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Abstract

Retrieval-augmented generation (RAG) enhances large language models (LLMs)
with external knowledge from databases but introduces privacy risks when handling
sensitive information. Existing defenses fall short: differential privacy degrades
accuracy and remains vulnerable to embedding inversion attacks, while fully
homomorphic encryption (FHE) ensures security but lacks access control. We
present SecureRAG, an end-to-end secure RAG framework that enforces strict
access control while mitigating prompt injection, data extraction, and embedding
inversion attacks. It achieves this by decoupling retrieval into secure search and
secure document fetching, using FHE for encrypted search and attribute-based
encryption (ABE) for fine-grained access control. SecureRAG supports dynamic
database updates, adaptive access policies, and integrates seamlessly with FHE-
friendly LLMs, adding only 0.05s of overhead. By providing a fully encrypted,
privacy-preserving retrieval framework, SecureRAG enables the secure deployment

of domain-specific chatbots in sensitive applications.

1 Introduction

Retrieval-augmented generation (RAG)[21]] enhances large language models (LLMs)[24] by re-
trieving relevant information from external sources to generate more accurate and context-aware
responses without retraining. By bridging information retrieval and text generation, RAG
enables cost-effective chatbot customization across the healthcare, finance, and law sectors.

For example, Figure[T]illustrates RAG in health-
care, where a hospital corpus aids doctors (users)
in generating precise diagnostic suggestions.

Despite its advantages, RAG is highly vulnera-
ble to privacy and security risks in sensitive sec-
tors [36L130]. The primary threat is sensitive in-
formation leakage, which can occur through (1)
compromised components (e.g., retriever, gen-
erator) or (2) adversarial prompt injections that
extract restricted data from the database (DB).
Beyond direct DB access, exposing cleartext em-
beddings (queries and documents) risks leaking
personally identifiable information (PII). Morris
et al. [26] demonstrated that text embeddings are
highly invertible, recovering 89% of PII (e.g.,
full names) from clinical note embeddings, un-
derscoring the need for equal protection of raw
text and embeddings. Additionally, Qi et al. [30]
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Figure 1: Healthcare-based RAG showing key vul-
nerabilities: a) retriever exploiting query embed-
dings and hospital corpus, b) generator misusing
queries and retrieved documents, and c) Dr. Bob
receiving sensitive data of Dr. Alice’s patient due
to lack of access control.
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introduced a prompt injection data extraction attack that targeted RAG’s retrieval DB—rather than
the LLM’s training data—successfully extracting 41% of a 77K-word book and 3% of a 1.5M-word
corpus using only 100 crafted queries. These findings highlight a critical weakness: RAG lacks
effective access control at the retrieval level, leaving it vulnerable to data extraction attacks.

These vulnerabilities are evident in the healthcare scenario shown in Figure[T} where Dr. Bob must
uphold patient confidentiality while potentially sharing patients with other doctors. He must also be
prevented from using prompt injection attacks to access records of Dr. Alice’s patients, as they do
not collaborate. Deploying separate RAG solutions for each doctor is impractical due to inefficiency,
cost, and complexity. Instead, hospitals require a unified RAG system integrated with their database
while enforcing strict access controls. The key challenge is ensuring that responses are personalized
while retrieved documents remain both relevant and restricted to authorized patients, preserving
security and privacy.

Most privacy-preserving RAG solutions [16} 4] rely on differential privacy (DP) [11] as a lightweight
defense, adding controllable noise to balance privacy and accuracy. However, DP has critical
limitations: (1) it distorts text, reducing retrieval and generation accuracy, (2) its privacy guarantee
weakens over repeated queries due to budget exhaustion, and (3) it fails to prevent text embedding
inversion [19] and prompt injection attacks. These shortcomings make DP unsuitable for an end-to-
end, provably secure RAG without accuracy loss.

Fully homomorphic encryption (FHE) [14] has emerged as a promising approach, offering end-to-end
security with strong privacy guarantees and no accuracy loss. Despite its runtime overhead, recent ad-
vances demonstrated their effectiveness in preventing information leakage from text embeddings [19],
enabling secure text classification [2, 20]], and supporting secure LLM inference [37,[9,[31]. While
FHE provides essential building blocks for a secure RAG, existing solutions do not afford access
control on retrieved documents.

