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Abstract

Face recognition is central to many authentication, security,
and personalized applications. Yet, it suffers from signifi-
cant privacy risks, particularly arising from unauthorized
access to sensitive biometric data. This paper introduces
CryptoFace, the first end-to-end encrypted face recognition
system with fully homomorphic encryption (FHE). It en-
ables secure processing of facial data across all stages of
a face-recognition process—feature extraction, storage, and
matching—without exposing raw images or features. We in-
troduce a mixture of shallow patch convolutional networks
to support higher-dimensional tensors via patch-based pro-
cessing while reducing the multiplicative depth and, thus,
inference latency. Parallel FHE evaluation of these net-
works ensures near-resolution-independent latency. On
standard face recognition benchmarks, CryptoFace signifi-
cantly accelerates inference and increases verification ac-
curacy compared to the state-of-the-art FHE neural net-
works adapted for face recognition. CryptoFace will fa-
cilitate secure face recognition systems requiring robust
and provable security. The code is available at https:
//github.com/human-analysis/CryptoFace.

1. Introduction
Face Recognition (FR) [13, 26, 44] has become inte-
gral to identity management in many practical applica-
tions, from unlocking personal devices to facilitating law
enforcement and accessing financial services. These sys-
tems process sensitive biometric data that, if compromised,
can lead to privacy invasions, identity theft, and unautho-
rized surveillance. Unlike passwords, biometric data is im-
mutable—once compromised, it cannot be changed, which
elevates the need for robust security mechanisms to protect
it. Such protections are also mandated by legal regulations
on the acquisition, storage, and usage of biometric data [34],
e.g. the European Union’s General Data Protection Regula-
tion (GDPR) [43]. FR systems in the wild consist of three
entities: a probe face image, a feature extractor (i.e. a FR
neural network), and a reference database of face features.
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Figure 1. Secure FR systems. (1) Top: existing secure FR system
which encrypts only the features, rather than raw face images, lim-
its practical utility and security; (2) bottom: proposed end-to-end
encrypted face recognition system which ensures stronger protec-
tion of the user’s face image and feature while safeguarding the
server’s reference database.

The feature extractor processes a face image to generate its
corresponding compact feature representation.
Secure FR Systems. FR systems meet increasing security
challenges. An adversarial client could attempt to infer bio-
metric data from the server’s reference database or lever-
age the feature extractor to generate adversarial probes to
deceive the system. Similarly, an adversarial server might
exploit client-provided data to extract biometric informa-
tion or infer sensitive attributes such as gender, age, or race.
Existing secure FR systems apply homomorphic encryp-
tion (HE) in a client-server two-party scenario [3, 15] to
ensure security of face features. HE allows computation
over encrypted data and provides provable post-quantum
security [7, 9, 16, 17, 32]. As shown in Figure 1 (top),
the client’s probe feature and the reference database at a
server are encrypted. The client performs feature extraction
locally and cannot delegate this task to the server. Verifica-
tion is performed by the server directly within the encrypted
domain. Limiting security measures to feature protection
only reduces the practical utility of such systems. Moreover,
such a secure FR system is vulnerable to a template recov-
ery attack [2] where an adversarial client could attempt to
infer features in the server’s reference database. Unlike HE,
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which provides robust and provable security guarantees,
other lines of research in privacy-preserving face recogni-
tion focus on different security or privacy issues, such as
adversarial attacks [12], viewing attacks [35], and informa-
tion leakage [23].
CryptoFace. To address security vulnerabilities in ex-
isting secure FR systems, we introduce CryptoFace, the
first end-to-end encrypted FR system using fully homomor-
phic encryption (FHE). All operations–including feature ex-
traction, feature matching, and score comparison–are per-
formed entirely within the encrypted domain without de-
cryption at any point. As shown in Figure 1 (bottom), the
client encrypts the probe face image and sends it to the
server. The server uses a neural network (NN) to extract
an encrypted feature. This encrypted feature is matched
against the encrypted reference feature stored in the server’s
database, producing an encrypted similarity score. The
score is compared against a threshold, and the encrypted
match/no-match result is returned to the client, who alone
can decrypt it. By securing the user’s sensitive biometric
data throughout the verification process and protecting the
server’s reference database, CryptoFace offers robust end-
to-end security for FR systems.

