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Abstract—Biometric fusion is a promising method to elevate
the recognition performance of unimodal biometric systems.
Nevertheless, the exposure of feature vectors for feature-level
fusion raises security concerns, as it is feasible to extract
sensitive information from these vectors. This paper proposes
a non-interactive, end-to-end approach to securely fuse and
match biometric templates using Fully Homomorphic Encryption
(FHE). For a pair of encrypted feature vectors, we perform
the following operations on a ciphertext domain: i) feature
concatenation, ii) fusion and dimensionality reduction through
a learned linear projection, iii) an optional scale normalization
to unit ℓ2-norm, and iv) match score computation. Our method,
dubbed HEFT, is custom-designed to circumvent a key limitation
of FHE - the lack of support for non-arithmetic operations. From
an inference perspective, we systematically explore different data
packing schemes for computationally efficient linear projection
and introduce a polynomial approximation for scale normal-
ization. From a training perspective, we introduce two distinct
FHE-aware algorithms to improve the learning of the projection
matrix and address the challenges posed by the non-arithmetic
normalization step. We demonstrate the utility of HEFT on
two multimodal combinations: face and voice and face and
fingerprint. For the face-voice fusion, HEFT improves verification
performance by a range of 143.25% - 244.35% compared to
unibiometric features. On the fingerprint-face fusion, improve-
ments are from 13.99% to 37.99%. Code and data are available
at https://github.com/human-analysis/encrypted-biometric-fusion

Index Terms—Fully Homomorphic Encryption, Biometric
Template Fusion, Secure Template Matching, Approximate Nor-
malization

I. INTRODUCTION

Feature-level fusion is commonly employed in multi-
biometric recognition systems, especially in large-scale de-
ployments as a dimensionality reduction technique. Template
fusion helps overcome the limitations of uni-biometric sys-
tems in improving recognition performance and population
coverage. However, utilizing multiple biometric features is
associated with security risks and attacks on such systems.
There is growing evidence that the templates contain sufficient
information to reconstruct the raw biometric sample [1] or leak
sensitive soft-biometric information [2]. Thus, in the context
of fusion, it is imperative to design schemes that secure the
biometric features of users across all modalities and protect
user’s privacy. Realizing this goal is the primary focus of this
paper.
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Cryptosystems based on Fully Homomorphic Encryption [3]
(FHE) offer a promising solution to secure biometric templates
through encryption. FHE schemes such as BFV [4], [5] and
CKKS [6], allow arithmetic calculation on encrypted data
without the need for decryption. Recent work [7], [8] has
demonstrated that FHE is exceptionally effective and scalable
for protecting biometric templates, allowing for matching and
search in an encrypted domain against a gallery of 100 million.

Template-level fusion and matching typically involve the
following operations: feature concatenation across various
modalities, linear/non-linear projection of concatenation fea-
tures to a lower dimension and a scale normalization of
the resulting feature for computing cosine similarity in the
matching score computation step. In existing approaches for
feature-level fusion, operations are performed on plaintexts
(unencrypted domain). However, performing those operations
on ciphertexts (encrypted domain) in a given FHE scheme,
is not straightforward due to their non-arithmetic nature. For
example, division and square root required for scale normal-
ization are not supported by FHE schemes for direct compu-
tation on ciphertexts. Furthermore, operations on ciphertexts
are significantly expensive in terms of latency and memory
requirements than the same operations on plaintexts.

To overcome the above challenges, we propose HEFT, a
biometric template fusion and matching scheme that operates
directly on encrypted templates. Given a pair of encrypted tem-
plates, HEFT performs the following operations over cipher-
texts: feature concatenation, linear projection, optional scale
normalization to unit ℓ2-ball, and matching score computation.

The salient features of HEFT include i) fusion of uni-
biometric templates with different dimensions , ii) dimen-
sionality reduction through linear projection to ease the steep
computational burden of downstream ciphertext matching
operations, and iii) an arithmetic approximation of the ℓ2
normalization operation through composite polynomials. Fur-
thermore, we introduce FHE-aware learning for the projection
matrix, either to bypass the normalization step or to reduce
the cost of the arithmetic approximation, while maintaining
matching performance.

For practical purposes, we analyzed how different design
choices impact the trade-off between accuracy and efficiency
(in terms of memory and latency) for biometric fusion and
match score computation. These choices include data encoding
schemes, matrix multiplication methods, and normalization
approximations. Our analysis identifies the best options for
both small-scale and large-scale settings, considering feature
dimensions and gallery size.
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In summary, we present a practical multi-biometric feature-
level fusion and matching algorithm in the encrypted domain,
utilizing FHE. Our key contributions are:

• Fusion in the encrypted domain using FHE.
• Introducing two frameworks for dimensionality reduction

to address the limitations of FHE and elaboration on the
theoretical motivation behind them

• Comparison of different matrix encoding schemes for
efficient computation in the encrypted domain.

• Experimental evaluation on two multi-modal combina-
tions, i) face and voice, and ii) face and fingerprint
biometric templates.

Accordingly, we observe appreciable gains in matching perfor-
mance over the uni-biometric counterparts. Compared to uni-
biometric systems, HEFT improves matching performance by
143.25% and 224.40% for projection onto 32-dim space and
158.21% and 244.35% for projection onto 64-dim space. For
the fusion of fingerprint and face dataset, improvements are
24.35% and 13.99% for projection onto 32-dim and 37.99%
and 26.49% for projection onto 64-dim space. Furthermore, for
a 32-dim projection it took about 1130 ms to fuse a pair of
512-dim biometric templates and 5006 ms to compute match
scores against a gallery of size 1028 templates.

II. RELATED WORK

Privacy-Preservation in Biometrics: Many methods have
been devised to secure biometric templates and preserve
user privacy. Early biometric cryptosystems based on image
processing [9], [10] and fuzzy vaults [11] were employed
for protecting both iris [12] and fingerprint [13] data. Such
systems, however, suffered from a loss in matching perfor-
mance. Cryptosystems such as Goldwasser-Micali encryption
have also been used for authentication scenarios [14], but they
do not protect the templates while matching and are, therefore,
vulnerable to attacks.

