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Abstract

Long video understanding presents challenges due to
the inherent high computational complexity and redundant
temporal information. An effective representation for long
videos must efficiently process such redundancy while pre-
serving essential contents for downstream tasks. This paper
introduces SEmantic Attention Learning (SEAL), a novel
unified representation for long videos. To reduce compu-
tational complexity, long videos are decomposed into three
distinct types of semantic entities: scenes, objects, and ac-
tions, allowing models to operate on a compact set of enti-
ties rather than a large number of frames or pixels. To fur-
ther address redundancy, we propose an attention learning
module that balances token relevance with diversity, formu-
lated as a subset selection optimization problem. Our rep-
resentation is versatile and applicable across various long
video understanding tasks. Extensive experiments demon-
strate that SEAL significantly outperforms state-of-the-art
methods in video question answering and temporal ground-
ing tasks across diverse benchmarks, including LVBench,
MovieChat-1K, and Ego4D.

1. Introduction

State-of-the-art video understanding models excell at short
video tasks such as video classification [7, 13], temporal
grounding [38] and action detection [10, 12], which involve
videos lasting from a few seconds to minutes. However,
their performance declines on hour-long videos [40, 41].
In contrast, a 10-year-old child can watch a full-length
movie (one to two hours) and effortlessly answer questions
at various levels of detail. This disparity between humans
and machines emphasizes the foundamental challenges in
long video understanding for Al models, including: (1) In-
creased complexity: Long videos require more computa-
tion and memory than current hardware can support for
training or inference, (2) Temporal redundancy: Slow-
changing scenes and objects introduce significant redun-
dancy, and (3) Cross-task generalization: A robust repre-
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sentation must adapt to various tasks, from fine-grained fact
retrieval to high-level reasoning. These challenges, which
appear trivial for a child, remain challenging for Al models.

How does the human brain process long videos, particu-
larly in addressing the above-mentioned challenges? First,
rather than processing every pixel or frame, the brain selec-
tively attends to new information to efficiently manage tem-
poral redundancy [4, 22]. Second, humans process videos in
an online fashion, continuously updating their understand-
ing and memories as they watch, rather than deferring rea-
soning until the end. This continuous knowledge update,
combined with selective attention, allows the brain to effi-
ciently handle the complexity of long videos. Finally, atten-
tion dynamically shifts based on context. Without specific
guidance, a child may focus on naturally engaging or mem-
orable moments. However, when given specific questions
in advance, attention becomes goal-oriented to seek rele-
vant details while maintaining a broad understanding. This
suggests effective representations should balance between
task-specific focus and holistic understanding of the video
to enable cross-task generalization.

Inspired by how humans process long videos, we intro-
duce SEmantic Attention Learning (SEAL), a novel unified
representation designed to tackle the three key challenges
in long video understanding. SEAL consists of two main
steps: Semantic Decomposition and Attention Learning. In
Semantic Decomposition, long videos are decomposed into
three semantic entities such as scenes, objects, and actions,
which are then treated as tokens. While the scene and ob-
ject tokens represent static content assumed not to change
rapidly, the action tokens are designed to capture the dy-
namic, fast-changing moments of the video. We note that
these semantic tokens efficiently encode the essential infor-
mation needed to answer “where”, “what”, or “how” ques-
tions about the videos. This decomposition significantly re-
duces complexity by allowing AI models to operate on a
compact set of tokens instead of raw pixels or frames. Fig-
ure 1(a) illustrates a conventional uniformly sampled video
V, where redundant frames create cluttered visual infor-
mation that hinders effective analysis for both models and
humans. Figure 1(b) shows our semantic decomposition,
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Figure 1. Long Video Representation with Semantic Attention Learning (SEAL): (a) Conventional uniform sampling results in redun-
dant and cluttered visual information, making it difficult for both AI models and human brains to process efficiently. (b) Decomposing long
videos into semantic entities such as scenes, objects, and actions reduces temporal redundancy, thus making model training and inference
more efficient. In this example, the long video V is decomposed into 4 scene tokens (S1-S4), 6 object tokens (O1-06), and 4 action/event
tokens (A1-A4). (c) Query-aware attention learning module improves downstream task performance by focusing on relevant information
rather than processing everything. Queries (Q1-Q4) are shown with their most relevant tokens. (best viewed in color)

breaking down the video into distinct scenes, static objects,
and dynamic actions. In Attention Learning, we formulate
a subset selection problem that maximizes the query rele-
vance while ensuring token diversity. This step not only
mitigates redundancy but also enhances cross-task gener-
alization by prioritizing the most informative tokens. Fig-
ure 1(c) illustrates our attention learning module with four
different queries and their selected tokens that capture rele-
vance and diverse video content. Finally, SEAL is designed
to work for both global and streaming modes, enabling it
to process arbitrarily long videos. Extensive ablations and
experiments confirm SEAL’s superior performance over ex-
isting methods. Our key contributions include:

e We introduce SEAL, a novel unified representation for
long videos by decomposing them into three semantic to-
kens, namely scenes, objects, and actions.

e QOur attention learning module reduces temporal redun-
dancy while supporting strong cross-task generalization.
We show SEAL works in both global and streaming
modes, making it adaptable to arbitrarily long videos.

o SEALoutperforms state-of-the-art methods on various
long video understanding tasks and benchmarks includ-
ing: video QA (MovieChat-1K [33], LVBench [40]), and
egocentric video grounding (Ego4D [8]).