Realizing this goal presents three major technical chal-
lenges: (1) Homomorphic evaluation of state-of-the-art
(SoTA) convolutional neural networks (CNNs) is computa-
tionally demanding due to the high multiplicative depth of
CNNs [1, 7, 9, 28]. (2) Although several approaches [1, 18,
28] have demonstrated homomorphic evaluation of CNNs
on low-resolution images, they cannot directly process
higher-resolution face images. (3) FR requires the cosine
similarity measure [13], which cannot be directly computed
on FHE. Existing secure FR [3, 15] circumvented the eval-
uation of the cosine function under FHE by normalizing the
features before encryption.
CryptoFaceNet is designed to address these technical chal-
lenges. A face image is divided into a grid of non-
overlapping patches [14], and each is processed indepen-
dently by a shallow patch CNN (PCNN). The mixture of
PCNNs is jointly trained to learn the inter-patch relation-
ships. Due to the lower resolution of individual patch, we
reduce the multiplicative depth required for each PCNN.
We also optimize convolutional blocks to further minimize
the multiplicative depth and adopt other recent advance-
ments for efficient FHE convolution [28] and low-degree
polynomial [39] activation functions. Under FHE, the mix-
ture of PCNNs is evaluated in parallel and features are ad-
ditively aggregated, significantly accelerating the feature
extraction process. CryptoFaceNet scales effectively to
high-resolution face images and maintains near-resolution-
independent latency due to parallelism. Additionally, we
design a distribution-aware low-degree polynomial approx-
imation of the cosine similarity function to efficiently com-

pute the similarity score under FHE.
We evaluate CryptoFace on standard FR benchmarks,

comparing its performance to SoTA FHE CNNs [1, 28]
adapted for FR. Our results show that CryptoFace not
only improves the one-to-one verification accuracy by up
to +8.8% but also speeds up the encrypted FR by 7×.
CryptoFace supports arbitrary-resolution images, maintain-
ing near-constant latency across different resolutions. We
summarize the contributions of this paper below:

1. End-to-End Encrypted Face Recognition: Crypto-
Face is the first secure FR system to perform feature
extraction, feature matching, and score thresholding
entirely within the encrypted domain, eliminating the
need for decryption at any stage. CryptoFace enhances
security and expands the applicability of secure FR.

2. Efficient and Scalable Architecture: CryptoFaceNet
is a novel FHE-compatible architecture that reduces
computational overhead by minimizing multiplicative
depth and is scalable to high-resolution face images.

3. Feasibility and Efficacy Demonstration: We present
the first practical implementation of end-to-end en-
crypted face recognition, demonstrating its feasibility
on standard FR benchmarks under FHE.

2. Background and Related Work
2.1. Homomorphic Encryption (HE)
Homomorphic encryption (HE) is a class of encryption
schemes that are considered quantum-secure and enable
computations on encrypted data without requiring decryp-
tion. HE schemes are based on the Learning with Er-
rors (LWE) problem [16, 17] or Ring Learning with Errors
(RLWE) [32]. Among different HE schemes, the Cheon-
Kim-Kim-Song (CKKS) encryption scheme [7–9] is par-
ticularly well-suited for encrypted inference in neural net-
works since it supports fixed-point approximate arithmetic
over complex and real numbers.
Encryption and Decryption. A cleartext message vector
µ ∈ CN

2 is first encoded into a plaintext message m, which
is subsequently encrypted into a ciphertext c using a public
key pk = (−⟨a, sk⟩+ e, a). Here, ⟨·, ·⟩ is dot product oper-
ator, a is a random ring, e is an encryption noise, and sk is
the secret key. The encryption and decryption processes are
defined as follows:

Encrypt(m, pk) = (m, 0) + pk = (c0, c1) = c

Decrypt(c, sk) = c0 + ⟨c1, sk⟩ = m+ e
(1)

The CKKS scheme uses a residue cyclotomic polynomial
ring RQℓ

= ZQℓ
[X]/(XN +1) to encode cleartext vectors.

The modulus is defined as Qℓ =
∏ℓ

i=0 qℓ, 0 ≤ ℓ ≤ L.
The polynomial degree N determines the message capacity,
allowing N

2 complex numbers to be packed into N
2 slots.
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Supported Operations. The CKKS scheme supports
two homomorphic operations—addition and multiplica-
tion—and one automorphic operation, rotation. These op-
erations are defined as follows [7, 28]:

[m1]⊕ [m2]︸ ︷︷ ︸
ciphertext-ciphertext

≈ [m1]⊕m2︸ ︷︷ ︸
ciphertext-plaintext

≈ [ m1 +m2︸ ︷︷ ︸
element-wise add

]

[m1]⊗ [m2]︸ ︷︷ ︸
ciphertext-ciphertext

≈ [m1]⊗m2︸ ︷︷ ︸
ciphertext-plaintext

≈ [ m1 ×m2︸ ︷︷ ︸
element-wise mul

]

Rot([m], r) = [Rot(m, r)]

(2)