Cancelable biometric schemes are a class of biometric
template protection mechanisms that apply a non-invertible
transformation Tk(·) to a biometric feature vector, where
k denotes a user/system-specific key. These transformations
are designed to be computationally efficient in the forward
direction and infeasible to invert without knowledge of k,
while still enabling comparison in the transformed space [15],
[16]. A fundamental challenge in the design of cancelable bio-
metric schemes lies in trading-off security (non-invertibility)
with recognition accuracy. While prior work showed that
careful parameter tuning can sometimes yield recognition
performance comparable to, or even exceeding, that of unpro-
tected systems [17], [18], a more fundamental trade-off exists
within the design of the transformation itself. For example, in
PolyProtect [17], increasing the overlap parameter enhances
discriminability but simultaneously increases vulnerability to
inversion under a full-disclosure threat model. Conversely,
schemes such as IoM-URP [19], which prioritize stronger
non-invertibility, often suffer from reduced recognition per-
formance relative to more accurate but less secure methods
like MLP-Hash [18]. These limitations are compounded by
cryptanalytic vulnerabilities. Some transformations have been

shown to leak soft biometric attributes even without access
to the transformation key. Yalavarthi et al. [20] demonstrate
that PolyProtect can leak soft biometric information; while
their analysis is framed under a stated full-disclosure threat
model, the specific attack they demonstrate, namely, training
a classifier on protected templates, succeeds without lever-
aging knowledge of the user-specific keys. Similarly, Zhou
et al. [21] reveal linkability vulnerabilities in Bloom filter-
based encodings. Crucially, unlike cryptographic primitives
like Homomorphic Encryption, cancelable biometric schemes
lack formal reductions to hard problems and do not provide
provable bounds on adversarial success rates. There are no
theoretical guarantees on the preimage size or irreversibility
of Tk, even under full- or partial-disclosure models. As a
result, these schemes remain largely empirically evaluated,
with no formal assurances against information leakage from
the protected representation.

Homomorphic encryption (HE) is an attractive option for
privacy-preserving biometrics applications because it enables
computations on encrypted data without the need to decrypt,
while affording strong and provable security guarantees. Early
biometric systems driven by HE were based on partially
homomorphic encryption (PHE) schemes [22]. They were
applied to numerous biometric modalities [23], including face
recognition [24], iris recognition [25]–[27] and fingerprint
recognition [28]. The opportunity to design robust biometrics
cryptosystems came to the fore with the development of the
first fully homomorphic encryption (FHE) scheme [3]. Since
then, there have been many application scenarios for biomet-
rics exploiting the privacy afforded by FHE without substantial
performance drawbacks. Gomez-Barrero et al. [29] developed
a general framework for template-level fusion based on ho-
momorphic encryption. This framework relies on performing
fusion before encryption and does not support template fusion
directly in the encrypted domain. Boddeti [7] demonstrated
the ability to match face templates in the encrypted domain.
Engelsma et al. [8] proposed an efficient way to search
encrypted templates by combining a novel encoding scheme
with feature compression. Using a tree search structure created
by fusing similar templates, Drozdowski et al. [30] developed
a faster biometric indexing and retrieval method.

In contrast to this body of work, in this paper, we leverage
FHE for end-to-end template fusion and match score compu-
tation and devise an FHE-aware learning algorithm for feature
projection. Unlike feature transformation methods, which face
an inherent trade-off between security and matching accuracy,
FHE provides strong security through encryption without
impacting this accuracy. Furthermore, the primary advantage
of FHE lies in its foundation on formal security proofs tied to
computationally hard mathematical problems, which offers a
provable guarantee of security. It is important to note that this
security guarantee applies to the normal operational scenario;
under a full-disclosure attack where the decryption key is
known, FHE is by definition fully reversible. The primary
challenge for FHE-based approaches is therefore not a trade-
off with security, but rather one of performance(accuracy)-
versus-complexity, due to the high computational cost of
operating in the encrypted domain. In this work, our focus is to
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Fig. 1: End-to-end biometric template fusion and matching using fully homomorphic encryption (FHE). Given feature representations extracted from two
different modalities of an individual, the clients encrypts and transmits the features to a cloud system. It will concatenate the two encrypted vectors and
performs a matrix-vector multiplication with a learned plaintext projection matrix. The resulting ciphertext represents the fused encrypted vector. We optionally
normalize the encrypted vector using an approximation to overcome the constraints imposed by FHE. During enrollment, this template is stored in the database
of encrypted templates. During authentication, match scores are computed between the probe and templates from the encrypted database and sent to the clients
for decryption and further processing.

reduce the computational complexity of FHE-based techniques
while preserving accuracy.
Feature-Level Biometric Fusion: Fusion at the feature level
leverages information from multiple templates to improve
performance. Early techniques focused on selecting features
from each template to be fused [31]. Sarangi et al. [32]
combined face and ear templates by concatenating templates
compressed through classical dimensionality reduction tech-
niques. Feature-level fusion has also been performed on the
face, fingerprint, and finger vein modalities [33]. Coupled
mapping techniques have been devised to match samples
between domains, with a maximum-margin approach [34] and
a marginal fisher analysis approach [35]. Lately, learning-
based approaches have been used. Silva et al. [36] performed
feature selection using Particle Swarm Optimization. Tiong et
al. [37] proposed a method of information fusion via extracting
features from raw biometric data using a CNN and then
combining them with a series of fully connected layers. Other
deep learning approaches have been proposed recently [38]–
[42]. Contrasting these methods, we opt for a linear projection-
based approach to limit the multiplicative depth of the circuit
and decrease computational complexity, which is important for
creating a practical solution in FHE.

III. APPROACH

We propose HEFT for template fusion and matching. It
is designed to maximize performance and efficiency for the
biometric fusion performed on the encrypted domain. Given
an encrypted multi-biometric dataset, i.e., a pair of encrypted
feature vector matrices, HEFT performs the following series
operations over the encrypted domain:

• Concatenation of the feature vectors
• Linear projection using a learned matrix to a new lower-

dimensional feature space
• An optional polynomial-based approximate normaliza-

tion of the features to projecting them onto a unit ℓ2-ball
• Match score computation of the fused features against an

encrypted gallery of fused features

These operations are illustrated in Figure 1. It is important
to highlight that clients or vendors supplying the feature
extractor may consist of different individuals. For example, a
joint bank account could require biometric data from multiple
individuals. In another scenario, a single client may want to
utilize different biometric modalities where each provided by
a separate vendor. Consequently, in the general case, we refer
to them as distinct clients.
In addition to the aforementioned operations, HEFT is trained
through an approximation-aware algorithm. This algorithm
adjusts the projection matrix to address the non-arithmetic
aspect of the feature normalization step. It follows one of two
methods: either approximating the normalization step with a
low-order polynomial or skipping this step.

A. Proposed Framework

Biometric Fusion: Consider a multi-biometric system that
consists of a set of n feature vectors from two sources,
X = {x1, . . . ,xn} and Y = {y1, . . . ,yn}, where xi ∈ Rα

and yi ∈ Rβ . Each feature pair (xi,yi) is fused into a new
representation zi ∈ Rγ . While we describe the fusion of two
biometric feature sources, our approach extends naturally to
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multiple sources. In this work, we consider a linear projection
operation for feature fusion:

Z = P

[
x1 x2 · · · xn

y1 y2 · · · yn

]
= PX⊕

where P ∈ Rγ×δ is the projection matrix that maps the
concatenated feature space to a γ-dimensional space, and
δ = α + β represents the dimensionality of the concatenated
features. The matrix X⊕ ∈ Rδ×n contains the concatenated
feature vectors. The fused templates can be utilized for various
downstream tasks, such as biometric matching. A commonly
used metric for template matching is the cosine distance,
defined as

d(x,y) = 1− ⟨x̂, ŷ⟩,

where □̂ denotes a unit-normalized vector.
Secure Biometric Fusion: Our goal is to devise a crypto-
graphic solution to secure the multi-biometric templates and
prevent unauthorized access to private user information during
the template fusion process and any desired downstream
tasks. This can be achieved through a parameterized function
that transforms the multi-biometric features (x,y) into an
alternate space (E(x), E(y)) such that E(x) = f(x;θpk),
x = g(E(x);θsk) are encryption and decryption functions
with θpk and θsk being the public and secret keys respectively.
By executing all the fusion operations, namely, concatena-
tion, projection, normalization, and match score computation
directly over the ciphertexts, i.e., without decryption, we
can prevent unauthorized access to sensitive information, and
hence preserve user privacy. In this wise, FHE is a class
of encryption algorithms that allows arithmetic computations
directly over ciphertexts and is ideally suited to accomplish
our goal.