2. Related Work

Recent approaches have unified various video understand-
ing tasks by framing them as video QA tasks [40], lever-
aging the capabilities of LLMs. However, fine-tuning with
task-specific vision heads continues to offer advantages in
memory efficiency and task-specific performance [29], par-
ticularly for temporal grounding. In this section, we review
advancements in Video Question Answering (QA) and tem-
poral grounding for long video understanding.

Video QA for long videos. The main challenge for long
video QA 1is the memory constraint. He et al. [9] intro-
duced a sequential framework that uses a memory bank to
enhance long-term comprehension. Song et al. [33, 34]
integrated video foundation models with LLMs through
a memory mechanism inspired by the Atkinson-Shiffrin
model, reducing computational complexity while preserv-
ing long-term memory. Another line of work improves
efficiency by decomposing video content. Rui ef al. [30]
employed Memory-Propagated Streaming Encoding to seg-
ment videos into short clips, with Adaptive Memory Selec-
tion enhancing response accuracy by identifying question-
relevant memories. Min et al. [24] introduced a multi-stage,
training-free framework, emphasizing task decomposition
into parsing, grounding, and reasoning stages. More re-



cently, Weng et al. [41] proposed a hierarchical framework
that encodes local features and integrates global semantics
for detailed comprehension of extended video content. To
further reduce model’s hallucination in QA, Sun ef al. [35]
proposed a question-guided pipeline by focusing on rele-
vant frames and controlled answer generation.

Temporal localization for long videos. Recent research
in temporal localization for long videos has explored two
primary directions: LLM-based and non-LLM-based ap-
proaches. With the advances in LLMs, researchers have
expanded its use beyond traditional VQA, leveraging the
capabilities for temporal grounding tasks, with a primary
focus on enhancing localization accuracy. Ren et al. [32]
proposed a timestamp-aware model that aligns visual con-
tent with temporal cues, enabling adaptive processing of se-
quential events for tasks like localization. Similarly, Fan ef
al. [5] introduced a memory-enhanced framework that cap-
tures contextual information across video segments, im-
proving temporal and spatial reasoning. Korbar et al. [15]
developed a text-guided resampling mechanism that dy-
namically selects video segments, focusing on relevant
scenes to enhance temporal and spatial comprehension.

In contrast, non-LL.M-based approaches typically rely on
training a regression layer or decoder for temporal localiza-
tion, with efforts concentrated on refining visual features
and multimodal fusion to improve alignment. For instance,
Hou et al. [11] introduced a hierarchical framework that
combines coarse scanning with fine-grained alignment to
optimize both precision and efficiency in localizing target
moments. Pan et al. [28] applied a coarse-to-fine pipeline
for single-pass temporal grounding that improves both effi-
ciency and alignment. Additionally, Mu er al. [26] proposed
a cost-effective late fusion approach paired with a video-
centric sampling scheme to improve scalability.

Unlike prior works that focus on specific tasks,
SEAL proposes a unified and generic framework for long
video understanding, capable of adapting to various predic-
tion heads and tasks. Additionally, SEAL supports both
global and streaming modes, making it adaptable to arbi-
trarily long videos.

3. Semantic Decomposition and Attention
Learning

Let V = {v;}1Y, be an arbitrarily long untrimmed video,
where vy, . .., vy, denote the sequence of Ty, frames form-
ing the video. Let ¢ be a query from long video under-
standing tasks, comprising a sequence of [, tokens. The
query ¢ may take different forms depending on the task,
such as natural language text for video question and an-
swering (e.g., MovieChatQA [33], LVBench [40]) or vi-
sual/text template or action label for episodic memory tasks
in egocentric video understanding (e.g., Ego4D [8]). Our
method establishes a unified video representation to gener-

alize across these diverse long video understanding tasks.
An overview of our approach is presented in Figure 2.

3.1. Semantic Decomposition of Long Videos

The main challenge in long video representation lies in cap-
turing diverse content within limited memory. Conventional
methods resort to frame sampling [42, 44] or maintain-
ing a memory bank that merges similar frames [33, 34].
However, these approaches can vary greatly across tasks.
We propose a novel decomposition approach that structures
long videos into three distinct token types representing dif-
ferent type of semantic entities: (1) Scene tokens Tgcene
capture background context, providing essential cues about
the environment. (2) Action tokens Tcon represent mov-
ing elements, focusing on temporal information such as mo-
tions, activities, or events. (3) Object tokens Topject, high-
light key static elements relevant to specific tasks. With this
structured tokenization, we create a unified, compact, task-
agnostic representation that minimizes the need for redun-
dant and dense video storage while preserving a compre-
hensive understanding of long video content.

Scene Tokens. Any frame in a video can serve as a scene
token because it captures the environment where it was
recorded, e.g., indoor gym, outdoor mountain, etc. Al-
though shot boundary detection could split a long video into
shots with one scene token per shot, this approach has two
drawbacks: (1) Shot detection algorithms are often imper-
fect, with no opportunity to correct once shot boundary is
determined. (2) Shot detection often ignores the specific
query and downstream tasks, and thus could cause sub-
optimal performance. To overcome these drawbacks, we
propose a two-step approach. First, we over-sample scene
tokens, and then later perform an attention learning step to
maximize query relevance and token diversity. Specifically,
we uniformly sample Ny, frames to capture a diverse
background. These pre-sampled scene tokens, denoted as
Tocene = [tfce”e]?&f“e, will undergo another round of atten-
tion learning, detailed in Section 3.2.

