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Abstract

Retrieval-augmented generation (RAG) enhances large language models (LLMs)
with external knowledge from databases but introduces privacy risks when handling
sensitive information. Existing defenses fall short: differential privacy degrades
accuracy and remains vulnerable to embedding inversion attacks, while fully
homomorphic encryption (FHE) ensures security but lacks access control. We
present SecureRAG, an end-to-end secure RAG framework that enforces strict
access control while mitigating prompt injection, data extraction, and embedding
inversion attacks. It achieves this by decoupling retrieval into secure search and
secure document fetching, using FHE for encrypted search and attribute-based
encryption (ABE) for fine-grained access control. SecureRAG supports dynamic
database updates, adaptive access policies, and integrates seamlessly with FHE-
friendly LLMs, adding only 0.05s of overhead. By providing a fully encrypted,
privacy-preserving retrieval framework, SecureRAG enables the secure deployment
of domain-specific chatbots in sensitive applications.

1 Introduction

Retrieval-augmented generation (RAG)[21] enhances large language models (LLMs)[24] by re-
trieving relevant information from external sources to generate more accurate and context-aware
responses without retraining. By bridging information retrieval and text generation, RAG
enables cost-effective chatbot customization across the healthcare, finance, and law sectors.
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Figure 1: Healthcare-based RAG showing key vul-
nerabilities: a) retriever exploiting query embed-
dings and hospital corpus, b) generator misusing
queries and retrieved documents, and c) Dr. Bob
receiving sensitive data of Dr. Alice’s patient due
to lack of access control.

For example, Figure 1 illustrates RAG in health-
care, where a hospital corpus aids doctors (users)
in generating precise diagnostic suggestions.

Despite its advantages, RAG is highly vulnera-
ble to privacy and security risks in sensitive sec-
tors [36, 30]. The primary threat is sensitive in-
formation leakage, which can occur through (1)
compromised components (e.g., retriever, gen-
erator) or (2) adversarial prompt injections that
extract restricted data from the database (DB).
Beyond direct DB access, exposing cleartext em-
beddings (queries and documents) risks leaking
personally identifiable information (PII). Morris
et al. [26] demonstrated that text embeddings are
highly invertible, recovering 89% of PII (e.g.,
full names) from clinical note embeddings, un-
derscoring the need for equal protection of raw
text and embeddings. Additionally, Qi et al. [30]
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introduced a prompt injection data extraction attack that targeted RAG’s retrieval DB—rather than
the LLM’s training data—successfully extracting 41% of a 77K-word book and 3% of a 1.5M-word
corpus using only 100 crafted queries. These findings highlight a critical weakness: RAG lacks
effective access control at the retrieval level, leaving it vulnerable to data extraction attacks.

These vulnerabilities are evident in the healthcare scenario shown in Figure 1, where Dr. Bob must
uphold patient confidentiality while potentially sharing patients with other doctors. He must also be
prevented from using prompt injection attacks to access records of Dr. Alice’s patients, as they do
not collaborate. Deploying separate RAG solutions for each doctor is impractical due to inefficiency,
cost, and complexity. Instead, hospitals require a unified RAG system integrated with their database
while enforcing strict access controls. The key challenge is ensuring that responses are personalized
while retrieved documents remain both relevant and restricted to authorized patients, preserving
security and privacy.

Most privacy-preserving RAG solutions [16, 4] rely on differential privacy (DP) [11] as a lightweight
defense, adding controllable noise to balance privacy and accuracy. However, DP has critical
limitations: (1) it distorts text, reducing retrieval and generation accuracy, (2) its privacy guarantee
weakens over repeated queries due to budget exhaustion, and (3) it fails to prevent text embedding
inversion [19] and prompt injection attacks. These shortcomings make DP unsuitable for an end-to-
end, provably secure RAG without accuracy loss.

Fully homomorphic encryption (FHE) [14] has emerged as a promising approach, offering end-to-end
security with strong privacy guarantees and no accuracy loss. Despite its runtime overhead, recent ad-
vances demonstrated their effectiveness in preventing information leakage from text embeddings [19],
enabling secure text classification [2, 20], and supporting secure LLM inference [37, 9, 31]. While
FHE provides essential building blocks for a secure RAG, existing solutions do not afford access
control on retrieved documents.