We propose SecureRAG, an end-to-end secure RAG framework that enforces access control over
retrieved documents while preventing prompt injection data extraction and embedding inversion
attacks. SecureRAG achieves secure retrieval by splitting the process into two subphases: (1)
secure search and (2) secure document fetching. By leveraging FHE’s SIMD property and vertically
packing FHE-encrypted embeddings, SecureRAG enables efficient and scalable search over the vector
database. To enforce access control, documents are encrypted using an attribute-based encryption
(ABE) scheme, ensuring that only authorized users can decrypt retrieved content. SecureRAG
supports dynamic management of both the database (e.g., adding/deleting encrypted documents and
embeddings) and access rights (e.g., granting/revoking permissions). It seamlessly integrates with
FHE-friendly LLM generators [31]] without compromising accuracy.

We evaluate SecureRAG to determine whether encryption can be integrated without sacrificing
accuracy or hindering seamless model updates. Our results show that SecureRAG matches the
accuracy of unprotected RAG across both top-k ranking and context precision metrics, with the latter
evaluated by an LLM judge. In terms of performance, SecureRAG retrieves 100 documents from a
corpus of 16384 under a 2-attribute policy in just 0.05 seconds on a single GPU—a 13.6 x speedup
over RemoteRAG [4]], which requires two GPUs and 0.68 seconds to retrieve only 5 documents from
160, without any access control and with increased vulnerability to prompt injection attacks.

In summary, SecureRAG seamlessly integrates with FHE-compatible LLMs and supports dynamic
access management and database updates, enabling secure and privacy-preserving RAG deployments
in sensitive domains such as healthcare.

2 Related Work

In RAG, sensitive data leaks through embedding inversion attacks on its components [26] or prompt
injection queries targeting the extraction of restricted documents [30]. Existing solutions protect
components separately but remain vulnerable to prompt injection attacks.

Secure text embedding classification. Many solutions mitigate information leakage by encrypting
text embeddings with FHE [2, 20, [19] for classification tasks. However, they are limited to basic
one-to-one similarity comparisons and do not scale to large databases due to FHE’s computational
bottlenecks in search. SecureRAG addresses this challenge by enabling efficient one-to-many and



many-to-many text embedding searches under FHE. It leverages vertical data packing to fully exploit
FHE’s SIMD property, significantly improving efficiency and reducing encrypted database storage.

Secure inference of LL.Ms. LLMs are proprietary, requiring queries to be sent to external servers
for inference, raising concerns about access and retention of sensitive data. Research on secure
inference falls into interactive and non-interactive models. Interactive models [} 10, [17] rely
on multiparty computation (MPC) but suffer from high communication overhead, making them
impractical for RAG’s large-scale deployment. Hybrid approaches[29] combine HE and MPC to
mitigate this overhead. FHE-based solutions [9} 37, 31] offer stronger privacy by transforming LLMs
into FHE-friendly architectures, enabling non-interactive, end-to-end encrypted inference. Such
architectures focus on redesigning core LLMs’ components to better suit encrypted computation. For
instance, softmax-based attention mechanisms are replaced with FHE-friendly alternatives such as
Gaussian kernel attention, which avoids costly operations such as exponentiation and division that
are unsupported by FHE. Also, nonlinear activations (e.g., GELU and ReLU) are approximated using
low-degree polynomials to ensure compatibility with FHE. To preserve language capabilities while
minimizing computational overhead, lightweight adapters, such as LoRA [18]], are used to fine-tune
frozen pre-trained LLMs, ensuring that only a small subset of model parameters is subject to FHE
constraints. These design techniques shift much of the computation from heavy ciphertext-ciphertext
operations to more efficient plaintext-ciphertext operations where possible. SecureRAG is fully
compatible with any non-interactive FHE-friendly LLM and can seamlessly switch between different
FHE-friendly LLM providers without affecting its retriever or access control policies.

Privacy-preserving RAGs. While individual RAG components can be secured, privacy-preserving
RAG solutions aim for end-to-end protection, primarily against information leakage. Existing
approaches rely on differential privacy (DP)[LL]], but its privacy-accuracy tradeoff degrades LLM
performance by altering text semantics[23]. DP also fails to prevent embedding inversion attacks[19],
and its privacy guarantee weakens with repeated queries, requiring resets that hinder deployment[34]].
Moreover, no DP-based RAG solutions prevent prompt injection data extraction attacks. SecureRAG
is the first end-to-end secure RAG framework enforcing access control over retrieved documents
while preventing information leakage at both the embedding and generator response levels.

3 Preliminaries

SecureRAG integrates encryption with RAG using FHE for computations on encrypted text embed-
dings and attribute-based encryption to restrict document decryption to authorized users.