Action Tokens. The purpose of the action token is to cap-
ture temporal information of moving objects such as low-
level motions, activities, and events. We begin by using
a class-agnostic object tracker, e.g., SAM-2 [31], to ex-
tract multiple initial dynamic tracklets. Tracklets shorter
than L, are discarded, while those longer than L, are
split into multiple tracklets with length of L.,. For each
tracklet, we take the spatial union of bounding boxes across
frames, allowing the dynamic token to capture not only mo-
tion information but also the spatial movement of people
and objects. This process yields Nyckier tracklets, denoted
as Taction = {T;ynamic}iv:"ic“e‘ :

Object Tokens. For the object tokens, we utilize a class-
agnostic grouping method such as SAM [14] to generate
masks for all objects in each frame. This class-agnostic
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Figure 2. SEAL Overview. During semantic decomposition, a long video V is decomposed into semantic tokens representing scenes,
objects, and actions. Then, during attention learning, these tokens and the query g, are optimized for query relevance R(-) and token
diversity S(-). The resulting attended token subset is then passed to a vision or an MLLM head for predictions.

segmentation approach enables comprehensive object infor-
mation capture. Specifically, we apply this process on Nyey
key frames. On each of the Ny, frames, we apply SAM
to obtain in total Nobjecl object masks, which we denote as

Tobject = {Mobject} Noveet ' Key frame selection varies by task
and is detailed in the following sections.

3.2. Attention Learning

Although the long video is decomposed into different to-
ken representations, the resulting tokens are still redundant.
To address this, we propose a sampling approach that bal-
ances between query-relevance and token-diversity, denoted
as Attention Learning. Specifically, we formulate our sam-
pling as an optimization problem with two main objectives:
query-relevance and token-diversity.

T = argmax Fy(Ts|Tg, q)
TsCTa

= argmavaR s, q

TsCTa t.eT,

1
+(1—a) Z SHT)

ti,t; €T, i#]

We aim to solve a subset selection problem: find a fixed-
size subset T, C T that maximizes the objective func-
tion Fy(Ts|Tq,q). Here, T represents the set of all to-
kens used, which can be any set of tokens such as scene
Tscene> object Topject, action Tyerion, OF @ combination of all
(Tscene U Topject U Taction)- ¢ denotes the query being asked
by the downstream understanding task. And, 7 denotes
the optimal subset that maximizes F. F is decomposed
into two terms: R(-) measures the relevance between a vi-

sual token and the query which we compute by encoding
them with the BLIP-2 model [17] and calculating their co-
sine similarity; and S(-) calculates the cosine similarity of
the paired tokens. We note that the first term maximizes the
relevance between selected tokens and the query while the
second term enforces token diversity (via minimizing the
token pairwise similarity). Finally, « is a hyper-parameter
to balance between query-relevance and token-diversity.

3.3. Streaming and Global Mode

Our proposed method offers two ways of representing long
videos: streaming and global. In the global mode, the
model fully “watches” (or processes) the entire video and
then provides a single representation. In contrast, in the
streaming mode, the model processes the video buffer by
buffer and provides an updated representation at any given
time step. The partly-observed video representation can
change over time as the video progresses. This setting sim-
ulates the situation when you watch a movie together with
a child and have interactions with her or him as the movie
is still going on.

In the global model, all tokens undergo a single op-
timization through Attention Leaning, resulting in Ty,
which includes & tokens. This Ty, is regarded as the repre-
sentation for the entire video. We note that the global mode
may not scale well with arbitrary long videos because all
tokens cannot be fit into a limited memory for sampling.
One can opt to use more aggressive uniform temporal pre-
sampling to reduce the numbers of tokens before Attention
Learning. This workaround can bypass the memory lim-



itation, but may also lead to sub-optimal solutions due to
missing important tokens due to uniform sampling.
Alternatively, we propose an online streaming approach
for representing partly-observed videos. Specifically, we
use a fixed-size sliding window with a size set to the maxi-
mum number of tokens [ allowed by memory capacity, de-
noted as 1. At each step ¢, we apply Attention Learning
to the union set of the tokens in the current window 7} and
the previous selected subset of tokens 71! and obtain the
representation of the video at time T}, . At the beginning,

sub*

the selected subset is set to empty (72, = ).

Ti, = Attention Learning(T; U T/ ) vt > 0. (1)

This streaming mode allows us to use 7%, as the partly-

observed representation of the video and can be fed into any

prediction head for video understanding tasks. As an imme-

diate benefit of the streaming mode, our proposed represen-
tation now can handle arbitrary long videos.

3.4. Prediction Heads

Our unified representation is adaptable to most long video
understanding tasks using different prediction heads. In this
paper, we demonstrate two specific use cases of our repre-
sentation: one is used with the traditional vision head for
video temporal grounding and the other one is with the Mul-
timodal LLMs (MLLM) head for video QA.