We propose SecureRAG, an end-to-end secure RAG framework that enforces access control over
retrieved documents while preventing prompt injection data extraction and embedding inversion
attacks. SecureRAG achieves secure retrieval by splitting the process into two subphases: (1)
secure search and (2) secure document fetching. By leveraging FHE’s SIMD property and vertically
packing FHE-encrypted embeddings, SecureRAG enables efficient and scalable search over the vector
database. To enforce access control, documents are encrypted using an attribute-based encryption
(ABE) scheme, ensuring that only authorized users can decrypt retrieved content. SecureRAG
supports dynamic management of both the database (e.g., adding/deleting encrypted documents and
embeddings) and access rights (e.g., granting/revoking permissions). It seamlessly integrates with
FHE-friendly LLM generators [31] without compromising accuracy.

We evaluate SecureRAG to determine whether encryption can be integrated without sacrificing
accuracy or hindering seamless model updates. Our results show that SecureRAG matches the
accuracy of unprotected RAG across both top-k ranking and context precision metrics, with the latter
evaluated by an LLM judge. In terms of performance, SecureRAG retrieves 100 documents from a
corpus of 16384 under a 2-attribute policy in just 0.05 seconds on a single GPU—a 13.6× speedup
over RemoteRAG [4], which requires two GPUs and 0.68 seconds to retrieve only 5 documents from
160, without any access control and with increased vulnerability to prompt injection attacks.

In summary, SecureRAG seamlessly integrates with FHE-compatible LLMs and supports dynamic
access management and database updates, enabling secure and privacy-preserving RAG deployments
in sensitive domains such as healthcare.

2 Related Work

In RAG, sensitive data leaks through embedding inversion attacks on its components [26] or prompt
injection queries targeting the extraction of restricted documents [30]. Existing solutions protect
components separately but remain vulnerable to prompt injection attacks.

Secure text embedding classification. Many solutions mitigate information leakage by encrypting
text embeddings with FHE [2, 20, 19] for classification tasks. However, they are limited to basic
one-to-one similarity comparisons and do not scale to large databases due to FHE’s computational
bottlenecks in search. SecureRAG addresses this challenge by enabling efficient one-to-many and
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many-to-many text embedding searches under FHE. It leverages vertical data packing to fully exploit
FHE’s SIMD property, significantly improving efficiency and reducing encrypted database storage.

Secure inference of LLMs. LLMs are proprietary, requiring queries to be sent to external servers
for inference, raising concerns about access and retention of sensitive data. Research on secure
inference falls into interactive and non-interactive models. Interactive models [1, 10, 17] rely
on multiparty computation (MPC) but suffer from high communication overhead, making them
impractical for RAG’s large-scale deployment. Hybrid approaches[29] combine HE and MPC to
mitigate this overhead. FHE-based solutions [9, 37, 31] offer stronger privacy by transforming LLMs
into FHE-friendly architectures, enabling non-interactive, end-to-end encrypted inference. Such
architectures focus on redesigning core LLMs’ components to better suit encrypted computation. For
instance, softmax-based attention mechanisms are replaced with FHE-friendly alternatives such as
Gaussian kernel attention, which avoids costly operations such as exponentiation and division that
are unsupported by FHE. Also, nonlinear activations (e.g., GELU and ReLU) are approximated using
low-degree polynomials to ensure compatibility with FHE. To preserve language capabilities while
minimizing computational overhead, lightweight adapters, such as LoRA [18], are used to fine-tune
frozen pre-trained LLMs, ensuring that only a small subset of model parameters is subject to FHE
constraints. These design techniques shift much of the computation from heavy ciphertext-ciphertext
operations to more efficient plaintext-ciphertext operations where possible. SecureRAG is fully
compatible with any non-interactive FHE-friendly LLM and can seamlessly switch between different
FHE-friendly LLM providers without affecting its retriever or access control policies.

Privacy-preserving RAGs. While individual RAG components can be secured, privacy-preserving
RAG solutions aim for end-to-end protection, primarily against information leakage. Existing
approaches rely on differential privacy (DP)[11], but its privacy-accuracy tradeoff degrades LLM
performance by altering text semantics[23]. DP also fails to prevent embedding inversion attacks[19],
and its privacy guarantee weakens with repeated queries, requiring resets that hinder deployment[34].
Moreover, no DP-based RAG solutions prevent prompt injection data extraction attacks. SecureRAG
is the first end-to-end secure RAG framework enforcing access control over retrieved documents
while preventing information leakage at both the embedding and generator response levels.

3 Preliminaries

SecureRAG integrates encryption with RAG using FHE for computations on encrypted text embed-
dings and attribute-based encryption to restrict document decryption to authorized users.

3.1 Fully Homomorphic Encryption

Horizontal packing Vertical packing

 empty
slots per 

Figure 2: SecureRAG uses the vertical
packing to efficiently store the encrypted
text embeddings in DB.