B. Threat Model

As shown in Figure 1 HEFT involves three parties: two
clients and an untrusted cloud server. Each client possesses
a modality-specific biometric feature vector of a given user
(e.g., face and fingerprint), while the cloud server performs
the template fusion and match score computation. The clients
hold the user’s public and private keys1 and are trusted to
behave honestly.

Adversarial Model: We adopt a semi-honest (honest-but-
curious) model for the cloud server. The server follows the pro-
tocol faithfully but attempts to infer sensitive information from
the biometric templates it stores and processes. The server has
access to (i) all ciphertexts received from clients, including
modality-specific features and fused vectors, (ii) the plaintext
projection matrix used in fusion (assumed public), (iii) the
encrypted database of fused biometric templates, and (iii) the
encrypted match scores produced during authentication. The
adversary does not have access to the private FHE decryption
key (securely held by the clients or a separate trusted party) or
the internal biometric processing pipelines on the client side.

1Clients can exchange the common keys. For instance, this can be achieved
by a Diffie–Hellman key exchange.

Adversarial Goals and Security: The adversary (cloud
server) may attempt multiple attacks including (i) recover-
ing raw biometric feature vectors from encrypted data, (ii)
inferring relationships between modalities or deducing fused
representations, and (iii) extracting identity or similarity in-
formation from encrypted match scores. However, since the
adversary only has access to encrypted user data without
access to the decryption keys (i.e., partial-disclosure threat
model), HEFT protects against the attacks listed above.

C. Protocols: Template Fusion and Matching

We use the Cheon-Kim-Kim-Song (CKKS) scheme [6] as
the underlying FHE scheme for template fusion and match
score computation. We first give an overview of this scheme
and then describe the enrollment and authentication protocols
for template fusion.

The CKKS encryption scheme allows operations over
encrypted vectors of complex numbers [6]. Its mathematical
basis lies in modular arithmetic over polynomial rings and
its security lies in the hardness of the Ring Learning with
Errors problem. CKKS offers post-quantum security for an ap-
propriate choice of encryption parameters [43]. Plaintexts are
polynomials within the polynomial ring R = Z[x]/(xN + 1).
Therefore, complex vectors CN/2 must be encoded into this
space to perform encryption. After encoding, the plaintext
polynomial is encrypted via a secret key into a set of two
polynomials, R2

q = Zq[x]/(x
N + 1) where Rq denotes poly-

nomials of coefficients modulo q and degree less than N . This
will serve as the ciphertext.

CKKS has three keys: a secret key sk, a public key pk,
and an evaluation key evk for homomorphic multiplication. Its
protocol comprises the following functions: i) Key Generation:
Generates the keys, ii) Encryption: Given a plaintext poly-
nomial and the public key pk, output two polynomials rep-
resenting the ciphertext, iii) Decryption: Given a ciphertext
comprised of two polynomials, apply the secret key sk and
retrieve a plaintext polynomial, iv) Addition: A simple sum
of the ciphertexts translates to homomorphic addition, v)
Multiplication: Multiplication of ciphertexts is polynomial
multiplication which results in three polynomials. To restrict
the size of resultant ciphertexts, relinearization is needed,
vi) Relinearization: Given three polynomials representing a
ciphertext product, the evaluation key evk is used to reduce
the size of the ciphertext from three to two polynomials, and
vii) Rotation: Ciphertexts may be cyclically rotated using an
optionally generated set of Galois keys.

Encrypted Template Fusion Protocol at Enrollment: Con-
sider two sets of biometric templates X and Y that we
seek to fuse along with their identity labels I. Each set
of templates is encrypted using the data encoding scheme
requested by the cloud server. After receiving the encrypted
templates, the cloud server performs the following operations:
i) for each identity label c, create all pairs of templates
Z = {(xi,yj)|∀(i, j) ∈ Ic × Ic, Ic ⊆ I}, where Ic are
the indices of samples belonging to identity c, ii) fuse the
pairs of templates created, i.e., concatenation, projection and

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
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an optional normalization, and iii) add the fused templates to
the current gallery G.
Encrypted Template Fusion Protocol at Authentication:
clients send a sample of encrypted multibiometric templates
x ∈ Rα and y ∈ Rβ . This pair of templates is fused,
i.e., concatenation, projection and optional normalization to
create a probe template z ∈ Rγ . For identification, i.e.,
1 : N comparisons, the match score (e.g., cosine distance)
is computed between the probe and the entire gallery G. For
verification with a claimed identity c, i.e., 1 : 1 comparison, the
match score is computed between the probe and the samples in
the gallery G corresponding to the identity c. The encrypted
scores are returned to the clients for decryption and further
processing.

D. Encrypted Template Fusion and Matching

We now describe the various components of template fusion
and match score computation. This includes (i) choice of the
data encoding scheme, (ii) concatenating two ciphertexts, (iii)
efficient ciphertext matrix-plaintext matrix multiplication for
linear projection, and (iv) efficient approximate normalization.

1) Input Encoding and Vector Packing: Input Encoding:
Before any computation on encrypted data, an encoding
scheme must be selected to enable encryption and arithmetic
operations on the resulting ciphertext. The efficiency of ci-
phertext operations is critically dependent on the encoding
scheme chosen to represent features. As such, we outline two
different encoding schemes for the feature vectors, each better
suited for operating at a small or large scale. With regard
to a set of concatenated templates as X⊕ ∈ Rδ×n, these
two schemes are: Column Encoding: Encodes each feature
vector as a plaintext before encryption, thereby resulting in
n ciphertexts. Row Encoding: Encodes each dimension of the
feature vector as a plaintext before encryption, resulting in δ
ciphertexts. It is worth noting that these encoding schemes
were called Dense and SIMD by authors of [8] and [7]. Here,
we used a different naming to avoid confusion with projection
matrix encoding schemes.
Vector Packing: FHE schemes such as CKKS support arith-
metic operations directly on vectors by packing multiple
numbers into different slots within a single polynomial. In
most practical applications, the dimensionality of feature vec-
tors is much less than the number of available polynomial
slots. Multiple feature vectors can be batched into a single
polynomial in such cases. The batching allows for SIMD
(single instruction multiple data) operations and helps amortize
runtime across multiple feature vectors.