Temporal Grounding with Vision Heads. Given a query
q, the task is to locate the start and end times, tg,x and
tend» Where the answers could be deduced. We first en-
code the sampled tokens Ty, and the query using encoders
Ey and E, to obtain embeddings for each video token
zi = Ey(Ty:) and query z, = E,(q). The cross-modal
fusion is then performed to obtain the fused representation:

zjioim = CrossModalFusion(z’, z,) (2)
Finally, a moment decoder is applied to predict the start and
end time for the query ¢. The moment decoder includes a
classification head and a regression head. The classifica-
tion head is used to predict the score p’ ... of each token,
while the regression head predicts the normalized distances
(dlam dC,4) from each token to the moment boundaries:

picoreﬂ (dgtarlv dénd) = MomentDeCOder(z'loint)' (3)

The regression and classification heads are optimized using
an IoU distance and a focal loss as used in [25]. The fi-
nal moment is calculated as t,,,.,t. , = (t; — diy,) X
Ly, (t; +d.4) x Ly, where Ly is the length of the input
video. The proposed unified representation enables efficient
handling of long video sequences and allows for localiza-

tion related tasks.

Video QA using MLLM Heads. The proposed represen-
tation can also be connected to an MLLM head, making
it applicable to various video QA-related tasks, such as
reasoning, understanding, and summarization. Moreover,
some grounding tasks can also be addressed in a QA format.
Specifically, z, is projected through an MLP to a visual to-
ken TMUM that the MLLM can interpret, which is then in-
put into the MLLM along with text tokens 7}.,:. Based on
different benchmarks, the MLLM performs multiple-choice
or open-ended answering.

4. Experiments
4.1. Implementation Details

Datasets and metrics. We evaluate SEAL on three
datasets, each selected for its relevance to long video un-
derstanding on different capabilities. LVBench [40] con-
tains 1,549 QA pairs across six tasks, with videos averaging
4,101 seconds (approximate 1 hour 8 minutes). Each ques-
tion presents a single-choice format with four options. Ac-
curacy serves as the evaluation metric for individual tasks
as well as overall performance across all tasks. We primar-
ily focus on this dataset due to its emphasis on hour-long
videos. Moviechat-1K [33] includes 1,000 video clips with
dense captions spanning 15 categories, averaging 564 sec-
onds (about 10 minutes). The benchmark employs LLMs,
specifically GPT-3.5 [27], to evaluate the quality of gener-
ated answers. A rating ranging from O to 5 is used to com-
pute the overall score, while a binary preference from the
LLM is used to calculate the accuracy. Ego4D-NLQ [8] is
a part of the Ego4D Episodic Memory challenge for Nat-
ural Language Queries (NLQ) task. This dataset requires
localizing a temporal window where the answers can be de-
duced from untrimmed egocentric videos. It contains 1,259
videos, averaging 10 minutes each. Our experiments apply
memory constraints to simulate long video scenarios. Met-
rics include Top-1 and Top-5 recall at various thresholds.

Experiment setup. We fine-tune the projection layers and
Q-former [17] to adapt to different types of tokens for
20 epochs using the training split of MovieChat-1K. For
Ego4D-NLQ, we use the training split to finetune the vi-
sion heads for 7 epochs. The AdamW optimizer [21] is em-
ployed with default beta values of (0.9, 0.999) and a weight
decay of 0.05. For token extraction, we use SAM2 [31] to
obtain object tokens, YOLOv10-X [37] with BoT-SORT [1]
for action tokens. Scene, action, and object tokens are ex-
tracted at 8, 10, 1 FPS for MovieChat-1K, Ego4D-NLQ and
LVbench. For the LVBench, we follow the settings of In-
ternVL2 and utilize Yi-34B [43]. For MovieChat-1K, we
adopt the same settings as [33] and use Vicuna-7B as [33].
For Ego4D-NLQ, we adhere to the settings specified in
SnAG [25] and use EgoVLP [19] as vision encoder. We
use 0.9 as the default value for the only hyper-parameter .



Model LLM Size Overall (%) KIR(%) EU(%) Sum (%) ER (%) Rea(%) TG (%)
Qwen2-VL [39] 72B 41.3 383 41.1 46.6 38.0 46.5 414
InternVL2 [3] 34B 39.6 43.4 39.7 41.4 374 42.5 314
LLaVA-NeXT [45] 34B 322 34.1 31.2 27.6 30.1 35.0 314
Oryx [20] 34B 30.4 32.1 29.2 27.6 30.1 34.0 29.1
PLLaVA [42] 34B 26.1 26.2 24.9 259 25.0 30.0 21.4
SEAL (Ours) 34B 459 51.5 41.3 39.7 47.9 43.3 323

Table 1. Comparison with state-of-the-art on LVBench. Our method achieves the highest overall score, with notable gains in Key
Information Retrieval (KIR) and Entity Recognition (ER), demonstrating the effectiveness of our representation in locating key information
and entities by eliminating redundancy. The best methods are highlighted in bold, and the second-best are underlined.

R@1 R@5
Model  #Token 0.3 0.5 Avg 0.3 0.5 Avg
SnAG all 1572 1078 13.25 3839 2744 3292

SnAG 450 1344  9.23 11.34  34.02 23.04 2853
SEAL 450 13.78 926 11.52 3479 2310 28.95

SnAG 200 10.03  6.35 819 2656 1690 21.73
SEAL 200 10.83  7.06 895 2739 1741 2240

Table 2. Comparisons with SOTA methods on Ego4D-NLQ.
Quantitative results for temporal grounding on Ego4D episodic
memory Natural Language Queries (NLQ) task show our method,
SEAL, consistently outperforms SnAG [25] in all metrics under
memory constraints with varying number of tokens.