Fully Homomorphic Encryption (FHE) [14] enables com-
putations on encrypted data without decryption, providing
strong privacy guarantees. Its IND-CPA security [7] pre-
vents semi-honest attackers from inferring plaintexts from
ciphertexts. While FHE is computationally expensive,
ongoing optimizations, including GPU acceleration [35],
have enhanced its practicality. SecureRAG utilizes the
CKKS scheme [5] due to its support for floating-point
operations, enabling encrypted computations that closely
approximate cleartext results. CKKS also leverages the
single-instruction multiple-data (SIMD) [33] property, ef-
ficiently packing multiple plaintext values into a single
ciphertext. However, SIMD efficiency depends on the packing strategy—SecureRAG employs
vertical packing, which is optimized for large-scale vector database searches (Figure 2).

3.2 Attribute-Based Encryption

Attribute-Based Encryption (ABE) enables fine-grained access control, allowing decryption only
when user attributes meet a defined policy. In Ciphertext-Policy ABE (CP-ABE), access policies
are in the ciphertext, giving data owners control, while in Key-Policy ABE (KP-ABE), policies
are in decryption keys, managed by a central authority. SecureRAG requires KP-ABE, where
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hospital authorities control access policies and keys. While most KP-ABE schemes use pairing-based
cryptography, LWE and RLWE-based alternatives [8, 22] offer stronger security, and revocability.

Access Policy

or

Figure 3: RLWE-based KP-ABE scheme in [8].
More details are in Appendix A.

RLWE-based KP-ABE (Figure 3) enables key
homomorphism, allowing homomorphic evalu-
ation of public keys over a circuit policy. Se-
lective security (IND-sCPA) [15] ensures ad-
versaries without authorized keys cannot distin-
guish between encrypted messages. Like FHE,
LWE and RLWE-based KP-ABE rely on lattice-
based hardness, providing post-quantum secu-
rity guarantees.

4 Threat Model

SecureRAG prevents sensitive information leakage across all RAG stages from malicious components
(retriever, generator) or users, specifically addressing embedding inversion and prompt injection data
extraction attacks. Notably, the latter targets the retrieval database, not the LLM generator’s training
data, which SecureRAG does not consider in its threat model. We consider a four-party setting with
non-colluding entities: users, a reader, a retriever, and a generator. All parties are semi-honest1,
except the reader, a trusted third party representing the hospital administrator. The users, representing
hospital staff with attribute-based access, query a customized LLM augmented with the hospital
corpus for tailored responses. The reader encrypts sensitive data (doctors’ queries, patient records,
hospital corpus), sets DB access policies, manages public key infrastructure (PKI), issues user keys,
and handles text preprocessing and post-processing. The retriever, a cloud DB provider, stores the
encrypted documents and retrieves relevant documents for RAG. The generator, an FHE-friendly
proprietary LLM (e.g., OpenAI’s ChatGPT), processes encrypted queries and documents, performs
inference under encryption, and returns encrypted responses, protecting its intellectual property.
The reader protects hospital data while enabling doctors to use external services. The retriever
and generator must not extract readable information from queries, corpus, the hospital, or retrieved
documents in any form. Users should not intentionally or unintentionally receive responses containing
information about other users’ sensitive data or documents they are unauthorized to access.

5 SecureRAG

In RAG, the retriever and generator use different text embedding models suitable for text similarity
or generation. Thus, SecureRAG extracts the generator’s text embeddings from raw documents on
the fly to support any FHE-compatible LLM generator. This enables SecureRAG to integrate with
any FHE-friendly LLM generator.

5.1 Key Generation

SecureRAG encrypts text embeddings with FHE, using separate keypairs for the retriever and
generator, and encrypts raw documents with KP-ABE to enforce access policies. During setup, the
reader, as the system administrator, generates two FHE keypairs: (pkr, skr) for retriever searches
and (pkg, skg) for generator inference. It shares pkr with the retriever and pkg with the generator,
keeping skr and skg private. The reader also generates a KP-ABE master keypair (MPK, MSK), sharing
MPK with users while keeping MSK private.

5.2 Encrypted Vector and Document DBs

To build an end-to-end secure RAG while maintaining high efficiency, SecureRAG splits the encrypted
vector database (DB) into two parts: an FHE-encrypted chunked vector DB and an ABE-encrypted
raw document DB enforcing an access control policy over the retrieved documents.