Here, [·] represents an encrypted message or vector and
Rot(·) denotes a left cyclical rotation of the vector by r po-
sitions. Homomorphic addition (⊕) and multiplication (⊗)
can be applied between two ciphertexts or between a cipher-
text and plaintext, enabling element-wise computations.
Multiplicative Level and Depth. Each ciphertext is asso-
ciated with a level ℓ, an integer indicating the number of
homomorphic multiplications that can be performed before
decryption fails. A function with a multiplicative depth
k–defined as the number of sequential homomorphic multi-
plications it involves—consumes k levels. After each mul-
tiplication, the polynomial modulus Qℓ must be rescaled,
transitioning from Qℓ to Qℓ−1 to maintain the scale [7].
LHE and FHE. CKKS without bootstrapping is a leveled
homomorphic encryption ( LHE ) scheme, allowing a lim-
ited number of multiplications determined by the initial
level L of a freshly encrypted ciphertext. To evaluate func-
tions with arbitrary depth, fully homomorphic encryption
( FHE ) incorporates a bootstrapping operation [4, 8, 30]
to refresh ciphertexts, effectively resetting their level to en-
able further computation. For deeper neural networks, boot-
strapping must be periodically applied to prevent decryption
failures. However, this process is computationally expen-
sive, with high latency due to the large number of rotation
operations involved. Additionally, bootstrapping has a sig-
nificant memory footprint because of the large size of the
bootstrapping operators. While a freshly encrypted cipher-
text starts with L levels, bootstrapping reduces the available
levels to L−K, as K levels are consumed during the eval-
uation of polynomials required for bootstrapping.
Computational Complexity. Bootstrapping is slower than
rotation or ciphertext-ciphertext multiplication by two or-
ders of magnitude [25]. Ciphertext-ciphertext multiplica-
tion is slower than ciphertext-plaintext multiplication or ad-
dition by two orders of magnitude [25].

2.2. Homomorphic CNNs (HCNNs)
Homomorphic CNNs (HCNNs) are CNNs that are compat-
ible with the operations that HE supports in Equation 2. We
categorize HCNNs into FHENets and LHENets depend-
ing on whether bootstrapping is used or not, respectively.

LHENets include CryptoNets [18], LoLa [5], Faster Cryp-
toNets [11], while recent FHENets include MPCNN [28]
and AutoFHE [1]. FHENets achieve SoTA prediction accu-
racy on image classification datasets but with much higher
latency than LHENets. Existing HCNNs to speed up the in-
ference on encrypted images have focused on two aspects,
packing for convolutions and polynomial activation.
Packing for Convolutions refers to efficiently packing
three-dimensional tensors to reduce the complexity of HE
multiplication and rotation for convolutional layers [24, 28].
MPCNN designs multiplexed convolution by integrating (1)
repeated packing and (2) multiplexed packing [28]. (1)

A ciphertext with the cyclotomic polynomial degree N can
pack N

2 numbers. Given a vector x ∈ Rd with d < N
2 , a

repeated vector is x(M) = [x, x, · · · , x] with M = ⌊N
2d⌋

copies of x. x(M) is encrypted to fill out all slots. The
repeated packing can accelerate convolution and bootstrap-
ping operations. A larger M leads to faster inference. (2)
When the convolutional stride exceeds 1, gaps between
valid values are introduced, causing some ciphertext slots
to remain unused. MPCNN addresses this issue by pack-
ing numbers from different channels into alternate slots, ef-
fectively filling these gaps and fully utilizing all ciphertext
slots, thereby preventing sparsity. Additionally, channels
are computed in parallel to speed up convolutional layers.
Polynomial Activation. HCNNs cannot employ ReLU
since it is not a homomorphism. So, they adopt polyno-
mial activations (e.g., monomial, Chebyshev or Hermite
polynomials) to replace ReLU. Monomial polynomials are
widely used since they allow HCNNs to be formulated as
traditional polynomial networks. Examples include Cryp-
toNets [18], LoLa [5], and Faster CryptoNets [11]. How-
ever, training with monomial polynomials often becomes
unstable due to exploding gradients. Minimax approxi-
mations using Chebyshev polynomials can achieve high-
precision approximations of ReLU functions [27–29], but
their high polynomial degree leads to prohibitively large
multiplicative depths. AESPA [39] addresses this issue
by introducing low-degree Hermite polynomials to reduce
the multiplicative depth and proposes basis-wise normaliza-
tion to stabilize training. Furthermore, search-based Aut-
oFHE [1] explores layer-wise mixed-degree polynomials to
further decrease multiplicative depth.
CryptoFaceNet Modules. We build upon the above men-
tioned prior advances for accelerating HCNN inference,
specifically adopting multiplexed convolution [28] and low-
degree, basis-wise normalized Hermite activation [39]. Our
primary focus, however, lies in addressing other outstanding
challenges of end-to-end encrypted FR, including process-
ing high-resolution encrypted images and minimizing the
multiplicative depth to reduce computationally expensive
bootstrapping operations. We overcome these challenges
through CryptoFaceNet, a novel architecture design.
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3. End-to-End Encrypted FR System

3.1. CryptoFace
FR Models [13, 26, 44] take advantage of the outstanding
representation learning ability of CNNs [20] to extract dis-
criminative features. Given a face image x ∈ RC×H×W , a
neural network fω(·) with trainable parameters ω, we have
feature y = fω(x) ∈ Rd. To verify if two face images x1,
x2 belong to the same individual, we compare their features
y1 = fω(x1) and y2 = fω(x2) to obtain their similarity,
i.e. Score(y1, y2) = ∥ y1