3.1 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) [[14] enables com-

putations on encrypted data without decryption, providing 2 empty

strong privacy guarantees. Its IND-CPA security [7] pre- slots per ct;

vents semi-honest attackers from inferring plaintexts from [ Feti— )
ciphertexts. While FHE is computationally expensive, { |-ets— ]
ongoing optimizations, including GPU acceleration [35], [ }7 ctr[ }

have enhanced its practicality. SecureRAG utilizes the
CKKS scheme [5] due to its support for floating-point
operations, enabling encrypted computations that closely Figure 2: SecureRAG uses the vertical
approximate cleartext results. CKKS also leverages the packing to efficiently store the encrypted
single-instruction multiple-data (SIMD) [33]] property, ef- text embeddings in DB.

ficiently packing multiple plaintext values into a single

ciphertext. However, SIMD efficiency depends on the packing strategy—SecureRAG employs
vertical packing, which is optimized for large-scale vector database searches (Figure [2)).

Horizontal packing Vertical packing

3.2 Attribute-Based Encryption

Attribute-Based Encryption (ABE) enables fine-grained access control, allowing decryption only
when user attributes meet a defined policy. In Ciphertext-Policy ABE (CP-ABE), access policies
are in the ciphertext, giving data owners control, while in Key-Policy ABE (KP-ABE), policies
are in decryption keys, managed by a central authority. SecureRAG requires KP-ABE, where



hospital authorities control access policies and keys. While most KP-ABE schemes use pairing-based
cryptography, LWE and RLWE-based alternatives 8} 22] offer stronger security, and revocability.

RLWE-based KP-ABE (Figure 3) enables key
homomorphism, allowing homomorphic evalu-
ation of public keys over a circuit policy. Se-
lective security (IND-sCPA) [15]] ensures ad-
versaries without authorized keys cannot distin-
guish between encrypted messages. Like FHE,
LWE and RLWE-based KP-ABE rely on lattice-
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based hardness, providing post-quantum secu-
rity guarantees. Figure 3: RLWE-based KP-ABE scheme in [8].

More details are in Appendix [A]
4 Threat Model

SecureRAG prevents sensitive information leakage across all RAG stages from malicious components
(retriever, generator) or users, specifically addressing embedding inversion and prompt injection data
extraction attacks. Notably, the latter targets the retrieval database, not the LLM generator’s training
data, which SecureRAG does not consider in its threat model. We consider a four-party setting with
non-colluding entities: users, a reader, a retriever, and a generator. All parties are semi-honest/'}
except the reader, a trusted third party representing the hospital administrator. The users, representing
hospital staff with attribute-based access, query a customized LLM augmented with the hospital
corpus for tailored responses. The reader encrypts sensitive data (doctors’ queries, patient records,
hospital corpus), sets DB access policies, manages public key infrastructure (PKI), issues user keys,
and handles text preprocessing and post-processing. The retriever, a cloud DB provider, stores the
encrypted documents and retrieves relevant documents for RAG. The generator, an FHE-friendly
proprietary LLM (e.g., OpenAI’s ChatGPT), processes encrypted queries and documents, performs
inference under encryption, and returns encrypted responses, protecting its intellectual property.
The reader protects hospital data while enabling doctors to use external services. The retriever
and generator must not extract readable information from queries, corpus, the hospital, or retrieved
documents in any form. Users should not intentionally or unintentionally receive responses containing
information about other users’ sensitive data or documents they are unauthorized to access.

5 SecureRAG

In RAG, the retriever and generator use different text embedding models suitable for text similarity
or generation. Thus, SecureRAG extracts the generator’s text embeddings from raw documents on
the fly to support any FHE-compatible LLM generator. This enables SecureRAG to integrate with
any FHE-friendly LLM generator.

5.1 Key Generation

SecureRAG encrypts text embeddings with FHE, using separate keypairs for the retriever and
generator, and encrypts raw documents with KP-ABE to enforce access policies. During setup, the
reader, as the system administrator, generates two FHE keypairs: (pk,, sk;.) for retriever searches
and (pk,, sky) for generator inference. It shares pk, with the retriever and pk, with the generator,
keeping sk, and sk, private. The reader also generates a KP-ABE master keypair (MPK, MSK), sharing
MPK with users while keeping MSK private.

5.2 Encrypted Vector and Document DBs

To build an end-to-end secure RAG while maintaining high efficiency, SecureRAG splits the encrypted
vector database (DB) into two parts: an FHE-encrypted chunked vector DB and an ABE-encrypted
raw document DB enforcing an access control policy over the retrieved documents.