FHE-Encrypted chunked vector DB. The reader encrypts the vector DB following its chunking
strategy that optimizes the overall RAG performance. SecureRAG enables the reader to pack n

1Follow the protocol but try to infer sensitive information.
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Figure 4: Overview of the SecureRAG framework integrating an FHE-friendly LLM generator with
ABE-encrypted documents, ensuring fine-grained access control. 1) The user’s query embedding is
FHE-encrypted and used to search for the top-k document indexes in the encrypted chunked vector
DB. 2) The ABE-encrypted documents are fetched via pseudo-random IDs and only decryptable if
the user ui satisfies the access policy. Finally, 3) the embeddings of the query and top-k documents
are FHE-encrypted and sent to the LLM generator for secure inference, generating an encrypted
response, which is post-processed by the reader before delivering it to the user.

embeddings E = {ei}i∈[1,n] of dimension d using only d ciphertexts, where ei = (e1,i, · · · , ed,i)
and n is ciphertext capacity and n >> d, which is also the chunk’s size. This is achieved by
vertically arranging each chunk’s embeddings and packing them row-wise with one ciphertext
ctj = Encpkr

FHE(ej,1, · · · , ej,n) per row, resulting in d ciphertexts per chunk ctE = {ctj}j∈[1,d].

ABE-Encrypted document DB. The raw documents {Doct}t belonging to user ui are first ABE-
encrypted under user’s attributes aui ∈ {0, 1}l using the master public key MPK to yeild the ciphertext
ctDt

= Enc
MPK,aui

ABE (Doct) over which the reader evaluates the circuit policy f , resulting in ctfDt
=

Enc
MPK,f(aui

)

ABE (Doct), ciphertexts decryptable with the policy secret key αf if and only if aui
satisfies

the policy f . To enable a secure direct fetch of those encrypted documents and avoid storing their
respective IDs, we use a keyed pseudo-random function [3] Dt = PRFK(dt) that given a secret
key K and an index dt it returns the same pseudorandom Dt completely different from dt. The
reader generates and sends the ABE-encrypted documents {ctfDt

}t along with their pseudorandom
identifiers {Dt}t∈[1,k] to the retriever for storage. SecureRAG benefits from this by making fetching
secure documents efficient without the risk of leaking their actual identifiers, which saves storage.

5.3 Protocol Description

SecureRAG, depicted in Figure 4, consists of three steps: 1) FHE-encrypted search for the top-k
document indexes, 2) secure fetching of the ABE-encrypted documents via pseudorandom identifiers,
and 3) FHE-encrypted LLM inference. To enhance efficiency, the retrieval part is split into 1) and 2),
with SecureRAG filtering documents by user attributes and access policy before step 3).

Searching top-k document indexes. We consider the query embedding q and document embeddings
E = {ei}i∈[1,n] as normalized d-dim vectors. Normalized vectors enable efficient encrypted search,
as the inner product (IP) is cheaper to compute under encryption than cosine similarity while
preserving identical scores. The equation below shows that the inner product avoids computing the
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embedding norms, which would require expensive computation under FHE.

Cosine(q̃, ẽj) =
⟨q̃, ẽj⟩

∥q̃∥ · ∥ẽj∥
= ⟨q, ej⟩

A naive encrypted search over n embeddings would compare the query against one embedding at a
time, resulting in n IPs costing n homomorphic multiplications. By leveraging the SIMD property and
the vertical packing of the document vector DB, SecureRAG computes those n IPs at once, reducing
the computation cost to only d homomorphic multiplications, where d << n, while the search
remains exhaustive. Hence, the reader extracts the user query embedding q = (q1, · · · , qj , · · · , qd)
that is compatible with the retriever’s embedding model. Then, it encrypts each component qj as an
n-dim vector of its replica, yeilding ctqj = Encpkr

FHE(qj , · · · , qj). Next, it sends ctq = {ctqj}j∈[1,d]

to the retriever for computing IP w.r.t. each chunk as follow:

⟨ctq, ctE⟩ =
∑

j∈[1,d]

qj × ctj

The retriever returns ctS = Encpkr

FHE(s1, · · · , sn) a ciphertext containing the IP scores sj = ⟨q, ej⟩.
The reader decrypts the scores Decskr

FHE(ctS) = (s1, · · · , sn), sorts them, and selects the top-k.

Fetching relevant documents. From the indexes {dt}t∈[1,k] of the top-k scores, the reader recovers
the documents’ pseudorandom identifiers Dt. Next, the reader sends {Dt}t∈[1,k] to the retriever who

sends back the ABE-encrypted documents {ctfDt
}t∈[1,k] where ctfDt

= Enc
MPK,f(aui

)

ABE (Doct) with
user’s ui attributes aui , an l-dim binary vector with l being the maximum number of attributes a
user can have. Then, the reader decrypts documents using the secret key αf for access policy f .
Decryption succeeds only if user ui’s attributes aui

satisfy f ; otherwise, it fails.