4.2. Comparison with State-of-the-arts

We conduct quantitative analysis on LVBench dataset
which contains videos on lengths averaged more than 1
hour. Additionally, we demonstrate the generalizability of
the proposed unified representation using MovieChat-1K,
which has open-ended QA questions on a variety of scenar-
ios, and Ego4D-NLQ, where we use traditional vision de-
coders (LLM-independent) for the temporal grounding task.
LVBench. Table | shows the accuracy of our method
on different categories of LVBench dataset [40], demon-
strating that SEAL achieves the highest overall score, no-
tably outperforming even larger models like Qwen2-VL-
72B [39] by 4.6%. Our method excels in Key Informa-
tion Retrieval (KIR) and Entity Recognition (ER), outper-
forming the strongest alternatives by 8.1% and 5.1% re-
spectively. These results highlight that our action and ob-
ject tokens effectively locate key information and entities
by removing redundancies. While larger LLMs often ex-
hibit better performance, this analysis suggests that it is not
the only determinant, and a unified representation like ours
can achieve state-of-the-art results with fewer parameters.
Figure 3 presents a qualitative analysis of SEAL on
LVBench, demonstrating that our approach is able to pay
attention to relevant semantic tokens and make correct an-
swers to different types of questions. SEAL accurately lo-
cates relevant tokens, e.g., identifying the royal family’s
stool color (Q1.a), counting meals eaten (Q2.a), or deter-

Methods Accuracy(%) Score
VideoChat [18] 61.0 3.34
Zero-shot VideoLLaMA [44] 514 3.10
Video-ChatGPT [23] 44.2 2.71
MovieChat [33] 67.8 3.81
TimeChat-Hal [35] 73.8 3.58
Supervised HERMES [6] 84.9 4.40
SEAL (Ours) 86.8 4.35

Table 3. Comparison with SoOTA methods on MovieChat-1K.
SEAL outperforms the second best method, HERMES, by 1.9%
on accuracy while being comparable on the score metric.

mining scene or location (Q2.b). We also show a failure
case (Q2.c), where the nuanced “why” question requires
complicated causal relations of different scenes.
Moviechat-1K. Table 3 compares our method with state-of-
the-art methods on MovieChat-1K. We focus on evaluating
performance in the global mode, which assesses the model’s
ability to comprehend information from the entire video,
rather than the breakpoint mode, which primarily evalu-
ates its ability to answer questions related to specific times-
tamps. Our method surpasses all the alternatives, achiev-
ing the highest accuracy and a strong score. Notably, un-
like LVBench, which employs multi-choice questions, this
dataset evaluates generated answers using an off-the-shelf
LLM. This highlights the ability of our learned representa-
tions to effectively transfer to downstream generative tasks,
enabling generating accurate and detailed responses.
Egod4D-NLQ. We also evaluate our approach on the
Ego4D-NLQ task, which differs from previous datasets as
it uses a decoder to locate events for temporal grounding,
rather than relying on an LLM to generate text-based an-
swers. Table 2 shows the results under memory-constrained
conditions, where we limit token numbers to simulate real-
world memory limitations in long video understanding. Our
method consistently achieves the highest recalls across var-
ious thresholds. With further memory constraints (e.g., re-
ducing tokens to 200), SEAL outperforms the current SOTA
method, SnAG [25], by a even larger margin. This demon-
strates the robustness of our unified representation on vari-
ous downstream applications for long video understanding.
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Figure 3. Qualitative results on LVBench. Two long videos visualized with questions, multiple choice options, and SEAL predicted
answers. SEAL attends to relevant entities such as “royal family” and “stool” (Q1.a), different “meals” and “drinks” (Q2.a), “scene” and
“location” (Q2.b) and correctly answers these questions. Although attending to relevant “push-up” activity (Q2.c), SEAL fails to predict

the right answer due to the challenging in the causal reasoning question.

4.3. Ablation Study

Semantic decomposition. We analyze the impact of the
three proposed token types on LVBench (Table 4). To pre-
vent LLMs from leveraging prior knowledge to “guess” an-
swers using only the text query, we present the baseline
that uses random token inputs, isolating the LLM’s perfor-
mance. Results indicate that using each token type indi-
vidually significantly improves performance, highlighting
the value of each token’s contribution. Notably, scene to-
kens provide the most substantial improvement, aligning
with prior research [2, 36, 41] that emphasizes frame-based
scene tokens. Furthermore, different token combinations
yield additional gains: adding action tokens enhances Key
Information Retrieval (KIR), Reasoning (Rea) and Tempo-
ral Grounding (TG) tasks by capturing temporal dynamics
in the queries, while object tokens boost Entity Recogni-
tion (ER) performance by retaining detailed object-specific

information. We observe high variance in the Summariza-
tion (Sum) accuracy due to the small number of questions in
this category and the randomness of LLM. Similar improve-
ments have been observed on the MovieChat-1K in Table 5,
where the accuracy improved by 10.45% with action and
object tokens. Ultimately, using all three token types to-
gether achieves the highest performance, demonstrating the
complementary strengths of scene, action, and object tokens
as a unified representation in long video understanding.