FHE-Encrypted chunked vector DB. The reader encrypts the vector DB following its chunking
strategy that optimizes the overall RAG performance. SecureRAG enables the reader to pack n

"Follow the protocol but try to infer sensitive information.
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Figure 4: Overview of the SecureRAG framework integrating an FHE-friendly LLM generator with
ABE-encrypted documents, ensuring fine-grained access control. 1) The user’s query embedding is
FHE-encrypted and used to search for the top-k document indexes in the encrypted chunked vector
DB. 2) The ABE-encrypted documents are fetched via pseudo-random IDs and only decryptable if
the user u; satisfies the access policy. Finally, 3) the embeddings of the query and top-k documents
are FHE-encrypted and sent to the LLM generator for secure inference, generating an encrypted
response, which is post-processed by the reader before delivering it to the user.

embeddings ' = {e;};c[1,,) of dimension d using only d ciphertexts, where e; = (e1,i, "+ ,€a,)
and n is ciphertext capacity and n >> d, which is also the chunk’s size. This is achieved by
vertically arranging each chunk’s embeddings and packing them row-wise with one ciphertext

ct; = Enc?ﬁE(eM, -+, €j.n) per row, resulting in d ciphertexts per chunk ctg = {ct;} 1,4

ABE-Encrypted document DB. The raw documents {Doc; }; belonging to user u; are first ABE-
encrypted under user’s attributes a,,, € {0, 1}’ using the master public key MPK to yeild the ciphertext

MPK,a.,, . - . .
ctp, = Enc ABS i (Doc;) over which the reader evaluates the circuit policy f, resulting in ctht =

Enc}fég(a“i ) (Doc;), ciphertexts decryptable with the policy secret key o if and only if a,,, satisfies

the policy f. To enable a secure direct fetch of those encrypted documents and avoid storing their
respective IDs, we use a keyed pseudo-random function [3] D; = PRF k(d;) that given a secret
key K and an index d, it returns the same pseudorandom D, completely different from d;. The
reader generates and sends the ABE-encrypted documents { ctht }+ along with their pseudorandom

identifiers { Dy }4¢(1,x) to the retriever for storage. SecureRAG benefits from this by making fetching
secure documents efficient without the risk of leaking their actual identifiers, which saves storage.

5.3 Protocol Description

SecureRAG, depicted in Figure 4] consists of three steps: 1) FHE-encrypted search for the top-k
document indexes, 2) secure fetching of the ABE-encrypted documents via pseudorandom identifiers,
and 3) FHE-encrypted LLM inference. To enhance efficiency, the retrieval part is split into 1) and 2),
with SecureRAG filtering documents by user attributes and access policy before step 3).

Searching top-k document indexes. We consider the query embedding ¢ and document embeddings
E = {ei}ie[1,n) as normalized d-dim vectors. Normalized vectors enable efficient encrypted search,
as the inner product (IP) is cheaper to compute under encryption than cosine similarity while
preserving identical scores. The equation below shows that the inner product avoids computing the



embedding norms, which would require expensive computation under FHE.
Cosine(,¢5) = 2L _ (g )

g1l lle;
A naive encrypted search over n embeddings would compare the query against one embedding at a
time, resulting in n IPs costing » homomorphic multiplications. By leveraging the SIMD property and
the vertical packing of the document vector DB, SecureRAG computes those n IPs at once, reducing
the computation cost to only d homomorphic multiplications, where d << n, while the search
remains exhaustive. Hence, the reader extracts the user query embedding ¢ = (g1, -+ ,¢;, - ,4q)
that is compatible with the retriever’s embedding model. Then, it encrypts each component g; as an

n-dim vector of its replica, yeilding ct,, = Enchrs(gj, - qj)- Next, it sends cty = {ctq, }jepn.a
to the retriever for computing IP w.r.t. each chunk as follow:

(ctq,cty) = Z q; X ct;

Jje[l.d]
The retriever returns ctg = Enc’g];fE(sl, .-+, 8p) a ciphertext containing the IP scores s; = (g, €;).
The reader decrypts the scores Deci¥r (cts) = (s1,-- -, 5n), sorts them, and selects the top-k.

Fetching relevant documents. From the indexes {dt}te[l, %) of the top-k scores, the reader recovers
the documents’ pseudorandom identifiers D;. Next, the reader sends {Dt}te[l, %] to the retriever who

sends back the ABE-encrypted documents {ctht}te[Lk] where ctét = Encfég(a“’i)(Doct) with

user’s u; attributes a,,;, an {-dim binary vector with [ being the maximum number of attributes a
user can have. Then, the reader decrypts documents using the secret key a for access policy f.
Decryption succeeds only if user u;’s attributes a,,, satisty f; otherwise, it fails.

Encrypted inference. The reader combines the user’s query with the successfully ABE-decrypted
documents and extracts their embeddings with an embedding model compatible with the generator. It
then sends their FHE-encryption using pk, to the FHE-friendly LLM generator, performs the secure
inference under encryption, and returns its encrypted response back to the reader. Subsequently, the
reader decrypts it using sk, post-processes it, and displays it to the user.