Suppose we wish to encode n vectors into polynomials with
m slots each. In the Column encoding scheme, ⌈ n

⌊m
δ ⌋⌉ many

polynomials are needed if rotation operations are not needed.
However, ciphertext template fusion requires rotation opera-
tions. So, we pack an extra copy of each vector to simulate
rotation’s “wrapping” effect. Therefore, ⌈ n

⌊ m
2δ ⌋

⌉ polynomials
are needed. In the SIMD encoding scheme, a single dimension
of the n vectors can be packed into a single polynomial. In
this scheme, δ⌈ n

m⌉ polynomials are needed to represent n δ-
dimensional vectors.

2) Concatenating Ciphertexts: The concatenation mech-
anism depends on our choice of data encoding scheme.
Column Encoding: In this case, each vector in the multi-
biometric dataset [x,y]T is zero-padded before encryption to
a dimensionality of δ. Now, concatenation can be done in the
encrypted domain by right-rotating each ciphertext in y by
α slots and adding to the corresponding ciphertext in x. (see
Figure 2) Row Encoding: As each query dimension is packed
into a single ciphertext, there is no need to concatenate the
features. Instead, storing the ciphertexts in a single ordered
array is sufficient in this representation.

1 0 0 0

2 3 4 0

=⇒

=⇒

1 0 0 0

0 2 3 4

Add =⇒ 1 2 3 4

Fig. 2: Ciphertext concatenation via rotation and addition for the column
encoding scheme. The second ciphertext (bottom) is right-rotated α slots and
added to the first ciphertext (top).

3) Encrypted Linear Projection: Executing fusion through
linear projection requires a matrix-matrix multiplication. Since
we learn our projection matrix in the unencrypted domain, the
multiplication is a plaintext-ciphertext multiplication, which
is considerably more efficient than a ciphertext-ciphertext
multiplication. Next, we outline two matrix-vector multipli-
cation techniques, one that is better suited for small-scale
datasets and the other for large-scale datasets. However, due
to our ciphertext packing scheme, these methods functionally
become matrix-matrix algorithms and can be treated as such.
Furthermore, we note that the fused representations should be
as compact as possible, i.e., γ should be small to ease the com-
putational burden of any downstream tasks performed directly
on the ciphertexts. Hence, the projection matrix P ∈ Rγ×δ is
rectangular.

1 2 3 4

5 6 7 8

2

1

3

4

×

1 6 3 8

2 7 4 5

×

×

1 2 3 4

2 3 4 1

=

=

1 12 9 32

4 21 16 5

Add =⇒ 5 33 25 37

5 33 25 37

25 37 5 33

Add =⇒ 30 70 30 70

Fig. 3: Hybrid: The efficiency of matrix-vector multiplications can be
improved through a diagonal encoding scheme for the projection matrix
(P ). The query is rotated once and multiplied with each diagonally encoded
component of P . The sum of these results is rotated and added with itself to
obtain the final output.

Hybrid: When the query vectors are encoded using the col-
umn scheme, the projection matrix can be encoded through a
diagonal encoding scheme for efficient matrix-vector products.
This scheme, shown in Figure 3, was introduced by Juvekar
et al. [44] and is specialized for short and wide rectangular
matrices, i.e., γ < δ. These diagonals are multiplied by rotated
versions of the query vector, and the resultant vectors can
be additively combined to yield the desired matrix-vector
multiplication result. This method is best suited for cases
where n is small.
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Fig. 4: SIMD: This method repeats and encodes each element of the projection
matrix as plaintext and multiplies with row-encoded query vectors. The result
is a single ciphertext for each dimension of the result. This method is best
suited for large n.

SIMD: When the query vectors are encoded using the row
scheme, the projection matrix can also be in a repeated
row manner to support scalable matrix-vector products for
large n. The scheme, shown in Figure 4, was adopted by
Engelmsa [8] for scaling search over an encrypted database.
This method takes γδ plaintext-ciphertext multiplications for
a single matrix-vector multiplication but admits greater ci-
phertext packing potential, making it a computationally more
efficient solution when n >> γδ. This method also avoids any
expensive ciphertext rotations. The SIMD scheme, however,
is more memory intensive due to the need for loading many
plaintexts and ciphertexts in memory, as seen in Figure 5b.

4) Practical Solution For Non-Arithmetic Operations:
Recent biometric representations (e.g., DeepPrint [45], Arc-
Face [46]) are typically projected to the surface of a unit ℓ2-
ball2. Formally, û = u/∥u∥2 where ∥u∥22 =

∑d
i=1 u

2
i for u ∈

Rd. This normalization allows for computing cosine distance
simply through a dot-product between vectors. Such a nor-
malization operation, however, cannot be performed directly
on the ciphertexts since FHE schemes do not support non-
arithmetic operations such as square root and division in the
encrypted domain. Although it is possible to approximate each
of these operations individually [47], [48], the computational
efficiency can be significantly improved by directly approxi-
mating the inverse square root operation. Panda [49] showed
it is possible to approximate inverse square root through the
iterative Goldschmidt’s Algorithm [50], [51]. A similar but
more general approach is to adopt a composite polynomial of
the form f(x) = (Pk◦Pk−1◦· · ·◦P1)(x), where each gi(x) is a
low-degree polynomial, to approximate the inverse square root
function in a desired interval of x i.e., 1√

x
≈ f(x)∀x ∈ [a, b]3.

2Other norms like ℓ1 or ℓ∞ can also be supported by HEFT if desired.
3See supplementary material for discussion on choosing the interval.

(a) (b)

Fig. 5: Comparison of theoretical runtimes (a) and memory requirements (b)
for Hybrid and SIMD encoding schemes with δ = 1024 and γ = 32.

The number of composite functions k and the degree of each gi
determine the homomorphic multiplicative depth of the oper-
ation. Higher-degree polynomials offer a better approximation
of this function but also increase the multiplicative depth of
the circuit. Hence, there is a trade-off between the accuracy
of the approximation and computational efficiency. While this
is operationally feasible, a composite polynomial that attains
an adequate level of accuracy for approximating normalization
demands a notable multiplicative depth due to the asymptotic
nature of the inverse square root function, see Figure 6. This
increases the computational complexity, which translates to
more latency during fusion. In the following section, we
present two alternative approaches. The first encompasses a
rough estimate of the inverse square root function, while the
second entirely circumvents this step. In both scenarios, we
employ an approximate metric distance resembling cosine
distance and adapt the loss function to reflect this modification
to the projection matrix.