∥y1∥ − y1

∥y1∥∥
2 = 2 − 2 y1y2

∥y1∥∥y2∥ . If
Score(y1, y2) is smaller than a predefined threshold T, the
two face images are classified as corresponding to the same
person. We formulate this process as a Match function:

Match(y1, y2) = Score(y1, y2)− T (3)

A neural network fω(·) for FR is trained on a dataset X with
M identities, each consisting of multiple face images. To
train, we need to learn the feature center W ∈ RM×d with
M d-dimensional feature centers, where d is the predefined
feature dimension. We use ArcFace’s [13] additive angular
margin loss which is a modified cross-entropy loss:

LArcFace(ω) = − log es cos (θi+m)

es cos (θi+m)+
∑M

j=1,j ̸=i e
s cos θj

(4)

Given a training sample x with identity i, the feature y =
fω(x). The cosine similarity values between y and M d-
dimensional features of the feature center are obtained. In
Equation 4, θi is the angle between y and M [i], while θj
is the angle between y and M [j], j ̸= i. The additive mar-
gin m is added to the angle θi. The scalar s increases the
capacity of the unit ball.

Face verification involves two phases, enrollment and
verification. In the enrollment stage, the client sends the
server a reference face image and corresponding identity.
The server employs the trained network to extract the fea-
ture from the reference face image and stores the feature and
identity. In the verification stage, the client sends a probe
face image and a claimed identity to the server. The server
employs the same network to extract the feature from the
probe face image and compares it with the reference feature
indexed by the claimed identity.
Encrypted FR comprises two similar phases in our paper,
offline and online as shown in Figure 2. The offline stage
is similar to enrollment, and the online stage is analogous
to verification. In the offline stage, the client generates a
public key to encrypt the reference face image and sends
the encrypted reference face image and the corresponding
identity to the server. The server extracts the encrypted fea-
ture [y1] = fω([x1]). The client does not need to wait for
the offline stage to complete. However, during the online
stage, the client must wait for the inference result; thus, the
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Figure 2. CryptoFace. Top: offline; bottom: online.

latency of the online stage is critical for real-world applica-
tions. In the online stage, the client encrypts a probe im-
age [x2] and sends the encrypted probe face image and a
claimed identity to the server. The server extracts the en-
crypted feature [y2] = fω([x2]). Then, the server computes
the match function (Equation 3) over the encrypted features,
i.e., Match([y1], [y2]), and finally returns the resulting en-
crypted match result to the client. The client uses the se-
cret key to decrypt the result and check if it is negative or

positive to determine a match or no match , respectively.

Threat Model. Following the threat model used by existing
encrypted FR systems [3, 15] and recent FHENets [1, 28],
we assume two semi-honest parties: a client and a server.
Under this model, at most one of these parties may be cor-
rupted by an adversary [36]. Although both parties follow
the agreed-upon protocol honestly, they may attempt to ex-
tract additional information by analyzing the data received
from each other [36].
• If the client is adversarial, it may attempt to infer en-

crypted features stored on the server. However, since en-
crypted feature extraction is performed entirely on the
server side without releasing intermediate features, the
client receives only the matching result—a positive or
negative scalar. Consequently, an adversarial client can-
not infer the encrypted features stored on the server.

• If the server is adversarial, it may attempt to collect bio-
metric data from the client. However, since the server
only holds encrypted face images and features without
access to the client’s secret key, it cannot decrypt or in-
fer any face images or features provided by the client.

3.2. CryptoFaceNet
Inspired by patch-based neural networks [14], Crypto-
FaceNet applies a mixture of PCNNs to extract local fea-
tures and fuse these local features to obtain a global fea-
ture. Such a design significantly reduces FHE latency due
to shallow PCNNs with lower multiplicative depth and par-
allelized evaluation under FHE.
Training process on cleartext data is shown in Figure 3
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Figure 3. Left: cleartext training; right: encrypted inference.

(left). A two-dimensional face image x ∈ RC×H×W is
divided into a sequence of patches xi ∈ RC×P×P i = 1L,
where L = HW/P 2. The image splitting approach follows
that of Vision Transformer (ViT) [14]. A mixture of PC-
NNs, denoted as {fωi

}Li=1, independently processes each
patch xi to generate local features yi ∈ Rd for 1 ≤ i ≤ L.
These L local features are subsequently fused to form the
global feature utilized for FR as follows,

y = y′AT + b, where y′ = [y1, y2, · · · , yL] (5)

where A ∈ Rd×dL and b ∈ Rd. The patch size is sig-
nificantly smaller than the original image dimensions, i.e.,
P ≪ H or P ≪ W , resulting in a reduced receptive field.
This allows us to employ shallower PCNNs with lower mul-
tiplicative depth for each patch. Typically, each patch cov-
ers a small, distinctive facial structure, and the mixture of
PCNNs learns separate filters for each patch instead of us-
ing weight-sharing [38]. The feature fusion process (Equa-
tion 5) encourages the PCNN mixture to capture inter-patch
relationships effectively.