We observe that the latency bottleneck mostly comes
from the tracker when processing multiple objects. Table 6
presents an analysis of different trackers for extracting ac-
tion tokens. While YOLO+BoT-SORT operates in a much
higher frame rate (14 FPS), it lacks open-set detection ca-
pabilities. On the other hand, SAM2 can detect all objects
within a scene but operates significantly slower (§FPS). Our
findings indicate that the proposed action tokens does not



Model Overall KIR EU Sum ER Rea TG
Random tokens 24.8 2477 252 345 235 264 209
Action only 34.0 333 317 362 343 358 336
Object only 33.9 344 326 310 334 408 295
Scene only 42.8 50.5 406 259 443 413 272
Scene+Object 434 474  40.0 241 47.6 423 355
Scene+Action 444 533 400 241 462 433 382
SEAL (Ours) 459 515 413 397 479 433 323

Model Overall KIR EU Sum ER Rea TG
SEAL (Ours) 459 515 413 397 479 433 323
rep Yolo w/ SAM2 43.3 519 399 293 464 403 327
= Streaming 442 509 39.7 379 450 443 341
Diversity only 38.7 404 38.8 40.0 387 409 337
Relevance only 42.0 485 399 276 440 373 318
Table 6. Ablation studies on LVBench. SEAL defaults to global

Table 4. The effects of different types of tokens on LVbench.
Using any type of tokens outperforms the random baseline, while
applying all three types of tokens brings the best performance.

Method Scene Scene+Object Scene+Action SEAL
Accuracy 76.33 79.49 81.46 86.78
Score 4.15 4.26 4.28 4.35

Table 5. The effects of different types of tokens on MovieChat-
1K. Results are on the test set with our global inference mode.
Using all three types of tokens provides the best accuracy.

require capturing all the objects in the scene. In practice,
YOLO-X pretrained on COCO, with BoT-SORT, effectively
captures essential information for action token extraction,
maintaining a balance between performance and efficiency.
Attention learning. Table 6 highlights the effectiveness of
query relevance and token diversity terms in Section 3.2.
When a =0, the optimization focuses on the diversity term
to capture extensive contextual information for long-video
tasks such as Summarization (Sum) and Reasoning (Rea),
achieving reasonable results comparable to other state-of-
the-art approaches in Table 1. With a = 1, the optimiza-
tion prioritizes the relevance term to reduce redundancy by
sampling tokens that closely align with the query, so perfor-
mance can be improved for tasks like Key Information Re-
trieval (KIR). However, this approach loses global context
and results in weaker summarization performance. Balanc-
ing both terms yields the best overall results.

Streaming mode. We compare the global mode and
streaming mode of our method on LVBench. As discussed
in Section §3, the streaming mode better simulates real-
world scenarios by sequentially processing partial observa-
tions to aggregate information over arbitrarily long videos.
Table 6 demonstrates that streaming mode performs worse
on globally-dependent tasks such as Event Understanding
(EU) and Key Information Retrieval (KIR). However, it ex-
cels in temporally-intensive tasks like Temporal Ground-
ing (TG) and Reasoning (Rea). Notably, streaming mode
still surpasses the most competitive baseline, even when the
baseline uses a significantly larger LLM.

Computational Complexity. We provide an accuracy-
efficiency trade-off comparison in Fig 4 where both SEAL
and InternVL2 are with a varying number of tokens. FPS
is calculated during inference that includes all the process-
ing time from the raw video frames. SEAL reduces the re-

mode with YOLO for efficiency, while SAM2 performs similarly.
Global mode excels in long-context tasks, and streaming mode in
temporally-intensive tasks. Combining Relevance and Diversity in
attention learning achieves the best performance.

Accuracy vs FPS
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Figure 4. Accuracy vs. efficiency trade-off on LVBench. SEAL
runs 2-3x faster than InternVL2 at the same accuracy, and is more
accurate when compared at the same FPS.

liance on densely sampled tokens and uses subject-level and
motion aware representations/tokens to improve efficiency
while maintain good accuracy. From Fig 4, at 10 FPS,
SEAL is about 5% more accurate than InternVL2. When
comparing at the same accuracy of 41.5% and 40%, SEAL
is about 3x and 2x faster than InternVL2, respectively.

5. Conclusion and Future Work

We propose SEAL, a novel unified representation for long
video understanding that addresses computational complex-
ity, temporal redundancy, and cross-task generalization.
SEAL leverages semantic decomposition to break videos
into scene, object, and action tokens, reducing redundancy
and enabling efficient processing. It incorporates attention
learning to balance query relevance and token diversity, en-
hancing performance across diverse tasks. SEAL achieves
state-of-the-art results on benchmarks like MovieChat-1K,
LVBench, and Ego4D-NLQ, demonstrating its versatility
and effectiveness for long video understanding.
Limitation. The Attention Learning module is bounded by
the memory constraint for the QP solver, making it not fully
end-to-end trainable. For future work, we plan to integrate
Attention Learning in our streaming mode for full end-to-
end learning. Developing special prediction heads to solve
causal reasoning [16], where MLLM heads showed limita-
tions, is also an interesting area for future exploration.
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Supplementary Material

A. Additional Ablations

Streaming Window Size. Table 1 demonstrates the im-
pact of different window sizes on performance in streaming
mode. This ablation experiment simulates the behavior of
streaming mode under varying memory constraints. The re-
sults show that the performance of streaming mode is opti-
mal when the window size is set to 1000, demonstrating its
ability to effectively balance memory usage and accuracy
under this configuration.