Encrypted inference. The reader combines the user’s query with the successfully ABE-decrypted
documents and extracts their embeddings with an embedding model compatible with the generator. It
then sends their FHE-encryption using pkg to the FHE-friendly LLM generator, performs the secure
inference under encryption, and returns its encrypted response back to the reader. Subsequently, the
reader decrypts it using skg , post-processes it, and displays it to the user.

5.4 Complexity and Security Analyses

Table 1 presents SecureRAG’s computational
complexity and storage requirements for its
secure search part, which is the dominant part
of the retrieval. Note that FHE schemes can
adjust their parameters to expand ciphertext
capacity as needed, which would help in im-
proving efficiency. Our security analysis is in
Appendix B.

Table 1: SecureRAG’s retriever search storage and com-
putational complexity as O (N · (#AddHE +#MultHE))
where N is the number of chunks.

Dimension d 256 768

Complexity AddHE d− 1 255 767
MultHE* d 256 768

Storage Enc Query d 256 768
Enc DB d ·N 256 ·N 768 ·N

* Those are homomorphic multiplications of depth 1.

5.5 Dynamic Databases and Access Rights

SecureRAG efficiently and dynamically handles the addition and deletion of documents and their
embeddings with on-the-fly user management, including dynamic addition, revocation, and real-time
policy updates.

Dynamic Databases. For the addition of a document Doct, the reader updates the vector DB with
the document embedding ēt = (ē1,t, · · · , ēd,t) by selecting a chunk with an available empty slot dt,
and sends to the retriever the set of ciphertexts encrypting ēt, that is, ctēt = {ctēj,t}j∈[1,d] where
ctēj,t = Encpkr

FHE(· · · , 0, ēj,t, 0, · · · ). Then, the retriever then updates the encrypted vector DB ctE =
{ctj}j∈[1,d] using one homomorphic addition per ciphertext ctj := ctj + ctēj,t∀j ∈ [1, d]. Also, the
reader generates the document’s pseudorandom identifier Dt = PRFK(dt) and ABE-encryption
of the document to which it applies the access policy f resulting in ctfDt

= Enc
MPK,f(aui

)

ABE (Doct). It
sends to the retriever ctfDt

for storing it under Dt. Note that our addition can add batch of embeddings

6



at once ēt1 , · · · , ētm at once with ctēj,t = Encpkr

FHE(· · · , 0, ēj,t1 , · · · , ēj,tm , 0, · · · ). SecureRAG
supports batch deletion of embeddings. The reader creates a deletion vector v ∈ {0,−1}n, marking
deletions with −1, and encrypts it as ctv = Encpkr

FHE(v). The retriever updates the encrypted DB
ctE = {ctj}j∈[1,d] using one homomorphic addition and multiplication per ciphertext: ctj :=
ctj + ctv × ctj ∀j ∈ [1, d]. The retriever processes encrypted updates blindly, without knowing the
modified documents.

Dynamic access control. The KP-ABE-SW scheme [22] supports switchable attributes, enabling
dynamic user management and policy updates. SecureRAG leverages these capabilities to man-
age access rights dynamically, with all modifications handled by the reader, acting as the system
administrator.

6 Experiments

Our goal is not to enhance state-of-the-art RAG accuracy but to assess whether an encryption layer can
be integrated without compromising accuracy or efficiency in sensitive applications. The experiments
in Section 6.1 were conducted using Python 3.12 on a NVIDIA RTX A6000 GPU-equipped server.
For embedding search, we implemented CUDA C++ experiments using PhantomFHE[35] with
the CKKS scheme, tested on HPCC with a single NVIDIA A100 core and 16GB of memory. For
document decryption, we used PALISADE-abe[28], implementing the lattice-based ABE scheme in
C++, running on an Apple M3 Pro (12 cores, 36GB RAM). We will publicly release our code2.

6.1 Performance Evaluation

We evaluate SecureRAG using the standard RAG assessment pipeline [12, 32], where an LLM judge
systematically assesses retriever and generator performance. The judge receives instructions, the
query, retrieved documents (retriever output), and the generated response (LLM output) for structured
analysis. To evaluate the impact of encryption on RAG, we apply rounding to 5, reflecting CKKS’s
precision limits. Performance in cleartext (no rounding) is compared to the encrypted setting (with
rounding) to measure potential losses.