To train the mixture of PCNNs, we apply the ArcFace
loss defined in Equation 4. Additionally, we introduce a
jigsaw puzzle auxiliary task [6, 38, 40] to supplement po-
sitional information. This auxiliary task, previously shown
to effectively capture positional details [6, 38, 40], naturally
complements our mixture of PCNNs. Specifically, we use
the local features y1, y2, · · · , yL to predict their original po-
sitions (1, 2, · · · , L) via a fully connected layer. Thus, the
learned local features inherently encode positional informa-
tion. The training objective of the mixture of PCNNs is:

L(ω,W,A, b) = LArcFace(ω,W,A, b)+αLJigsaw(ω) (6)

where ω = {ωi}Li=1 are the parameters of all PCNNs, W
is the feature center, A and b are feature fusion parameters,
and α is the strength of jigsaw loss.
Inference. As illustrated in Figure 3 (right), the acceler-
ation achieved by evaluating an encrypted face using the
proposed mixture of PCNNs is two-fold. First, the multi-
plicative depth is significantly reduced, requiring only one
bootstrapping operation per PCNN. Second, the evaluation
of these L PCNNs can be performed in parallel, simplifying
engineering implementation. However, the fusion step in-
volves a large vector-matrix product y′AT as in Equation 5,

which requires numerous computationally expensive homo-
morphic rotations. The mapping matrix A ∈ Rd×dL is rect-
angular, making it incompatible with efficient HE vector-
matrix multiplication approaches designed specifically for
square matrices [19]. To address this issue, we rewrite A
as A = [A1, A2, · · · , AL], where each Ai ∈ Rd×d for
1 ≤ i ≤ L. Consequently, the vector-matrix multiplica-
tion can be decomposed as follows:

y =

L∑
i=1

(
yiA

T
i +

b

L

)
, where yi ∈ Rd, Ai ∈ Rd×d (7)

where the vector-matrix product yiAT
i + b/L can be eval-

uated in parallel. Under FHE, the fusion function reduces
to a simple addition, the computationally least expensive
operation in FHE.
Scalability. Existing HCNNs described in Section 2.2 do
not scale effectively to high-resolution face images. In-
creasing the size of tensors requires enlarging the degree
(N ) of the residue cyclotomic polynomial ring (see Sec-
tion 2.1), leading to a substantial accumulation of latency.
This occurs because ciphertext multiplication and rotation
complexity under FHE scales as O(ℓ2N logN) [31]. In
contrast, the proposed mixture of PCNNs is highly scalable
to higher resolutions. By increasing the number of PCNNs,
our approach achieves near-resolution-independent infer-
ence speed, due to the novel and efficient parallel evaluation
strategy we introduce.

3.3. Homomorphic Architecture
Convolutional Block. As discussed in Section 2.2, we
adopt FHE convolution from MPCNN [28] and the Hermite
polynomial activation HerPN introduced by AESPA [39].
Figure 4 shows AESPA block and its FHE implementa-
tion provided by [1]. The AESPA block depth is 8 since
one Conv consumes 2 levels, and one HerPN consumes 2
levels. We propose a depth-optimal shifted AESPA block.
Figure 4 shows CryptoFaceNet blocks for stride = 1 and
stride = 2. HerPN can be formulated as a degree-2 poly-
nomial ax2+ bx+ c with depth 2. We fuse the coefficient a
to Conv weight and change the polynomial to x2 + b

ax+ c
a

with depth 1. Therefore, the proposed CryptoFaceNet block
can save two levels.
Polynomial ℓ2 Normalization. When computing the simi-
larity score between two features y1 and y2, normalization
of these features as y1

∥y1∥ and y2

∥y2∥ is necessary (Equation 3).
ℓ2 normalization can be expressed as y

∥y∥2
= y · 1√∑d

i=1 y2
i

.

Under FHE, [yi]2 can be computed via ciphertext-ciphertext
multiplication, and the summation

∑d
i=1[yi]

2 can be ob-
tained using rotations. However, the primary challenge lies
in approximating the non-linear function q(t) = 1√

t
. This is

difficult as the domain of q(t) is typically very wide (since
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Figure 4. Convolutional blocks and their FHE implementations. Left: ResNet [20]; middle: AESPA [39]; right: CryptoFaceNet.