Model Overal KIR EU Sum ER Rea TG

Ours - 500 42.7 505 389 397 434 418 327
Ours - 1000 44.2 509 397 379 450 443 341
Ours - 2000 42.7 529 403 207 437 378 295

Table 1. Ablation studies of Streaming Window Size on
LVBench. Streaming mode performs best when the window size
is set to 1000.

Partially-Observed Videos. Table 2 presents the perfor-
mance of different methods when only a portion of video is
accessible including scenarios where only the first half or
quarter of the video is available. This experiment simulates
streaming mode, where the model receives only a portion of
the video as input, evaluating its ability to answer questions
under such constraints. The results show that our method
significantly outperforms the uniform sampling approach of
the InterVL2-40B model, highlighting the effectiveness of
our relevant and diverse tokens.

Model Observed OverallKIR EU Sum ER Rea TG

InterVL2-40B 1 39.6 434 39.7 414 374 425 314
SEAL (Ours) 1 459 515 413 397 479 433 323
InterVL2-40B 172 357 344 342 379 357 403 282
SEAL (Ours) 12 41.6 509 379 414 419 398 295
InterVL2-40B 1/4 356 364 338 344 341 375 2713
SEAL (Ours) 1/4 393 409 38.6 31.0 41.1 348 332

Table 2. Ablation studies of prediction with partially-observed
videos on LVBench. When only partial videos are visible, the
performance of traditional uniform sampling drops significantly,
while our method shows more reasonable results.

Ablation on Different a. Figure | shows the performance
trends across various categories for different values of a.
a = 0.9 achieves the best overall trade-off, reaching peak
with the highest overall accuracy of 45.9. Conversely, ex-
treme values like &« = 0.0 or 1.0 lead to declines in several
metrics, highlighting that both diversity and relevance are

essential. Therefore, o = 0.9 is the optimal choice for ex-
periments, delivering peak performance and a well-rounded
balance across all categories.

Effectiveness of Encoder for Relevance. Table 3 presents
the relevance results computed using the BLIP (Base), CLIP
(ViT-L/14) and the BLIP2 (Large) models. The results
demonstrate that stronger models achieve higher effective-
ness in computing relevance scores, leading to significant
performance gains for SEAL.

Model Overall KIR EU Sum ER Rea TG

SEAL w/ BLIP2 459 515 413 397 479 433 323
SEAL w/ CLIP 429 485 38.6 362 462 363 327
SEAL w/ BLIP 40.5 419 38.6 397 405 472 327

Table 3. Comparison of BLIP2 with other methods on LVBench.

B. Additional Results and Discussions

Comparison with LVU methods on LVBench. We pro-
vide additional comparison with LVU methods on LVBench
in Table 4. For a fair comparison, we follow those methods
to use a 7B LLM. SEAL maintains superior performance
with a much smaller LLM (7B), demonstrating the effec-
tiveness of our proposed method.

Model Overall KIR EU Sum ER Rea TG

MovieChat [9] 22.5 259 231 172 213 240 223
TimeChat [8] 22.3 259 217 241 219 250 227
MA-LLM [4] 245 254 258 224 223 269 218
SEAL (7B) 36.6 443 337 276 369 328 309

Table 4. Comparison with other long video representations on
LVBench.

Number of different tokens. The subset of tokens is
learned as an optimization problem in Section 3.2, and the
composition of tokens varies on different inputs and tasks.
The averaged percentages of scene, object, and action to-
kens are 62.5%, 26.1%, 11.4% on LVBench, 54.3%, 25.6%,
20.1% on Moviechat, 88.5% scene tokens and 11.5% action
tokens on Ego4d-NLQ. Since Ego4D-NLQ is a temporal lo-
calization task, we only utilize scene and action tokens.

Result Analysis. We evaluated the distribution of an-
swers generated by different models, following [11], as
shown in Figure 2. The Ground-Truth exhibits a fairly bal-
anced distribution among A, B, C, and D, indicating a well-
distributed dataset where no single category is dispropor-
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Figure 1. Ablation studies of different values of o on LVBench. o = 0.9 achieves the best performance across different tasks except for

temporal grounding (TG).

tionately represented. MovieChat and LWM shows a dom-
inance of category A, with significantly smaller contribu-
tions from other categories, suggesting a lack of diversity
in predictions. In Gemini 1.5 Pro, the “Others” category is
significantly high, indicating that Gemini 1.5 Pro produces
a notable number of unrelated outputs. Our method demon-
strates a distribution close to Ground-Truth, showing strong
generalization and robustness.

We evaluate performance across various video categories
in Table 5. The Human benchmark achieves the highest
accuracy across all categories, with an overall accuracy of
94.4%. Ours method achieves an overall accuracy of 45.9%,
representing a clear improvement over InternVL2-40B and
Qwen2-VL-72B. This demonstrates the our model’s ability
to generalize better across different video categories. How-
ever, the performance in the Cartoon category shows less
improvement relative to other categories, indicating poten-
tial challenges in handling stylized or abstract visual con-
tent. While our method shows clear improvements over
existing models, there remains a substantial gap with the
Human benchmark across all categories. Further study
is needed to enhance the model’s understanding of long
videos.