5) Approximation-Aware Projection: For a thorough anal-
ysis of the projection matrix P and its role, we consider a ge-
ometric view of the action of the projection operation. Let the
Singular Value Decomposition (SVD) of P be P = UΣV T ,
where U and V are the left and right singular basis and Σ
is a diagonal matrix of singular values. When P is optimally
learned using exact normalization during training, it transforms
a unit hyper-sphere into a hyper-ellipsoid. Geometrically, the
column vectors of V corresponding to the non-zero singular
values, which act first on the concatenated vector, projects the
vector onto a lower-dimensional space. Then Σ scales the i-th
axis depending on the singular values σi. Finally, U performs a
rotation of the resulting vector. For the purpose of our analysis,
the action of U can be ignored since it preserves the cosine
distance and does not affect the match score computation.
Therefore, learning the optimal P reduces to i) aligning an
orthonormal basis within the feature space (how data is read
within the concatenated feature space by V ) and ii) finding an
optimal anisotropic scaling (prioritizing the selected directions
in the concatenated feature space) within the projected space
to minimize the loss function and thus implicitly maximize
matching accuracy. When P is learned with exact normaliza-
tion, all directions in the transformed space are equally likely
to maintain their norm after projection. Assuming the learning
was robust, then the basis V has filtered out less important
information (for the sake of verification performance) from the
feature space. Without exact normalization, this filtering leads
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to non-uniform norms in different directions in the projected
space. Additionally, anisotropic scaling by Σ, learned through
exact normalization, amplifies this skewness, which leads to
performance loss. Therefore, in the absence of normalization,
this skewness should be adjusted to favor the cosine distance,
and the optimal V should also consider the skewness along
with importance of information. Errors originating from the
skewness, are less severe when using a polynomial approx-
imation for normalization compared to a normalization free
approach, and a more accurate polynomial approximation
continues to reduce these errors. To effectively mitigate such
errors, one strategy is to integrate awareness of these errors
into the learning process, allowing the projection matrix P
to adapt to approximate normalization (or no normalization)
by optimizing skewness. This adaptation can be achieved by
adjusting the columns of V corresponding to the non-zero
singular values and the anisotropic scaling matrix Σ. Both V
and Σ influence the skewness of the projection. Therefore,
training with an approximation-aware scheme, should change
the direction of the right singular vectors and reassign their
corresponding singular values. For example, the first right
singular vector (corresponding to the largest singular values)
of the projection matrix learned with approximation may
lie in the span of the first few right singular vectors—such
as the first three or five that correspond to largest singular
values—from the projection learned with exact normalization.
If the normalization approximation is less accurate, this span
is expected to include more singular vectors.

6) Computational Complexity: Table I shows an analytical
comparison of the time and space complexity of the end-
to-end pipeline for both the column and SIMD encoding
schemes. We show the required number of atomic operations
for each pipeline stage, including concatenation, projection,
normalization, preprocessing (necessary for matching), and
matching.

E. FHE Aware Learning of Projection Matrix

We now focus on learning the optimal projection matrix
P for template fusion. We posit that P can be learned in the
unencrypted domain using biometric templates that are already
available and thus do not suffer from privacy concerns. Once
learned, it can be employed for fusing the encrypted templates
and hence, user’s data remains private.

The projection matrix should map vectors of the same class
close together for a given distance metric, while those of

different classes should be far apart. To realize this goal, we
adapt the concept of the maximum-margin loss function intro-
duced by Siena et al. [34] for learning P . The loss function
minimizes the distance between samples of the same class and
uses a hinge loss on triplets of samples involving a similar
and dissimilar pair. We build upon this concept and adapt it in
several ways to satisfy the unique combination of constraints
imposed by the multimodal fusion of features from deep neural
networks and those of normalization approximations induced
by FHE computations at inference.

Firstly, we adopt the loss function for multimodal feature-
level fusion. Specifically, unlike Siena et al. [34] who seek to
learn a pair of projection matrices with Euclidean distance-
based metric, we learn a single projection matrix with cosine
similarity4 based metric. Given a concatenated dataset X , the
loss function is defined as:

Lpull = 1− 1

|Q|
∑
i,j∈Q

⟨ξ̂i, ξ̂j⟩

Lpush =
1

|S|
∑

i,j,k∈S

max
(
ν − ⟨ξ̂i, ξ̂j⟩+ ⟨ξ̂i, ξ̂k⟩, 0

)
L = λLpull + Lpush (1)

where ⟨. , .⟩ is the inner product, ξ̂ is a unit vector in the
projected space, ξ̂ = ξ/∥ξ∥2 and ξ is the projection of x, Q
is the set of all pairs belonging to the same class, S denotes
the set of all triplets (xi,xj ,xk) such that (xi,xj) belong
to the same class and (xi,xk) belong to different classes, λ
is a hyperparameter that weighs the “push” and “pull” terms’
influences on the loss, ν is the margin hyperparameter that
determines the desired margin of separation between samples
belonging to the same class and those belonging to different
classes. The margin hyperparameter used in the triplet hinge
loss can appropriately take on any value in the range

[
0, c

c−1

]
for c classes [52].

Secondly, we note that the loss function in (1) is defined
with exact normalization, while at the inference stage HEFT
can only perform approximate normalization as described in
§Section III-D4. For instance, Figure 6 compares the exact
inverse square root function and polynomial approximations of
degrees 2 and 6. Following the discussion in §Section III-D5
we propose the following two training schemes:

Poly Similarity :

⟨ξ̂i, ξ̂j⟩ ≈ ⟨ξi, ξj⟩ × f(⟨ξi, ξi⟩)× f(⟨ξj , ξj⟩) (2)

Tanh Similarity :

⟨ξ̂i, ξ̂j⟩ ≈ tanh(⟨ξi, ξj⟩) (3)

In equation (2), f represents the composite polynomial func-
tion approximating the inverse square root function. Our
choice of tanh(x) in equation (3), maps the range of Euclidean
inner product to cosine similarity and encourages adaptation
in V and Σ to drive the inner product of similar classes to
a larger value compared to the inner product of dissimilar
classes. Therefore, there is no notion of normalization in this
approach.

4Note that HEFT can also optimize for Euclidean distance if desired.
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Encoding Operation Time Complexity Space Complexity
Additions Plain-Cipher Mult. Cipher-Cipher Mult. Mult. Depth Rotations

Column

Concatenation ⌈n
l
⌉ 0 0 0 ⌈n

l
⌉ O(p⌈n

l
⌉)

Projection (γ + log(δ)− log(γ)− 2)⌈n
l
⌉ γ⌈n

l
⌉ 0 1 (γ + log(δ)− log(γ)− 1)⌈n

l
⌉ O(γp+ p⌈n

l
⌉)

Normalization log(γ)⌈n
l
⌉ d⌈n

l
⌉ 2⌈n

l
⌉ 2 + d log(γ)⌈n

l
⌉ O(p⌈n

l
⌉)

Preprocessing ⌈n
l
⌉ − ⌈nγ

m
⌉ ⌈n

l
⌉ 0 1 ⌈n

l
⌉ − ⌈nγ

m
⌉ O(p⌈n

l
⌉+ p⌈nγ

m
⌉)

Matching log(γ)⌈nγ
m

⌉ 0 ⌈nγ
m

⌉ 1 log(γ)⌈nγ
m

⌉ O(p⌈nγ
m

⌉)