Models. We use ModernBERT Embed [27] for retrieval (supporting 256 and 768 dimensions) and
Llama-2-7B [25] as the FHE-friendly generator, optimized for GPUs [6, 31]. SecureRAG is tested
with ModernBERT Embed as the retriever and Llama-2-7B as the generator, using Llama-3.1-8B as
the LLM judge, without fine-tuning any models.

Datasets. To assess the adaptation of RAG to domain-specific contexts, we consider the following
datasets provided in [13]: the PubMedQA and CovidAQ-RAG datasets for the biomedical domain,
the TechQA dataset for customer support, and the FinQA and TAT-QA datasets for the financial
domain.

Metrics. We measure the retriever’s effectiveness using the rank top-k and the context precision metric
as defined in [12], providing the LLM judge with a specific prompt (see Appendix D) instructing it to
return a verdict based on the relevance of the retrieved documents w.r.t. the question and the LLM
generator’s response. High scores indicate high performance. We note that separate answer-only
evaluations are not repeated here, as the answer quality of FHE-compatible LLMs has already been
rigorously validated in prior work [31], showing negligible differences from non-FHE LLMs. Since
SecureRAG integrates these models without modification, it inherits their accuracy performance.

Assessment. For each dataset, the documents column contains documents corresponding to each
question. We combined all documents to build the vector DB, extracted their normalized embed-
dings for d ∈ {256, 768}, and rounded them to 5. Figure 5 shows that rounding has no impact on
retrieval accuracy, as ranking curves with and without rounding overlap almost perfectly, regardless
of the embedding dimensionality. Table 2 reports LLM judged context precision for varying retrieved
documents (k ∈ {1, 5, 10}). The LLM judge produces nearly identical scores for k ≥ 5, with
minor variations at k = 1, which can be due to its probabilistic nature. SecureRAG maintains RAG
accuracy with minimal loss when retrieving one document while preventing prompt injection and
data extraction attacks. See Appendix C for PubMedQA and TAT-QA results.

2Upon acceptance at https://github.com/aminabassit/secureRAG
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Figure 5: SecureRAG’s retriever performance on CovidQA, TechQA, and FinQA (rounded to
5, orange and red curves) meets unprotected RAG accuracy for rank top-k with k ∈ [1, 20] for
embeddings of dimensions d ∈ {256, 768}.

Table 2: Performance of SecureRAG for context precision using a retriever with
d-dim embeddings. Gray (resp. white) cells are with (resp. without) rounding.

Domain d-dim 256 768

K Docs 1 5 10 1 5 10

H
ea

lth
ca

re PubMedQA 0.889 0.999 0.999 0.839 0.999 0.999
0.851 0.999 0.999 0.847 0.999 0.999

CovidQA 0.974 0.999 0.999 0.961 0.999 0.999
0.971 0.999 0.999 0.994 0.999 0.999

Fi
na

nc
e TAT-QA 0.929 0.999 0.929 0.911 0.999 0.999

0.938 0.999 0.998 0.916 0.999 0.999

FinQA 0.955 0.999 0.999 0.970 0.999 0.999
0.973 0.999 0.999 0.961 0.999 0.999

Te
ch TechQA 0.999 0.999 0.999 0.999 0.999 0.999

0.999 0.999 0.999 0.999 0.999 0.999

6.2 Runtime Evaluation

We measure SecureRAG’s latency for its 3 steps: (1) FHE-encrypted search on GPU, (2) ABE-
based secure fetching on CPU, and (3) FHE-encrypted LLM inference, referencing reported GPU
benchmarks for state-of-the-art FHE-friendly LLMs.

Search Performance. Table 3 reports SecureRAG’s mean runtime for top-100 document searches
using embeddings of dimensions d ∈ {256, 512, 768, 1024}, evaluated at two chunk capacities
(16384 and 32768 embeddings per chunk). For single-chunk searches, runtime ranges from 18ms to
47ms at 16384 capacity and 30ms to 71ms at 32768, showing efficiency gains with larger chunks.
For large-scale DBs, SecureRAG scales effectively: retrieving from 1M embeddings requires 30
chunks, adding < 2.2s in runtime, while retrieval from 1B embeddings spans ∼ 30K chunks in 36.11
minutes. SecureRAG achieves a 13.6× speedup over RemoteRAG [4], which takes 0.68s on two
GPUs to retrieve just 5 documents from 160, lacking access control and remaining vulnerable to
prompt injection data extraction attacks.

Access Control Overhead. Table 4 measures ABE-decryption runtime for 1 to 100 encrypted
documents (∼ 350–700 words) with 2 to 10 attributes. Decryption time scales with attributes but
remains minimal compared to search, peaking at 92.43ms, demonstrating efficient enforcement of
access control with low overhead.
Table 3: SecureRAG’s GPU mean runtime for searching the top-100 embed-
dings chunk-wise, with N embeddings per chunk at a 128-bit security level.