t = |y|22). A Taylor expansion around t = t0 would result
in a polynomial with excessively high degree, and minimax
approximation [27] is not directly applicable since q(t) can-
not be effectively scaled into the [−1, 1] interval it requires.
Observing that q(t) = 1√

t
is a strictly decreasing func-

tion and we propose using a simpler polynomial approxi-
mation: p(t) = β2t

2 + β1t + β0 to approximate q(t). Un-
like the minimax approximation that explicitly minimizes
|p(t) − q(t)|, we instead ensure p(t) has a similar shape
to q(t) within its relevant domain. We achieve this by se-
lecting three control points t1, t2, and t3, along with their
corresponding reference values 1√

t1
, 1√

t2
, and 1√

t3
, respec-

tively. Solving these equations yields coefficients β2, β1,
and β0 that fit our polynomial to the distribution of data.
Specifically, we set the control points based on the distribu-
tion of t as follows: t1 = Mean(t)−Std(t), t2 = Mean(t),
t3 = Mean(t)+Std(t). Thus, the resulting polynomial p(t)
is distribution-aware, and its coefficients (β2, β1, and β0)
are determined by the underlying data distribution—similar
to the score thresholding procedure. The polynomial ap-
proximation has a multiplicative depth of only 2, ensuring
computational efficiency. Consequently, we estimate the
matching threshold (i.e., T in Equation 3) to accommodate
the polynomial-based ℓ2 normalization.

Adaptive Average Pooling. MPCNN [28] originally em-
ploys adaptive average pooling with an output size of (1, 1).
To better preserve structural information crucial for FR, we
customized it to have an output size of (2, 2), resulting
in 256-dimensional features. Our (2, 2) pooling is imple-
mented as four separate (1, 1) pooling operations, which
permute elements of the feature vector. So, we also rear-
ranged the fusion matrix A accordingly (Equation 5) in the
cleartext domain.

CryptoFaceNet Architecture is shown in Figure 5. To re-
duce depth consumption, CryptoFaceNet fuses the Linear
and BatchNorm1D layers to a single Linear. The aggre-
gation of features is a simple ciphertext addition. Crypto-
FaceNet only uses one bootstrapping operation.
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Figure 5. CryptoFaceNet. Top: training; bottom: inference.

4. Experiments

Datasets. (1) Training dataset: we use WebFace4M, a sub-
set of WebFace260M [48] to train CryptoFace and baselines
on cleartext data in Pytorch. WebFace4M has 205,990 iden-
tities and 4,235,242 face images in total. (2) Test datasets:
we follow AdaFace [26] to benchmark CryptoFace and
baselines on five standard test datasets [22]: LFW [21],
AgeDB [37], CALFW [47], CPLFW [46], CFP-FP [42].
The image resolution is 112× 112. In our experiments, we
resize face images to small (64 × 64), medium (96 × 96),
and high-resolution (128 × 128), which satisfies use cases
corresponding to edge FR, embedded FR, and cloud FR in
the wild. CFP-FP has 7,000 pairs, resulting in 14,000 face
images, while others have 6,000 pairs, resulting in 12,000
face images. We report the one-to-one verification accuracy
on the encrypted test datasets.
FHE Library and Hardware. We follow MPCNN [28]
and AutoFHE [1] to adopt SEAL [41] library and report
latency and RAM footprint on Amazon AWS r5.24xlarge.
The modified SEAL [28] incorporates bootstrapping.
Baselines. As there is no prior end-to-end encrypted FR,
we adopt two FHENets MPCNN and AutoFHE (see Sec-
tion 2.2) as our baselines because they report the SoTA
performance on CIFAR image classification. Our C++ im-
plementation of CryptoFace is built on top of MPCNN and
AutoFHE. To take 64× 64 face images as input, we change
the stride of the very first convolutional layer from 1 to
2 to ensure that a single ciphertext can pack any inter-
mediate tensors. The new output layers used for FR are
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Method Backbone Dataset
Latency(s) RAMNetwork Params #Boot Res LFW AgeDB CALFW CPLFW CFP-FP Avg

MPCNN [28] ResNet32 0.53M 31 64 97.02 83.02 87.00 78.90 82.07 85.60 7,367 286G
ResNet44 0.72M 43 64 98.27 87.45 90.85 83.72 87.90 89.64 9,845 286G

AutoFHE [1] ResNet32 0.53M 8 64 93.53 80.88 85.40 75.67 77.96 82.69 4,001 286G

CryptoFace
CryptoFaceNet4 0.94M

1
64 98.87 89.45 91.60 81.98 85.21 89.42 1,364 269G

CryptoFaceNet9 2.12M 96 99.18 91.38 93.32 84.23 86.81 90.99 1,395 276G
CryptoFaceNet16 3.78M 128 98.78 92.90 93.73 83.95 87.94 91.46 1,446 277G

Table 1. Experiments on end-to-end FR on FHE.