Row

Concatenation - - - - - -
Projection γ(δ − 1)⌈ n

m
⌉ δγ⌈ n

m
⌉ 0 1 0 O(δγp+ γp⌈ n

m
⌉)

Normalization (γ − 1)⌈ n
m
⌉ d⌈ n

m
⌉ 2γ⌈ n

m
⌉ 2 + d 0 O(γp⌈ n

m
⌉)

Preprocessing - - - - - -
Matching (log(γ)− 1)⌈ n

m
⌉ 0 γ⌈ n

m
⌉ 1 0 O(γp⌈ n

m
⌉)

TABLE I: Time and memory complexity comparison of the column and row encoding schemes for template fusion and matching. A preprocessing step is used
in the column encoding scheme to reduce the number of ciphertexts in the gallery to enable faster matching. γ is the output dimensionality of the resultant
vector. δ is the dimensionality of the query vector. For m slots available in a single ciphertext, we define l = ⌊m

2δ
⌋. Depending on the encoding scheme, to

process n samples, we must perform each operation ⌈n
l
⌉ or ⌈ n

m
⌉ times (⌈nγ

m
⌉ times to perform matching in the column scheme). p denotes the amount of

space a single ciphertext occupies in memory.

For Poly Similarity case, compared to [53], our approach
involves a two-phase training process. Initially, we pre-train a
model with exact normalization, and next with a fine-tuning
phase, we readjust the projection matrix. Also, prior to the
fine-tuning phase of training, we scale P values to align the
Euclidean norm’s range with the domain of polynomials used
for approximating the inverse square root function.

In the case of Tanh Similarity, the loss surface is more
complex. The Euclidean inner product inherently depends on
both cosine similarity and Euclidean distance, meaning both
metrics can be adjusted during optimization to minimize the
loss. Additionally, the distribution of the Euclidean norm after
projection is crucial; ideally, it should avoid the saturated
regions of the tanh(x) function. To address this optimization
issue, we suggest to employ a similar approach as in Poly
Similarity. We first pre-train the model using exact cosine
similarity, enabling the projection matrix to find a fair initial
basis V . Next, we scale P so the average size of the projected
concatenated features will have a unit length. Next, during the
fine-tuning phase, we modify the loss function with (3) to
adjust the projection matrix P . It is worth mentioning, with
Tanh Similarity, we expect more significant changes to the
projection matrix compared to when a weaker normalization
methods (such as low order polynomial) is being used. As a
result, the pre-training phase for Tanh Similarity can be shorter,
while having an extended fine-tuning phase compared to the
Poly Similarity approach.

IV. EXPERIMENTS

We evaluate the effectiveness of HEFT and analyze the
effect of our design choices in terms of matching accuracy
and computational complexity.
Implementation Details: To learn the projection matrix, we
use the Adam [54] optimizer with an exponential learning
rate decay and with a dropout on the concatenated vector of
unimodal features.

For face⊕voice (⊕ denotes direct sum of two subspaces) in
the exact training, the learning rate is 10−3 with decay of 0.98,
weight decay (Regularization) is 10−1, dropout percentage is
0.35 and number of epochs are 60. For the pre-training phase
of Poly Similarity approach, learning rate is 5 × 10−4 and
number of epochs is 30 while all other hyperparameters are
the same as the exact training. For the fine-tuning, learning rate

is 10−4 and number of epochs is 30. In the Tanh Similarity,
for the pre-training phase, we use a learning rate of 10−4 with
decay of 0.99 and 5 epochs. For the fine-tuning part, learning
rate is set to 10−3 with decay of 0.98, dropout is 0.2 and
number of epochs are 100.

For face⊕finger, in the exact training, the learning rate is
3×10−4 with decay of 0.98, weight decay (Regularization) is
10−1, dropout percentage is 0.1 and number of epochs are 40.
For the pre-training phase of Poly Similarity approach, learning
rate is 3 × 10−4 and number of epochs is 30 while all other
hyperparameters are the same as the exact training. For the
fine-tuning, learning rate is 10−4 and number of epochs is 25.
In the Tanh Similarity, for the pre-training phase, we use a
learning rate of 2 × 10−4 with decay of 0.99 and 2 epochs.
For the fine-tuning part, learning rate is set to 7× 10−4 with
decay of 0.98, dropout is 0.1 and number of epochs are 70.

The encrypted projection is based on the CKKS scheme
implemented in Microsoft’s SEAL [55] library. Depending
on the multiplicative depth of our approximate normalization
method, we either use a polynomial modulus degree (N ) of
16,384 or 32,768 along with a chain of very large prime
numbers totaling 420, 580 or 860 bits as the coefficient
modulus (q). This configuration satisfy 128-bit security [56].

A. Evaluation Datasets

We consider two datasets for evaluation HEFT: 1) a dataset
with a synthetic combination of voice and face biometrics from
different datasets, and 2) a real multi-biometric dataset of face
and fingerprint.

1) Synthetic Voice and Face Multimodal Dataset: Google
Speech Commands: This dataset comprises spoken single-
word commands from many speakers. We use 5380 samples
over 188 classes. We extract 512-dimensional feature vectors
with the Deep Speaker [57] model, which is trained on the
train-clean-360 portion of the LibriSpeech [58] dataset using
a publicly available implementation.
CPLFW [59]: This benchmark face dataset is a harder version
of LFW that incorporates cross-posed faces. We extract 512-
dimensional feature vectors from a pre-trained VGG16 model
trained on VGGFace [60], [61]. We pair two samples of 188
identities from CPLFW with those in the Google Speech
Commands Dataset to create a multimodal dataset. This results
in 10,760 samples over 188 classes as our dataset. Of these,

https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://github.com/philipperemy/deep-speaker
https://github.com/rcmalli/keras-vggface
https://github.com/rcmalli/keras-vggface
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Fig. 7: ROC Curves for the Face⊕Voice (a-c) and Face⊕Finger Print (d-f) dataset. For statistical reliability, we repeat the experiment 8 times for Face⊕Voice
and 10 times for Face⊕Finger with different train/test splits of the dataset and show the uncertainty. Fusion improves significantly matching performance over
the weakest unibiometric modalities (dashed lines). For more clarity, we considered 0.3σ for the confidence intervals.

20% of the classes are used for testing, 20% for validation,
and 60% for training. This yields a test set of 1028 samples.

2) Real Face and Fingerprint Multimodal Dataset: We
evaluate on a real multimodal dataset [62] combining face,
iris, fingerprint, palmprint, and voice samples over the same
subjects. Among these, we consider face and fingerprints
for fusion. For both face and fingerprints, we extract fixed-
length representations from ArcFace [46] (512 dimensions)
and global features from a fingerprint transformer [63] (192
dimensions), respectively. The dataset has 195 face images and
890 total fingerprints (after selecting fingerprints with id 2 and
removing Cross Match sensor). Pairing the face and fingerprint
samples and considering at least 5 samples per class, yields
a dataset with 2472 multimodal samples across 61 subjects.
Furthermore, to demonstrate the utility of biometric template
fusion, we consider a more challenging scenario where the
features are noisy. Accordingly, we add uniform noise from
U(0, 0.1) to 85 percent of training and the test sets in face
features, with the rest being the noiseless features. This will
bring face modalities at around the same level of performance
as the fingerprint modalities.