5.4 Complexity and Security Analyses

. Table 1: SecureRAG’s retriever search storage and com-
Table [T] presents SecureRAG’s computational putational complexity as O (N - (#Addug + #Multyg))

complexity and storage requirements for its where NV is the number of chunks.
secure search part, which is the dominant part

. Di i d 256 768
of the retrieval. Note that FHE schemes can Tmension | | — |
adjust their parameters to expand ciphertext Complexity Addgp | d—1| 255 767
. . .. Multyg* d 256 768
capacity as needed, which would help in im- 9 y -
; i : i i Enc Query 256 68
proving .efﬁmency. Our security analysis is in Storage EncDB | doN | 256 N | 768 N
Appendix

*Those are homomorphic multiplications of depth 1.

5.5 Dynamic Databases and Access Rights

SecureRAG efficiently and dynamically handles the addition and deletion of documents and their
embeddings with on-the-fly user management, including dynamic addition, revocation, and real-time
policy updates.

Dynamic Databases. For the addition of a document Doc;, the reader updates the vector DB with
the document embedding &; = (€1, - - , €4,+) by selecting a chunk with an available empty slot d;,
and sends to the retriever the set of ciphertexts encrypting é;, that is, ctz, = {Ctgjyt} je[1,d] Where
cte;, = Enc%’}}‘E (-+-,0,€;4,0,---). Then, the retriever then updates the encrypted vector DB ctp =
{ct;}jen,q using one homomorphic addition per ciphertext ct; := ct; + cte, ,Vj € [1,d]. Also, the
reader generates the document’s pseudorandom identifier D; = PRF(d;) and ABE-encryption

of the document to which it applies the access policy f resulting in ct! , = Encfég(a“i) (Docy). It

sends to the retriever ctgf for storing it under D;. Note that our addition can add batch of embeddings



_ _ . k.. _ _
at once €, - , €, atonce with ctg,, = Encpyig(-- 50,86, €t,.,0,--+). SecureRAG

supports batch deletion of embeddings. The reader creates a deletion vector v € {0, —1}", marking

deletions with —1, and encrypts it as ct, = Enc’l;%E(v). The retriever updates the encrypted DB
ctp = {ctj};en,q using one homomorphic addition and multiplication per ciphertext: ct; :=
ctj+ct, x ct; Vj € [1,d]. The retriever processes encrypted updates blindly, without knowing the
modified documents.

Dynamic access control. The KP-ABE-SW scheme [22] supports switchable attributes, enabling
dynamic user management and policy updates. SecureRAG leverages these capabilities to man-
age access rights dynamically, with all modifications handled by the reader, acting as the system
administrator.

6 Experiments

Our goal is not to enhance state-of-the-art RAG accuracy but to assess whether an encryption layer can
be integrated without compromising accuracy or efficiency in sensitive applications. The experiments
in Section[6.T| were conducted using Python 3.12 on a NVIDIA RTX A6000 GPU-equipped server.
For embedding search, we implemented CUDA C++ experiments using PhantomFHE[35] with
the CKKS scheme, tested on HPCC with a single NVIDIA A100 core and 16GB of memory. For
document decryption, we used PALISADE-abe[28]], implementing the lattice-based ABE scheme in
C++, running on an Apple M3 Pro (12 cores, 36GB RAM). We will publicly release our codeﬂ

6.1 Performance Evaluation

We evaluate SecureRAG using the standard RAG assessment pipeline [12}132]], where an LLM judge
systematically assesses retriever and generator performance. The judge receives instructions, the
query, retrieved documents (retriever output), and the generated response (LLM output) for structured
analysis. To evaluate the impact of encryption on RAG, we apply rounding to 5, reflecting CKKS’s
precision limits. Performance in cleartext (no rounding) is compared to the encrypted setting (with
rounding) to measure potential losses.

Models. We use ModernBERT Embed [27] for retrieval (supporting 256 and 768 dimensions) and
Llama-2-7B [25] as the FHE-friendly generator, optimized for GPUs [6,31]]. SecureRAG is tested
with ModernBERT Embed as the retriever and Llama-2-7B as the generator, using Llama-3.1-8B as
the LLM judge, without fine-tuning any models.

Datasets. To assess the adaptation of RAG to domain-specific contexts, we consider the following
datasets provided in [[13]: the PubMedQA and CovidAQ-RAG datasets for the biomedical domain,
the TechQA dataset for customer support, and the FinQA and TAT-QA datasets for the financial
domain.