Method Backbone Conv BN Residual AvgPool Linear Activation L2 Norm Match Bootstrapping Other

MPCNN [28] ResNet32 896s (12.17%) 28s (0.38%) 0.5s (0.01%) 46s (0.62%) 807s (10.96%) 583s (7.92%) 5s (0.07%) 2s (0.02%) 4991s (67.76%) 7s (0.09%)
ResNet44 1214s (12.33%) 39s (0.39%) 0.7s (0.01%) 46s (0.46%) 807s (8.19%) 807s (8.20%) 5s (0.05%) 2s (0.02%) 6917s (70.27%) 7s (0.08%)

AutoFHE [1] ResNet32 1966s (49.14%) 28s (0.69%) 1.7s (0.04%) 38s (0.95%) 658s (16.43%) 17s (0.43%) 4s (0.10%) 1s (0.03%) 1274s (31.84%) 14s (0.34%)

CryptoFace CryptoFaceNet4 858s (62.93%) 2s (0.16%) 0.1s (0.01%) 26s (1.94%) 277s (20.30%) 13s (0.94%) 2s (0.11%) 0.3s (0.02%) 141s (10.34%) 44s (3.26%)

Table 2. Latency of operations on FHE for 64× 64 encrypted face images.

AdaptiveAvgPool2d((2, 2)) 7→ Linear(256, 256) 7→ Batch-
Norm1d(256). AutoFHE is a search-based approach and
reports search results on the CIFAR dataset. Extending the
search algorithm from a small CIFAR dataset to the much
larger WebFace dataset is challenging, so we use the search
result on CIFAR and transfer it to the WebFace dataset.
Parameters. (1) Training: we adopt the parameters from
AdaFace [26] without tuning. We set the learning rate to
0.05, epochs to 26, batch size to 256, momentum to 0.9, and
weight decay to 0.0005. We use the SGD optimizer with
multi-step scheduler. The learning rate is scaled by 0.1× at
epochs 12, 20, and 24. When we train CryptoFace and Aut-
oFHE, we clip the gradient to 1 as suggested by AutoFHE.
The patch size is set to 32 × 32. We set the strength (α)
of the jigsaw loss to 0.005. (2) FHE: To meet 128-bit se-
curity [10], we use the same CKKS parameters as MPCNN
and AutoFHE. The degree of the cyclotomic ring is 216 and
Hamming weight is 192. We set the default modulus to 46
bits and the special modulus to 51 bits [1, 28].

4.1. End-to-End Encrypted FR on FHE
We follow the standard 10-fold cross-validation [13, 26] to
benchmark CryptoFace and baselines on the encrypted face
datasets. For each split, nine groups (cleartext) are used
to estimate the threshold and polynomial approximation of
ℓ2 normalization, while the standalone group (ciphertext) is
used to test performance. We report the average verifica-
tion accuracy of 10-fold cross-validation for each dataset as
shown in Table 1. For a pair of face images, we consider
the first as the reference and the second as the probe. Each
experiment includes an offline and an online stage (see Sec-
tion 3.1). In Table 1, we report the online latency. We use
numbers of patches (i.e. 4, 9, and 16) to denote Crypto-
FaceNet for different resolutions 64 × 64, 96 × 96, and
128× 128, respectively.

For encrypted face images at resolution 64×64, MPCNN
with ResNet44 shows the highest accuracy (89.64%) but
a prohibitively large latency (9,845 seconds). CryptoFace
greatly accelerates encrypted face recognition by 7.2×

which translates to savings of 8,481 seconds. We only ob-
serve a negligible accuracy drop of 0.22%. MPCNN with
ResNet32 is a faster version but only achieves 85.60% ac-
curacy. CryptoFace speeds up inference by 5.4× and in-
creases FR performance by +3.82%. AutoFHE is much
faster than MPCNN. However, the transferred AutoFHE
achieves 82.64% on encrypted FR with a latency of 4,001
seconds. Compared to AutoFHE, CryptoFace accelerates
inference by 2.9× and improves the encrypted FR perfor-
mance by +6.73%. CryptoFace also reduces RAM foot-
print by 17G since we only need one bootstrapping opera-
tion, while the baselines require three operations for differ-
ent repeated packing copies M (see Section 2.2). The ex-
perimental results demonstrate the effectiveness of Crypto-
Face, the proposed end-to-end encrypted FR. The proposed
CryptoFaceNet is an efficient FHENet thanks to the mixture
of PCNNs with simple, yet effective, parallelization.

We also analyze how the resolution of encrypted face im-
ages impacts verification accuracy, latency, and RAM foot-
print, as shown in Table 1. When the resolution increases
from 64 × 64 to 96 × 96 and 128 × 128, CryptoFace can
take advantage of high-resolution face images to effectively
improve FR performance. Compared to CryptoFaceNet4,
CryptoFaceNet9 and CryptoFaceNet16 increase the accu-
racy by +1.57% and +2.04%, respectively. CryptoFace
can maintain a nearly constant latency (1,364 to 1,446 sec-
onds) even as the image resolution increases from 64×64 to
128×128. CryptoFace slightly increases the RAM footprint
from 269G to 277G. The results demonstrate that Crypto-
Face is scalable to high-resolution images and can satisfy
different requirements in real-world secure FR applications.

