.5, and 8000. For
Waterbirds, the optimal τ , τz , and RFF dimensions are 0.7, 0.7, and 3000. And for CFD, the optimal
τ , τz , and RFF dimensions are 0.6, 0.3, and 1000. In the scenario where the group labels are not
available, we follow the same setup as the scenario where the group labels of the val split are available.
For the CelebA dataset, we also conduct a pre-sampling process on the training split to balance the
number of each class from the predicted ŷ.

For the FairFace dataset, we use 10 text prompts that are unrelated to the facial attributes or the
sensitive attributes of the samples. In this setting, the sensitive attribute is gender or race, and the text
prompts are constructed as “This is a photo of a [attribute] person" where [attribute] can be one
of the elements of the {good, evil, smart, dumb, attractive, unattractive, lawful, criminal, friendly,
unfriendly} set.

For all the above-mentioned experiments under different settings, we set the representation dimen-
sionality r to c− 1 where c is the number of classes of the downstream target task.

For clarity, we summarized all the above-mentioned implementation details in Tab. 6

Table 6: Implementation details of FairerCLIP for each dataset.

Dataset RFF Dim. r τ τZ Train/Val/Test Training samples

CelebA 8000 1 0.8 0.5 Official Splits 162,770
Waterbirds 3000 1 0.7 0.7 Official Splits 4,795
FairFace 3000 1 0.8 0.8 Official Splits 86,744
CFD 1000 1 0.6 0.3 0.5/0.1/0.4 298

A.4 NUMERICAL COMPLEXITY

Computational Complexity: If LX in equation 13 is provided in the training dataset, then the
computational complexity of obtaining the optimal encoder is O(l3), where l ≤ n is the numerical
rank of the Gram matrix KX . However, the dominating part of the computational complexity
is due to the Cholesky factorization, KX = LXLT

X , which is O(n3). Using random Fourier
features (RFF) (Rahimi & Recht, 2007), kX(x,x′) can be approximated by rX(x)T rX(x′), where
rX(x) ∈ Rd. In this situation, the Cholesky factorization can be directly calculated as

LX =

rX(x1)
T

...
rX(xn)

T

 ∈ Rn×d. (17)

As a result, the computational complexity of obtaining the optimal encoder becomes O(d3), where
the RFF dimension, d, can be significantly less than the sample size n with negligible error on the
approximation kX(x,x′) ≈ rX(x)T rX(x′).

Memory Complexity: The memory complexity of equation 13, if calculated naively, is O(n2) since
KY , KS , and ZOZ

T
O are n by n matrices. However, using RFF together with Cholesky factorization

KY = LY L
T
Y , KS = LSL

T
S , the left-hand side of equation 13 can be re-arranged as(

LT
XL̃Y

)(
L̃T

Y LX

)
− τ

(
LT

XL̃S

)(
L̃T

SLX

)
+ τz

(
LT

XZ̃O

)(
Z̃T

OLX

)
, (18)

where Z̃T
O = HZO = ZO − 1

n1n(1
T
nZO) and L̃T

Y = HLY = LY − 1
n1n(1

T
nLY ); therefore, the

required memory complexity is O(nd). Note that L̃T
S and HLX can be calculated similarly.
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Avg Accuracy WG Accuracy

Figure 6: Effect of τ and τz on the average accuracy (left) and worst group accuracy (right). For
every fixed τz , the worst group accuracy increases with τ and then starts to decrease beyond a point.
Additionally, the variation of the metrics is smooth over the range of hyperparameters, indicating
lower sensitivity towards them.

A.5 EFFECT OF DATA SIZE ON THE PERFORMANCE OF FAIRERCLIP

In order to show the effectiveness of the FairerCLIP under limited data samples condition we report
the performance of FairerCLIP as the size of the training dataset changes. In this experiment, we
randomly sampled 5, 25, 50, 75, and 100 percent of the training data as our training set. Then the
Avg., WG, and Gap are evaluated. Table 7 shows the results of the evaluation for the Waterbird and
CelebA datasets. The results indicate that FairerCLIP is able to perform sufficiently well when a
small sub-sample of the dataset is used for its training. More specifically, in the CelebA dataset,
FairerCLIP is only losing 2.9% of its WG accuracy when only 25% of the original training data
is employed in its training phase. Moreover, On a relatively smaller dataset, Waterbirds, it loses
less than 6% of WG accuracy when only 50% of training data is used. This experiment shows the
effectiveness of FairerCLIP under conditions with a limited number of training samples.

Table 7: Effect of training data size on the performance of FairerCLIP

# Samples
CelebA Waterbird

Avg. (↑) WG (↑) Gap (↓) Avg. (↑) WG (↑) Gap (↓)

5% 84.21 73.88 10.32 86.31 65.26 21.05
25% 88.26 83.88 4.37 86.54 78.66 7.88
50% 86.65 84.29 2.36 89.11 81.31 7.80
75% 90.44 85.56 4.88 87.04 84.11 2.92
100% 89.3 86.7 2.6 92.30 87.70 4.60

A.6 MORE ABLATION STUDIES

In 5, we studied the effect of different components of FairerCLIP such as Dep(Z, Y ), Dep(ZI , ZT ),
and updating the prediction of the target labels in each iteration. Here, we add another ablation study
on the effect of our control hyper-parameters, τ and τz on the performance of the method.

Effect of τ and τz: We illustrate the performance of average accuracy and worst group’s accuracy for
varying values of τ and τz in Figure 6. First, as τ and τz vary, there is a smooth change in the average
and worst group accuracy, which demonstrates the stability of FairerCLIP. Second, as τ increases,
the worst group’s accuracy also improves, which alludes to the effectiveness of τ as a control for the
degree of debiasing. However, when τ reaches a certain value, a further increase in its value leads to
a degradation in the worst group’s accuracy. Similarly, τz also plays a gradual but noticeable effect
on improving both the average and worst group accuracy for a given value of τ .
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Table 8: Comparison between CLIP ViT-L/14 and CLIP ResNet-50 in terms of the amount of the
information from Y and S that each of them can embed into their feature space on the Waterbirds.

(X,Y ) (X,S)

HSIC KCC HSIC KCC

CLIP ViT-L/14 0.1849 0.8267 0.2392 0.8661
CLIP ResNet-50 0.1423 0.7556 0.3823 0.8861

A.7 COMPARING FEATURES OF CLIP VIT-L/14 AND CLIP RESNET-50

In order to compare the features of CLIP ViT-L/14 and CLIP ResNet-50, we measure the amount of
information from the target attribute and sensitive attribute contained in their generated representations.
The embedded information is measured in terms of statistical dependency between the features and
their ground-truth Y and S labels. To calculate these dependencies, Hilbert-Schmidt independence
criterion (HSIC) (Gretton et al., 2005) and Kernel Canonical Covariance (KCC) Bach & Jordan
(2002) are used. Tab. 8 compares these two CLIP models. From the table, we can observe that CLIP
ViT-L/14 embeds more information about the target Y while containing less information about S
which indicates that the former provides better features for the Waterbirds dataset.

A.8 COMPARING MORE THAN 100 ZERO-SHOT CLIP MODELS ON CFD

As we mentioned in Section 4.2.2, zero-shot classification on CFD is a difficult task for the OpenAI
CLIP model. In Figure 7, we show that a majority of other publicly available CLIP models suffer
similarly on CFD. In fact, several models achieve only near-zero WG accuracy, irrespective of their
parameter count and the training dataset.
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Figure 7: Comparison of more than 100 publicly available CLIP models zero-shot performance on
CFD dataset. Colors show the pre-trained dataset and sizes show the number of parameters of each
model.
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