Metrics. We measure the retriever’s effectiveness using the rank top-k and the context precision metric
as defined in [12], providing the LLM judge with a specific prompt (see Appendix D)) instructing it to
return a verdict based on the relevance of the retrieved documents w.r.t. the question and the LLM
generator’s response. High scores indicate high performance. We note that separate answer-only
evaluations are not repeated here, as the answer quality of FHE-compatible LL.Ms has already been
rigorously validated in prior work [31]], showing negligible differences from non-FHE LLMs. Since
SecureRAG integrates these models without modification, it inherits their accuracy performance.

Assessment. For each dataset, the documents column contains documents corresponding to each
question. We combined all documents to build the vector DB, extracted their normalized embed-
dings for d € {256, 768}, and rounded them to 5. Figure shows that rounding has no impact on
retrieval accuracy, as ranking curves with and without rounding overlap almost perfectly, regardless
of the embedding dimensionality. Table 2|reports LLM judged context precision for varying retrieved
documents (k € {1,5,10}). The LLM judge produces nearly identical scores for k& > 5, with
minor variations at k = 1, which can be due to its probabilistic nature. SecureRAG maintains RAG
accuracy with minimal loss when retrieving one document while preventing prompt injection and
data extraction attacks. See Appendix [C]for PubMedQA and TAT-QA results.

Upon acceptance at https://github. com/aminabassit/secureRAG
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Figure 5: SecureRAG’s retriever performance on CovidQA, TechQA, and FinQA (rounded to
5, orange and red curves) meets unprotected RAG accuracy for rank top-k with & € [1,20] for
embeddings of dimensions d € {256, 768}.

Table 2: Performance of SecureRAG for context precision using a retriever with
d-dim embeddings. Gray (resp. white) cells are with (resp. without) rounding.

Domain | d-dim | 256 | 768

| KDoes | 1 | 5 | 10 | 1 | 5 | 10

g 0.889 | 0.999 | 0.999 | 0.839 | 0.999 | 0.999
g ‘ PubMedQA ‘ 0.851 ‘ 0.999  0.999 ‘ 0.847  0.999 | 0.999
3 . 0.974 | 0.999 | 0.999 | 0.961 | 0.999 | 0.999
T CovidQA | 971 | 0.999 0,999 | 0.994  0.999 | 0.999
s Coa | 0:929 [ 0.999 | 0.929 | 0.911 | 0.999 | 0.999
g ‘ TATQA ‘ 0.938 ‘ 0.999  0.998 ‘ 0.916  0.999 | 0.999
£ FinQa | 0955 | 0.009 [ 0.990 | 0.970 | 0.999 | 0.999
0.973 | 0.999 0.999 | 0.961 0.999 | 0.999

5 . 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999
& TechQA | 0,999 | 0.999 0,999 | 0.999  0.999 | 0.999

6.2 Runtime Evaluation

We measure SecureRAG’s latency for its 3 steps: (1) FHE-encrypted search on GPU, (2) ABE-
based secure fetching on CPU, and (3) FHE-encrypted LLM inference, referencing reported GPU
benchmarks for state-of-the-art FHE-friendly LLMs.

Search Performance. Table [3|reports SecureRAG’s mean runtime for top-100 document searches
using embeddings of dimensions d € {256,512, 768,1024}, evaluated at two chunk capacities
(16384 and 32768 embeddings per chunk). For single-chunk searches, runtime ranges from 18ms to
47ms at 16384 capacity and 30ms to 71ms at 32768, showing efficiency gains with larger chunks.
For large-scale DBs, SecureRAG scales effectively: retrieving from 1M embeddings requires 30
chunks, adding < 2.2s in runtime, while retrieval from 1B embeddings spans ~ 30K chunks in 36.11
minutes. SecureRAG achieves a 13.6x speedup over RemoteRAG [4]], which takes 0.68s on two
GPUs to retrieve just 5 documents from 160, lacking access control and remaining vulnerable to
prompt injection data extraction attacks.

Access Control Overhead. Table 4] measures ABE-decryption runtime for 1 to 100 encrypted
documents (~ 350-700 words) with 2 to 10 attributes. Decryption time scales with attributes but
remains minimal compared to search, peaking at 92.43ms, demonstrating efficient enforcement of
access control with low overhead.