C. Additional Qualitative Results

Figure 3 presents additional qualitative results of SEAL on
LVBench, showcasing its ability to focus on relevant se-
mantic tokens and provide correct answers to various types
of questions. Compared to InterVL2-40B, SEAL effec-
tively attends to critical entities, such as “tattoo” and “man’s
arm” (Q3.a), distinct “rain forest plants” and “rain forest
leaves” (Q3.b), “tall hat woman”, “dog”, and the “perform-
ing” activity (Q4.a), as well as the “black and white dog”
and its activity (Q4.b), resulting in accurate answers. In
contrast, the answers provided by InterVL2-40B are C, D,
C, and C for Q3.a, Q3.b, Q4.a, and Q4.b, respectively. This
highlights that InterVL2-40B struggles to capture key in-
formation, such as “tattoo”, “tall hat woman”, and to dis-
tinguish “rain forest” from “forest” (InterVL2-40B chose
“forest” failing to capture subtle features related to “rain
forest™), as well as critical details about the main charac-

ters and activities in the scene. These results underscore the
superior reasoning capabilities of SEAL.

D. Additional Implementation Details
D.1. Token Extraction

Scene token. We use the full frames to represent scene to-
kens. The full frames or clips are fed into encoders (2D
or 3D CNN/ViT) to extract the token embeddings. For
MovieChat and LVBench, we use a frame-based 2D en-
coder [3] and [2]. For the Ego4D-NLP dataset, we fol-
low [6] and use a 3D clip-based encoder [5] for processing
23-frame clips.

Object token. For object tokens, we extract masks us-
ing from SAM2 [7] Automatic Mask Generator. For
mask prediction, we sample 64 x 64 points per image
for dense and uniform coverage, with a batch size of
128 points to balance computational efficiency and mem-
ory usage. Predicted masks are filtered using a quality
threshold of pred_iou_thresh=0.88, retaining only
masks with high predicted IoU scores, and a stability
score threshold of stability_score_thresh=0.92,
ensuring the robustness of masks under varying binariza-
tion cutoffs. To calculate the stability score, the cut-
off is shifted by stability_score_offset=0.99.
Non-maximal suppression (NMS) is applied with an IoU
threshold of box_nms_thresh=0.7 to remove redun-
dant masks. We do not employ additional cropping layers
(crop_n_layers=0). We extract features based on the
mask’s bounding box, expand it by 2x to include additional
contextual information, and use the same encoder as the
scene token for different datasets. We set Nyey = 128 for
MovieChat and Ny, = 64 for Ego4D-NLP and LVBench
datasets.

Action token. For the Ego4D-NLP and LVBench datasets,
we use YOLOv10-X [10] with BoT-SORT [1] for extracting
action tracklets. For MovieChat, we employ NetTrack [12]
for action tracklets. We set Ly, = 8 and Ly, = 16
for MovieChat, while for Ego4D-NLP, we set Ly, = 16
and L..,x = 32. For LVBench, since the action token en-
coder [2] is a frame-based encoder, we use the middle frame
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Figure 2. Distribution of answers generated by different models. The answers from InterVL2-40B and our method are the closest to the

ground truth distribution.
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Model Sports Documentary Event Record Lifestyle TV Show Cartoon Overall
Random predictions | 27.5 25.4 23.3 23.3 25.6 25.8 25.1
Random tokens 254 25.9 25.6 26.2 244 21.6 24.8
Human 96.3 89.8 87.4 98.4 97.2 95.8 94.4
InternVL2-40B 43.5 45.2 389 41.6 32.8 36.4 39.5
Qwen2-VL-72B 43.0 42.6 40.8 41.0 42.0 38.9 41.3
SEAL (Ours) 49.2 49.2 48.1 46.7 44.4 39.2 459

Table 5. Evaluation across different video categories on LVBench. Comparing our method with baselines and state-of-the-art approaches
on different video categories. Our method consistently outperforms state-of-the-art approaches on all categories. Although our method
has made substantial improvements over lower-bound baselines (Random tokens and Random predictions), it still has a significant gap

compared with the upper-bound baseline of human performance.

of all action tracklets as the action token candidates.

In Attention Learning stage, we sample in total 256 to-
kens for MovieChat, 200 / 450 tokens for Ego4D-NLP and
16 tokens for LVBench. Note that since the task of Ego4D-
NLP is temporal grounding, we only used action tokens and
scene tokens to ensure temporal consistency.

D.2. LLM Heads and LLM-based Evaluation

For the MovieChat dataset, we provide the large language
model with the following prompt for the Video QA task:

"You are able to understand
the visual content that the
user provides. Follow the

instructions carefully and

explain your answers."

For the LVBench dataset, given a question and options, we
use the prompt for the Video QA multiple choice task:

"Please select the best answer
from the options above and
directly provide the letter
representing your choice without
giving any explanation."

Following [9], we use LLM-Assisted Evaluation for the
video question-answering task when evaluating MovieChat

dataset. Given the question, the correct answer, and the pre-
dicted answer provided by different methods, the LLM as-
sistants should return a True or False judgment along with
a relative score ranging from 0 to 5. we provide the large
language model with the following prompt:

"Provide your evaluation

only as a yes/no and score
where the score is an integer
value between 0 and 5, with

5 indicating the highest
meaningful match."
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