B. Comparison and Selection of Encoding Scheme

As discussed in §Section III-D1, there are two encoding
schemes, each with different computational properties. To se-
lect the appropriate one for our purposes, we first numerically
compare them. The time and space complexity for the end-
to-end pipeline, i.e., concatenation, projection, approximate
normalization, and match score computation, of each encoding
scheme, are shown in Figure 5a and Figure 5b respectively. To

compute the numerical values from the theoretical expressions
in Table I, we compute the runtime of each atomic operation
in SEAL by averaging over 1,000 operations with the appro-
priate encryption parameters. Similarly, space is calculated by
examining the size of a single ciphertext. As expected, we
observe a cross-over point between the two, with SIMD being
more efficient in terms of latency for n > 1000 and in terms
of memory for n > 10000. Furthermore, for our dataset of
size 1028, while the latency between the two is comparable,
the dense encoding scheme has lower memory requirements.
Therefore, we use the dense encoding scheme for all further
experiments.

C. Evaluation Metrics and Results
In HEFT to compute the score of feature vectors, first,

we apply the appropriate transformation as discussed in
§Section III-E. Next, we use the value of True Match Rate at
1% False Match Rate as the metric to evaluate the template fu-
sion performance. The metric is computed in the unencrypted
domain after decrypting the match scores. To evaluate the
performance of HEFT, we compare it against the following
baselines: i) the unibiometric templates, ii) a simple con-
catenation of the unibiometric features, i.e., X⊕, iii) training
using exact normalization, and iv) the feature averaging fusion
technique introduced in [30]. Figure 7 and Table II compare
the performance of HEFT with the baselines. Accordingly,
we make the following observations : i) the concatenation
and fusion of features (trained with exact normalization)
across both datasets (rows 4-6 for Face⊕Voice and rows
14-15 for Face⊕Finger) improves the matching performance
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Index Data Domain Normalization Dimensionality True Match Rate
Inference Learning @1% False Match Rate

1 CPLFW Unencrypted Exact - 512 0.3142
2 GSC Unencrypted Exact - 512 0.2356
3 Average [30] Encrypted Exact - 512 0.7225
4

Face ⊕ Voice

Unencrypted Exact - 1024 0.7148
5 Unencrypted Exact Exact 32 0.7917
6 Unencrypted Exact Exact 64 0.8177
7 Encrypted Poly ∈ P2 Poly ∈ P2 32 0.7643
8 Encrypted Poly ∈ P2 Poly ∈ P2 64 0.8113
9 Encrypted - Tanh 32 0.7199

10 Encrypted - Tanh 64 0.7831
11 Face ⊕ Voice [53] Encrypted Poly ∈ P2 Poly ∈ P2 32 0.6012

12 Finger Unencrypted Exact - 192 0.7031
13 F̃ace Unencrypted Exact - 512 0.7670
14

F̃ace ⊕ Finger

Unencrypted Exact - 704 0.9424
15 Unencrypted Exact Exact 32 0.9241
16 Unencrypted Exact Exact 64 0.9780
17 Encrypted Poly ∈ P2 Poly ∈ P2 32 0.8743
18 Encrypted Poly ∈ P2 Poly ∈ P2 64 0.9702
19 Encrypted - Tanh 32 0.7834
20 Encrypted - Tanh 64 0.9421

TABLE II: Comparison of HEFT versus baselines for True Match Rate at 1% False Match Rate - □̃ indicates noisy version of original features

Protocol Enc. Norm. Method Concatenation Projection Normalization Preprocessing Fusion Total Score Comp.

Enrollment
Poly (Deg=2) 5.68 244.89 31.40 3.41 285.38 -
Poly (Deg=6) 11.17 470.86 83.32 3.62 568.97 -
Goldschmidt’s 23.22 954.03 380.28 2.31 1,359.84 -

Authentication
Poly (Deg=2) 22.72 979.54 125.59 - 1,127.85 4.87
Poly (Deg=6) 89.05 3,752.24 663.95 - 4,505.24 5.21
Goldschmidt’s 185.00 7,602.64 3,030.47 - 10,818.11 2.75

TABLE III: Time (milliseconds) breakdown for each step in enrollment and authentication for a single sample for projection onto 32-dim. For comparison,
the same operations in plaintext i.e., unencrypted features, take 0.62, 1.02, 11.75, and 4.51 µs, respectively, for concatenation, projection, normalization, and
score computation per sample/match.

compared to uni-biometric features. ii) Feature fusion yields
more robust and efficient matching performance compared
to averaging features. iii) approximate-learning schemes also
show superior performance over uni-biometric features in both
datasets, as well as over feature averaging in the Face⊕
Voice dataset. iv) the gap between approximation schemes and
exact normalization narrows as the fusion dimension increases.
This trend is also observed when comparing Tanh Similar-
ity with Poly Similarity. v) compared to [53], approximate
learning through fine tuning results in more robust training
row(7 vs 11). Additionally, Figure 8 illustrates the impact of
approximate learning compared to a naive approach where
different normalization methods are used during training and
score matching. The ROC curves show that approximation
learning, whether using Tanh Similarity or Poly Similarity,
improves performance. This indicates that a projection learned
by approximation, even without using normalization in score
matching (Tanh Similarity), outperforms a naive approach
with approximate normalization (a second order polynomial
without learning). Similarly, in the case of Poly Similarity,
a weak approximation using a second-degree polynomial is
nearly equivalent to the Goldschmidt method, which is more
accurate for approximating normalization but comes with a
significantly high computational costs.

Computational Complexity: The efficiency of homomorphic
operations critically depends on the chosen encryption param-
eters. We select these parameters based on the multiplicative
depth needed for end-to-end fusion and matching. Table III
shows the latency of each component of HEFT. First, we
observe a trade-off between performance and time complexity,
with the 2nd-degree polynomial being 2× faster than the 6th-

degree polynomial for enrollment. Although Goldschmidt’s
algorithm performs the best, it is 4.8× and 9.6× slower
than HEFT with degree two approximation for enrollment
and authentication, respectively. For the normalization-free
case, i.e tanh(x), the time complexity now corresponds to
the time in the Fusion Total column minus the time in the
Normalization column which leads to improvement of the
latency during the score matching phase.
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Fig. 8: Effectiveness of approximation-aware schemes compared to naive
approach where different normalization is used for training and matching.
Dataset is Face ⊕ Voice and fusion dimension is γ = 32. The confidence
interval shown corresponds to 0.3σ for clarity.