Table 3: SecureRAG’s GPU mean runtime for searching the top-100 embed- Table 4: SecureRAG’s CPU mean runtime for ABE-decrypting K docu-
dings chunk-wise, with N embeddings per chunk at a 128-bit security level. ments assuming one document per ciphertext using a 128-bit security level.
Dimension | 256 512 768 1024 #Chunks # Auributes | 2 ‘ 4 ‘ 6 ‘ 8 | 10

16384 bits documents ~ 350 words
ldoc | 0.47ms | 1.04ms | 1.23ms | 2.03ms | 2.25ms
10docs | 1.20ms | 2.14ms | 3.15ms | 4.09ms | 5.08ms

\ \ \
N ‘ 16384 ‘ 16384 ‘ 16384 ‘ 16384
100:N | 18ms | 27ms | | 47ms 1

\
\
37ms |
100 : 10° ‘ 1.11s ‘ 1.67s ‘ 2.29s ‘ 2.91s ‘ 61
\
\
\

100 : 10 ‘ 18.31min ‘ 27.46min ‘ 37.63min ‘ 47.81min 61035 100 docs ‘ 13.81ms ‘ 20.53ms ‘ 28.04ms ‘ 35.29ms ‘ 41.44ms
py— 3976 ar Py —
N| 82768 | 82768 | 82768 | 32768 32768 bits documents ~ 700 words
100:N | 30ms | 43ms | 58ms | T7lms 1
ldoc | 1.45ms | 3.03ms | 4.08ms | 5.12ms | 6.08ms
100:100 | 0935 | 133 | 179 | 225 | 30

10docs | 3.13ms | 5.30ms | 7.37ms | 9.31ms | 11.20ms
100 docs | 27.69ms | 45.49ms | 61.55ms | 76.62ms | 92.43ms

100 : 10° | 15.25min | 21.87min | 29.5min | 36.1lmin | 30517

" Runtime measured over 500 iterations for 100 : N and extrapolated for - - - -
100 : 10% and 100 : 10°. Runtime measured over 500 iterations.

End-to-End Runtime. Table [5|compares SecureRAG with existing approaches that protect only
specific RAG components. SecureRAG adds just 0.05s overhead to FHE-friendly non-interactive
LLMs, leading to a total runtime of 26.55s to 37.35s. Thus, SecureRAG effectively mitigates prompt



injection data extraction attacks while seamlessly integrating with state-of-the-art FHE-friendly
LLMs, ensuring strong privacy protection at minimal computational cost.

Table 5: Runtime comparison between SecureRAG and state-of-the-art solutions showing a seamless integration of SecureRAG with the state-of-
the-art FHE-friendly LLMs, incurring negligible overhead while effectively preventing prompt injection data extraction attacks.

Solution ‘ Approach | Docs DB ‘ Dim | Tokens | GPUs Ret(r;f):ver Gen(e;r)ator T?St)a 1 :tlt]iflg ‘ é(frfterisl
(9] | FHE | 1 | 1000 | 768 | \ | 06 | \ | Vulnerable | X
RemoteRAG[4] | DP&PHE | 5 | 160 | 768 | - | 2 | 068 | | | Vulnerable | X
BOLT [29] | HE&MPC | - | | 768 | 128 | 4 | | 185 | | Vulnerable | X
NEXUS [37] | FHE | \ | 768 | 128 | 4 | | 373 | - | Vulnerable | X
HEaaN [31] | FHE | \ | 768 | 128 | 1 | | 265 | | Vulnerable | X
SecureRAG+NEXUS' FHE& ABE‘ 100 ‘ 16384‘ 768 128 4 0.05 ‘ 37.30 ‘37.35 Prevented ‘ v/
SecureRAG+HEaaN' 100 | 16384 | 768 | 128 1 0.05 26.50 | 26.55 | Prevented v/

* Prompt injection data extraction (PIDE) attack [30]. { Retrieval of 100 documents from a 16384 vector DB using 2 attributes 51.81ms.

7 Limitations

SecureRAG has the following limitations. Its overall runtime is heavily influenced by the efficiency
of the FHE-friendly LLM generator it integrates with. Additionally, it operates in three rounds,
two of which involve the retriever; reducing these interactions could improve efficiency. Another
limitation is that the number of supported attributes is fixed during setup, requiring careful estimation
of expected attributes. Increasing this number would slightly impact the retriever’s runtime. Another
limitation of SecureRAG is the heavy key management burden on the reader’s side. As a trusted third
party system administrator, the reader is responsible for handling cryptographic keys for ABE and
FHE operations, including key distribution, updates, and revocations. This overhead can increase
storage complexity and require efficient key management strategies to maintain scalability. Also, a
trusted third party introduces a single point of failure, as if it is compromised, could undermine the
entire system; however, in practice, many real-world deployments rely on a centralized authority for
efficiency and trust management. This risk can be mitigated through decentralization schemes such
as multi-authority ABE (MA-ABE) or threshold cryptography to ensure no single entity has absolute
control.