4.2. Operation Latency
Table 2 lists detailed latency of different operations. Boot-
strapping operations dominate the latency of MPCNN,
around 70%. AutoFHE successfully removes most boot-
strapping operations by using mixed-degree polynomial ac-
tivations. CryptoFace fundamentally decreases the depth of
networks and significantly reduces the number of bootstrap-
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Figure 6. ℓ2 polynomial approximation. Top: the distribution
(domain) of q(t) = 1/

√
t, bottom: the approximation error

log2 |p(t)− q(t)|.

ping operations to one with bootstrapping only contribut-
ing 10% to the total latency. The parallelism of Crypto-
FaceNet on FHE introduces an acceptable overhead, around
< 3.26% (Other). CryptoFace and MPCNN (ResNet32)
spend roughly equal time evaluating convolutional lay-
ers. However, MPCNN (ResNet32) has 31 convolutional
layers, and one patch CNN only has 13 (including two
residual convolutional layers) since CryptoFaceNet convo-
lutional layers take high-level ciphertext as input, leading
to higher latency. Both AutoFHE and CryptoFace ben-
efit from low-degree polynomial activations because ex-
pensive ciphertext-ciphertext multiplications are decreased.
We apply the average pooling with the output size (2, 2)
to get 256-dimensional features (see Section 3.3). The
(2, 2) average pooling is slower than (1, 1) averaging pool-
ing used by the original versions of MPCNN and Aut-
oFHE because it introduces more rotations and multipli-
cations. However, FR necessitates high-dimensional fea-
tures to preserve more structural information. The pro-
posed polynomial approximation of ℓ2 normalization and
the feature matching are very efficient under FHE. Crypto-
FaceNet is a depth-optimized homomorphic neural archi-
tecture (see Section 3.3) demonstrating lower latency over
different FHE operations.

4.3. Polynomial L2 Approximation
Figure 6 (top) shows the distribution of ∥y∥22, namely the
domain of q(t) = 1/

√
t. We propose a distribution-aware

polynomial approximation p(t) 7→ q(t) (see Section 3.3).
Figure 6 (bottom) shows that the approximation error is
log2 |p(t)− q(t)| ≤ 2−10. Table 2 shows the latency of the
polynomial ℓ2 approximation is 0.3 to 2 seconds on FHE
only consuming 0.02% of inference time. Thus, the poly-
nomial ℓ2 approximation is accurate and efficient.

4.4. Mixed-Quality FR Benchmarks
The five standard FR datasets used in our experiments are
regarded as high-quality FR benchmarks. They can satisfy
the most real-world secure FR applications. IJB-B [45] and
IJB-C [33] FR datasets include mixed-quality face images
and are used to test FR models for challenging FR tasks.
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Figure 7. Experiments on IJB-B and IJB-C.

Figure 7 shows experimental results on encrypted IJB-B and
IJB-C on FHE. Due to the prohibitively high computational
cost, we randomly sample 1,200 pairs (with 50% positive
pairs and 50% negative pairs) from each dataset. We use
ROC (Receiver Operating Characteristic) curve and AUC
(Area Under the Curve) to qualify the FR performance of
CryptoFace and baselines. From Figure 7, CryptoFace con-
sistently shows better performance on IJB-B or IJB-C on
FHE compared to AutoFHE and MPCNN.

4.5. Identification

Method Rank-1 Acc. Rank-5 Acc.

MPCNN 88.28 97.66
CryptoFace 92.19 (↑ 3.91%) 98.44 (↑ 0.78%)

Table 3. 1:128 closed-set retrieval.

In this paper, we
primarily focus on
the face verification
task, as discussed
in Section 3.1. However, CryptoFace can be readily ex-
tended to face identification scenarios, such as one-to-many
face matching. In Table 3, we report experimental results
for a 1 : 128 closed-set rank retrieval task under FHE, using
a randomly selected subset of LFW consisting of 128 pairs.
The latency difference solely arises from the feature extrac-
tion stage, as previously reported. We evaluate performance
using Rank-1 and Rank-5 accuracy as metrics. The experi-
mental results confirm that CryptoFace is also effective for
face identification tasks.

5. Conclusion

This paper introduced CryptoFace, the first end-to-end en-
crypted face recognition system using fully homomorphic
encryption (FHE). Once face images are encrypted, all sub-
sequent operations like feature extraction, matching, and
score thresholding are performed in the encrypted domain
without decryption. The key idea behind CryptoFace is
CryptoFaceNet, a novel architecture which is a mixture
of shallow patch convolutional neural networks optimized
for FHE compatibility and mitigating the steep computa-
tional burden of encrypted inference. Experimental re-
sults on standard face recognition benchmarks show that
CryptoFace is 7× faster than SoTA FHENets while achiev-
ing better verification performance. CryptoFace can ef-
fectively process high-resolution encrypted face images to
improve verification accuracy by +2% while maintaining
near-resolution-independent latency. CryptoFace will facil-
itate the deployment of secure face recognition systems in
applications requiring strict privacy and security guarantees.
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