V. ABLATION STUDIES

In this section, we analyze the effect of our design choices
on the accuracy of biometric matching.
Effects of Approximation-Learning: As discussed in
§Section III-D5, it is necessary to re-adjust the right singular
vectors V and their corresponding singular values to correct
the skewness in the projection and prevent this skewness from
affecting the score matching stage. We previously mentioned
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Fig. 9: Similarity matrix of the right singular vectors (V - ordered by singular values in descending manner) for projections learned through exact normalization
and approximation-aware methods (Poly / Tanh Similarity). Each figure shows the full similarity matrix, the first 32× 32 block (top right subplot) and the last
32× 32 block (bottom right subplot). The dataset used is Face ⊕ Voice.

that incorporating approximate normalization reduces these
errors compared to a normalization-free approach. First, this is
confirmed by Figure 7 where Poly Similarity outperforms Tanh
Similarity, particularly in lower-dimensional fusion spaces. It
is known that the first few right singular vectors contain the
most information and are critical for score matching. When
projecting to much lower dimensions, a normalization-free
approach must sacrifice some of this important information to
mitigate skewness. As shown in Figure 7, when fusion dimen-
sion increases, Tanh Similarity demonstrates a more significant
performance gains across both datasets compared to exact
normalization and Poly Similarity. Second, to assess the extent
of modification in selected directions within the concatenated
space, we can analyze the similarity matrix between the right
singular vectors of the projection matrix obtained through ex-
act normalization and approximation-aware methods. Figure 9
presents these similarity matrices for both Poly Similarity and
Tanh Similarity, where the right singular vectors are ordered
by singular values (from larger to smaller ones). A banded
similarity matrix indicates fewer modifications, as it suggests
that a singular vector of a given order (based on its singular
value) in the modified projection matrix lies within the span
of right singular vectors in the original projection matrix that
have the same order (singular values). From the figure, we
observe that both matrices exhibit a banded structure, with
the bandwidth being larger in Tanh Similarity compared to
Poly Similarity. This suggests that Tanh Similarity involves
greater modification of the projection matrix. Additionally, the
bandwidth increases as we move toward lower-order singular
vectors (associated with smaller singular values), since these
directions carry less information for matching scores and
can be more freely adjusted to optimize skewness. Lastly, to
compare the skewness of the projection matrix across different
methods, we analyze the distribution of the Euclidean norms
of the projected feature vectors in the training set. Figure 10
illustrates this distribution, where the projected modalities are
normalized so that the average norm equals 1. We observe
that in Tanh Similarity, the projected vectors tend to have more
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Fig. 10: Distribution of projected (concatenated) features (Left) and Singular
values (Right) for Projection matrices obtained by exact normalization and
approximation-aware schemes (Poly / Tanh Similarity). The projected features
are normalized such that the average projection length is one, while singular
values are normalized with respect to the largest singular value. The dataset
used is Face ⊕ Voice and fusion dimension is γ = 128.

uniform lengths, as no normalization is applied in this method,
and large skewness would cause significant errors during the
matching phase. Figure 10 shows the distribution of singular
values, where we see that in approximation-aware methods,
singular values decay more gradually. This helps optimize
the skewness of the projection and as mentioned above, this
is particularly important for lower singular values, as their
corresponding directions contain less information relevant to
matching performance. All of these observation,are confirmed
in the discussion in §Section III-D5.
Effect of Pre-training: As mentioned in §Section III-E, the
implicit presence of the two metrics in the inner product
will result in a more complex loss surface which can make
the training more difficult. To alleviate this issue, we first
pre-train the network with exact normalization to find a fair
state for V and Σ. This stage can be thought as traversing
the initial stage of the problem with a surrogate loss (exact
normalization) to hopefully start the fine-tune stage at a better
position in the original loss surface Equation (3). Figure 12
shows the sensitivity of the hyperparameters in each scenario
based on AU-ROC value. It reveals that the model becomes
more sensitive to the choice of hyperparameters and only
shows progress for a small subset of hyperparameters without
pre-training.
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Fig. 11: Heatmap of AU-ROC w.r.t. hyperparameters for the exact normalization fusion.
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Fig. 12: Heatmap of AU-ROC w.r.t. hyperparameters for Tanh Similarity in face ⊕ voice dataset.

Effects of hyper-parameters and Dimensionality: Figure 11
shows the influence of hyperparameters in the exact learning
for face ⊕ voice (a-b) and fingerprint ⊕ face fusion (c-d). We
observe that as the fusion dimensionality increases, the sen-
sitivity of the model to hyper-parameter decreases. Regarding
the dimensionality of the fusion space, it is desirable to pick a
smaller fusion space since it reduces the computational cost of
the homomorphic operations. With regard to Figure 7, in face
⊕ voice dataset, we observe that increasing the projection di-
mension beyond γ = 64 does not yield significant performance
gains. However, in the case of fingerprint/face fusion, where
features are noisy, increasing γ to 128 still notably improves
the performance. Considering that Tanh Similarity approach
avoids the normalization step and improves the latency (around
11% based on Table III), choosing a proper fusion dimension
and algorithm is a matter of design choice and optimization.

VI. CONCLUSIONS

In this paper, we proposed HEFT, the first non-interactive
end-to-end homomorphically encrypted multimodal feature-
level fusion and matching system. To enhance the practical
efficiency of fusion, we conducted a detailed analysis of
different data encoding schemes for matrix-matrix and matrix-
vector multiplications. To optimize fusion performance and
the limitation of FHE, namely the inability to perform non-
arithmetic operations, we introduced our FHE-Aware learning
algorithm. In this algorithm, we readjust the projection matrix
to account either for a low-order polynomial approximation
of normalization or for a normalization free approach with
the aid of a non-linear transformation (tanh(x)) to map the
inner product to the cosine similarity. Our experimental results
show that HEFT can overcome the performance losses due
to approximations induced by FHE constraints and improve
performance over the unibiometric features. On the face⊕voice
dataset HEFT improves biometric verification performance by
143.25% and 224.40% for projection on to 32-dim space
and 158.21% and 244.35% for projection on to 64-dim space

over the unibiometric features, while being practically feasible,
taking 1150 ms for fusing a pair of 512-dimensional vectors
and matching against a gallery of 1028 templates. On the
fingerprint⊕face dataset, HEFT improves verification perfor-
mance by 24.35% and 13.99% for projection onto 32-dim and
37.99% and 26.49% for projection onto 64-dim space.
In this work, we employed a linear projection for fusion.
For future directions, one can use nonlinear projection, as
their performance is superior to linear methods. This nonlinear
projection must be described in terms of polynomials to make
it a possible choice for FHE. Moreover, it should be optimized
for efficiency to make it practical. Another direction could be
related to the efficiency of score computation. In our method,
after fusion, a probe should be compared against the whole
gallery of identities. One may employ a clustering approach
followed by an approximate comparison operation in FHE to
reduce the size of comparisons and make it more efficient.
Acknowledgments: This material is based upon work sup-
ported by the Center for Identification Technology Re-
search and the National Science Foundation under Grant No.
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