8 Conclusion

Privacy and security are critical for responsible RAG deployment, especially in healthcare, where
unauthorized access can lead to severe violations. This paper presents SecureRAG, an end-to-end
secure RAG framework that integrates FHE and ABE to prevent information leakage, enforce access
control, and defend against prompt injection and embedding inversion attacks. SecureRAG splits
retrieval into secure search and secure document fetching, ensuring only authorized users access
relevant documents without compromising accuracy. Our evaluation shows SecureRAG matches
unprotected RAG in rank top-k and context precision metrics. With a single GPU, it retrieves
100 documents from 16K under a 2-attribute policy in 51.81ms, achieving a 13x speedup over
existing solutions, which retrieve only 5 documents from 160 with no access control. SecureRAG
supports dynamic database updates and adaptive access control while seamlessly integrating with
FHE-friendly LLMs, adding only 0.05s of overhead. By effectively preventing prompt injection
data extraction attacks, SecureRAG provides a scalable, practical solution for privacy-preserving
RAG deployments. It addresses core security challenges, laying the foundation for future research on
secure and privacy-aware chatbots.
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A RLWE-based KP-ABE Scheme

We recall the RLWE-based KP-ABE scheme proposed in [8] and enhanced with attribute revocability
in [22].

s Setup(1*,l) — {MPK,MSK} where ) is the security parameter, [ is the number of user
maximum attributes, MPK is public master key, and MSK is secret master key.

* Encype(m, a,MPK) — ct, where m is the message, a the user’s attributes, and ct,, the ouptut
ciphertext linked to the user’s attributes.

* KeyGen,g;(MSK, MPK, f) — af where f is the circuit policy, which is a boolean circuit, and
oy is the policy decryption key.

* Evalpge(clq, f) — cly(q) Where cts(q) is a ciphertext linked to the policy f.

* Decppe(ct Fla) Of s a) — m or _ where m the recovered message if the attribute a satisfies
the policy f otherwise the decryption fails L.

B SecureRAG Security Analysis

Our security analysis follows our threat model discussed in Section[d] where the parties are assumed
semi-honest and non-colluding, except for the reader, who is a trusted third party. We recall that
semi-honest parties adhere to the protocol as specified but aim to infer sensitive information about
other participants solely through their interactions.

Compromised User. A semi-honest user, who interacts with the system only by sending queries and
receiving responses, may attempt to extract information about other users’ documents. They could
do this by crafting malicious queries targeting unauthorized documents in the database. However,
SecureRAG prevents such attacks through ABE-encryption of documents. Even if a query matches an
unauthorized document, decryption will fail because the document’s ciphertext is bound to a policy f
that excludes the user’s attributes.

Compromised Retriever. A semi-honest retriever that stores the ABE-encrypted documents and their
FHE-encrypted embeddings can try to learn the user query, which is FHE-encrypted, the retrieved
documents under both forms. For the FHE-encrypted query and embeddings, a compromised retriever
cannot infer meaningful information thanks to the IND-CPA security property of FHE, which ensures
that FHE ciphertexts remain indistinguishable, even when their underlying plaintexts are identical.
The ABE-encrypted documents are fetched using pseudorandom identifiers that look like random
values to the retriever. Thus, it cannot learn which documents are fetched. Moreover, the RLWE-based
KP ABE scheme that encrypts the documents satisfies the selective security (IND-sCPA) property [15]
that prevents an attacker, who claimed to possess certain attributes from between ciphertexts of two
chosen plaintexts as long as they do not satisfy the access policy f.

Compromised Generator. A semi-honest generator that receives encrypted and top-k documents
and returns its response encrypted can try to infer information about the query and the selected
documents. However, this is prevented by the IND-CPA property of FHE, which entails that the
FHE ciphertexts cannot be distinguished even if their underlying plaintexts are identical. Given that,
such a compromised generator performs the inference on encrypted data protected by the IND-CPA
property, it will be incapable of learning any meaningful information.

C SecureRAG performance on other datasets

Similarly to Figure 5] Figure [6] shows that rounding does not affect retrieval accuracy, as the ranking
curves for the PubMedQA and TAT-QA datasets with and without rounding align almost perfectly,
irrespective of embedding dimensionality.
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Figure 6: SecureRAG’s retriever performance on the PubMedQA and TAT-QA datasets (rounded to
5, orange&red curves) matches unprotected RAG accuracy for rank top-k with k € [1, 20].

D Prompts for the LLM judge
We used the following prompt from RAGAS [[12]] for our evaluation of the context precision metric.
Context Precision Prompt

* Instruction: Given question, answer and context verify if the context was useful in arriving
at the given answer. Give verdict as 1 if useful and 0 if not.

* Prompt: ‘instruction question: question context: context answer: answer verdict: ’
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