Dimension 256 512 768 1024 #Chunks

N 16384 16384 16384 16384 −
100 : N 18ms 27ms 37ms 47ms 1

100 : 106 1.11s 1.67s 2.29s 2.91s 61

100 : 109 18.31min 27.46min 37.63min 47.81min 61035

N 32768 32768 32768 32768 −
100 : N 30ms 43ms 58ms 71ms 1

100 : 106 0.93s 1.33s 1.79s 2.2s 30

100 : 109 15.25min 21.87min 29.5min 36.11min 30517

* Runtime measured over 500 iterations for 100 : N and extrapolated for
100 : 106 and 100 : 109.

Table 4: SecureRAG’s CPU mean runtime for ABE-decrypting K docu-
ments assuming one document per ciphertext using a 128-bit security level.

# Attributes 2 4 6 8 10

16384 bits documents ∼ 350 words

1 doc 0.47ms 1.04ms 1.23ms 2.03ms 2.25ms

10 docs 1.20ms 2.14ms 3.15ms 4.09ms 5.08ms

100 docs 13.81ms 20.53ms 28.04ms 35.29ms 41.44ms

32768 bits documents ∼ 700 words

1 doc 1.45ms 3.03ms 4.08ms 5.12ms 6.08ms

10 docs 3.13ms 5.30ms 7.37ms 9.31ms 11.20ms

100 docs 27.69ms 45.49ms 61.55ms 76.62ms 92.43ms
* Runtime measured over 500 iterations.

End-to-End Runtime. Table 5 compares SecureRAG with existing approaches that protect only
specific RAG components. SecureRAG adds just 0.05s overhead to FHE-friendly non-interactive
LLMs, leading to a total runtime of 26.55s to 37.35s. Thus, SecureRAG effectively mitigates prompt
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injection data extraction attacks while seamlessly integrating with state-of-the-art FHE-friendly
LLMs, ensuring strong privacy protection at minimal computational cost.

Table 5: Runtime comparison between SecureRAG and state-of-the-art solutions showing a seamless integration of SecureRAG with the state-of-
the-art FHE-friendly LLMs, incurring negligible overhead while effectively preventing prompt injection data extraction attacks.

Solution Approach Docs DB Dim Tokens GPUs Retriever
(s)

Generator
(s)

Total
(s)

PIDE*

Attack
Access
Control

[19] FHE 1 1000 768 - - 0.6 - - Vulnerable ✗

RemoteRAG [4] DP&PHE 5 160 768 - 2 0.68 - - Vulnerable ✗

BOLT [29] HE&MPC - - 768 128 4 - 185 - Vulnerable ✗

NEXUS [37] FHE - - 768 128 4 - 37.3 - Vulnerable ✗

HEaaN [31] FHE - - 768 128 1 - 26.5 - Vulnerable ✗

SecureRAG+NEXUS†
FHE&ABE 100 16384 768 128 4 0.05 37.30 37.35 Prevented ✓

SecureRAG+HEaaN† 100 16384 768 128 1 0.05 26.50 26.55 Prevented ✓

* Prompt injection data extraction (PIDE) attack [30]. † Retrieval of 100 documents from a 16384 vector DB using 2 attributes 51.81ms.

7 Limitations

SecureRAG has the following limitations. Its overall runtime is heavily influenced by the efficiency
of the FHE-friendly LLM generator it integrates with. Additionally, it operates in three rounds,
two of which involve the retriever; reducing these interactions could improve efficiency. Another
limitation is that the number of supported attributes is fixed during setup, requiring careful estimation
of expected attributes. Increasing this number would slightly impact the retriever’s runtime. Another
limitation of SecureRAG is the heavy key management burden on the reader’s side. As a trusted third
party system administrator, the reader is responsible for handling cryptographic keys for ABE and
FHE operations, including key distribution, updates, and revocations. This overhead can increase
storage complexity and require efficient key management strategies to maintain scalability. Also, a
trusted third party introduces a single point of failure, as if it is compromised, could undermine the
entire system; however, in practice, many real-world deployments rely on a centralized authority for
efficiency and trust management. This risk can be mitigated through decentralization schemes such
as multi-authority ABE (MA-ABE) or threshold cryptography to ensure no single entity has absolute
control.

8 Conclusion

Privacy and security are critical for responsible RAG deployment, especially in healthcare, where
unauthorized access can lead to severe violations. This paper presents SecureRAG, an end-to-end
secure RAG framework that integrates FHE and ABE to prevent information leakage, enforce access
control, and defend against prompt injection and embedding inversion attacks. SecureRAG splits
retrieval into secure search and secure document fetching, ensuring only authorized users access
relevant documents without compromising accuracy. Our evaluation shows SecureRAG matches
unprotected RAG in rank top-k and context precision metrics. With a single GPU, it retrieves
100 documents from 16K under a 2-attribute policy in 51.81ms, achieving a 13× speedup over
existing solutions, which retrieve only 5 documents from 160 with no access control. SecureRAG
supports dynamic database updates and adaptive access control while seamlessly integrating with
FHE-friendly LLMs, adding only 0.05s of overhead. By effectively preventing prompt injection
data extraction attacks, SecureRAG provides a scalable, practical solution for privacy-preserving
RAG deployments. It addresses core security challenges, laying the foundation for future research on
secure and privacy-aware chatbots.
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A RLWE-based KP-ABE Scheme

We recall the RLWE-based KP-ABE scheme proposed in [8] and enhanced with attribute revocability
in [22].

• Setup(1λ, l) → {MPK, MSK} where λ is the security parameter, l is the number of user
maximum attributes, MPK is public master key, and MSK is secret master key.

• EncABE(m, a, MPK) → cta where m is the message, a the user’s attributes, and cta the ouptut
ciphertext linked to the user’s attributes.

• KeyGenABE(MSK, MPK, f) → αf where f is the circuit policy, which is a boolean circuit, and
αf is the policy decryption key.

• EvalABE(cta, f) → ctf(a) where ctf(a) is a ciphertext linked to the policy f .

• DecABE(ctf(a), αf , ã) → m̄ or ⊥ where m̄ the recovered message if the attribute ã satisfies
the policy f otherwise the decryption fails ⊥.

B SecureRAG Security Analysis

Our security analysis follows our threat model discussed in Section 4, where the parties are assumed
semi-honest and non-colluding, except for the reader, who is a trusted third party. We recall that
semi-honest parties adhere to the protocol as specified but aim to infer sensitive information about
other participants solely through their interactions.

Compromised User. A semi-honest user, who interacts with the system only by sending queries and
receiving responses, may attempt to extract information about other users’ documents. They could
do this by crafting malicious queries targeting unauthorized documents in the database. However,
SecureRAG prevents such attacks through ABE-encryption of documents. Even if a query matches an
unauthorized document, decryption will fail because the document’s ciphertext is bound to a policy f
that excludes the user’s attributes.

Compromised Retriever. A semi-honest retriever that stores the ABE-encrypted documents and their
FHE-encrypted embeddings can try to learn the user query, which is FHE-encrypted, the retrieved
documents under both forms. For the FHE-encrypted query and embeddings, a compromised retriever
cannot infer meaningful information thanks to the IND-CPA security property of FHE, which ensures
that FHE ciphertexts remain indistinguishable, even when their underlying plaintexts are identical.
The ABE-encrypted documents are fetched using pseudorandom identifiers that look like random
values to the retriever. Thus, it cannot learn which documents are fetched. Moreover, the RLWE-based
KP ABE scheme that encrypts the documents satisfies the selective security (IND-sCPA) property [15]
that prevents an attacker, who claimed to possess certain attributes from between ciphertexts of two
chosen plaintexts as long as they do not satisfy the access policy f .

Compromised Generator. A semi-honest generator that receives encrypted and top-k documents
and returns its response encrypted can try to infer information about the query and the selected
documents. However, this is prevented by the IND-CPA property of FHE, which entails that the
FHE ciphertexts cannot be distinguished even if their underlying plaintexts are identical. Given that,
such a compromised generator performs the inference on encrypted data protected by the IND-CPA
property, it will be incapable of learning any meaningful information.

C SecureRAG performance on other datasets

Similarly to Figure 5, Figure 6 shows that rounding does not affect retrieval accuracy, as the ranking
curves for the PubMedQA and TAT-QA datasets with and without rounding align almost perfectly,
irrespective of embedding dimensionality.
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Figure 6: SecureRAG’s retriever performance on the PubMedQA and TAT-QA datasets (rounded to
5, orange&red curves) matches unprotected RAG accuracy for rank top-k with k ∈ [1, 20].

D Prompts for the LLM judge

We used the following prompt from RAGAS [12] for our evaluation of the context precision metric.

Context Precision Prompt

• Instruction: Given question, answer and context verify if the context was useful in arriving
at the given answer. Give verdict as 1 if useful and 0 if not.

• Prompt: ‘instruction question: question context: context answer: answer verdict: ’
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