Vector Spaces
First, Group \& then Field.
Def: A set G of elements with an operation $+: G \times G \rightarrow G$ is called a group if the following properties hold:
(PI) Associativity: $\forall a, b, c \in G:(a+b)+c$ $=a+(b+c)$
(P2) Identify element: $\exists e \in G, \forall g \in G$

$$
e+g=g+e=g
$$

(P3) Inverse element: $\forall a \in G \exists b \in G$:

$$
a+b=b+a=e
$$

The group is called a commutative group (Abelian group) if we have an additional property:
(PL) $\forall a, b \in G: a+b=b+a$

Examples: $\left(\mathbb{R}^{n}, t\right)$ is a group

- $\left(\mathbb{R}^{+}, \cdot\right)$ is a group
- $\left(\mathbb{R}^{-}, \cdot\right)$ is not a group

$$
\cdot S_{n}:=\{\pi:\{1,2, \ldots n\} \rightarrow\{1,2, \cdot n\}\}
$$

π is bijective $\}$

$$
0: S_{n} \times S_{n} \rightarrow S_{n} \text {. }
$$

$$
\pi_{1} \circ \pi_{2}(i)=\pi_{1}\left(\pi_{2}(i)\right)
$$

$\left(S_{n}, 0\right)$ is a group

Def: A set F with two operations $+, \cdot: F \times F \rightarrow F$ is called a field if the following properties hold:
(PI) $(F,+)$ is a commutative group with identity element 0 .
(P2) ($F \backslash\{0\}, \cdot$) is a commutative group with identity element of 1 .
(P3) Distributivity: $\forall a, b, c \in F$:

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

Examples: $(\mathbb{R},+, \cdot)$

$$
-(\mathbb{C},+, \cdot)
$$

- $n \in \mathbb{Z}$, consider $Z_{n}=\{0,1, \ldots, n-1\}$
$a t_{n} b:=(a+b) \bmod n$
$a \cdot n b:=(a \cdot b) \bmod n$
Then $\left(z_{n}, t_{n}, \cdot_{n}\right)$ is a field if 8 only if (if) n is a prime.

Def: Let F be a field with identity elements 0 \& 1. A vector space defined over the field F is a set V with a mapping $+: V_{X V} \rightarrow V$ ("vector addition")
-: FXV $\rightarrow V$ ("scalar multiplication") such that:
(PI) $(V,+)$ is a commutative group
(P2) Multiplicative identity: $\forall v \in V: 1 \cdot v=v$
$\left(P_{3}\right)$ Distributive property: $\forall a, b \in F, u, v \in V$

$$
\begin{aligned}
& a \cdot(u+v)=a \cdot u+a \cdot v \\
& (a+b) \cdot u=a \cdot u+b \cdot u
\end{aligned}
$$

Remark: Elements of V are called vectors, elements of field F are scalars

Examples: - \mathbb{R}^{n} with the standard operation

- Function spaces:
$f(x, \mathbb{R}):=\{f: x \rightarrow \mathbb{R}\}$ the space of all real-valued functions on a set x.
Define: $+: f(x, \mathbb{R}) \times f(x, \mathbb{R}) \rightarrow f(x, \mathbb{R})$

$$
\begin{gathered}
(f+g)(x):=f(x)+g(x) \\
\longrightarrow \text { definition } \\
\cdot \mathbb{R} \times f(\lambda, \mathbb{R}) \rightarrow f(x, \mathbb{R}) . \\
(\lambda \cdot f)(x):=\lambda f(x)
\end{gathered}
$$

then $(f(x, \mathbb{R}),+, \cdot)$ is a real-vector space.

$$
\mathbb{C}(x):=\{f: x \rightarrow \mathbb{R} \mid f \text { is continuous }\}
$$

- $\mathbb{C}^{\gamma}([a, b]):=\left\{f:[a, b] \rightarrow \mathbb{R} \left\lvert\, \begin{array}{l}f \text { is } r \text { times } \\ \text { continuosly }\end{array}\right.\right.$ continuosly differentiabk $\}$

Def: Let v be a vector space, U CV non-empts set. We call U a subspace of V if it is closed under linear combinations.
\rightarrow still in th
same set.

$$
\forall \lambda, \mu \in F, \quad \forall u, v \in U: \lambda u+\mu v \in U
$$

Examples:. $\mathbb{C}(x)$ is a subspace $f(x, \mathbb{R})$

- The set s of symmetric matrices of size $n \times n$ is a subspace of $\mathbb{R}^{n \times n}$
- Consider set $\{u, v\} \rightarrow$ not a subspace. $\lambda u+\mu v \notin\{u, v\}$

$$
\lambda, \mu \in \mathbb{R}
$$

Def: V is a vector space over F, $u_{1}, u_{2} \ldots u_{n} \in V, \lambda_{1}, \lambda_{2} \ldots \lambda_{n} \in F$ then $\sum_{i=1}^{n} \lambda_{i} u_{i}$ is called a linear combination.
The set of all linear combinations of $\left(u, \ldots u_{n}\right)$ is called the span (linear hull) of $\left(u_{1} \ldots u_{n}\right)$. Notation:

$$
\operatorname{span}\left(u_{1}, u_{2} \ldots u_{n}\right):=\left\{\sum_{i=1}^{n} \lambda_{i} u_{i} \mid \lambda_{i} \in F\right\}
$$

The set $U:=\left\{u_{1}, u_{2} \ldots u_{n}\right\}$ is the generator of $\operatorname{span}(u)$.
Def: A set of Vectors $v_{1} \ldots v_{n}$ is called linearly independent if the following holds.

$$
\sum_{i=1}^{n} \lambda_{i} v_{i}=0 \Rightarrow \lambda_{1}=\lambda_{2}=\ldots . \lambda_{n}=0
$$

Examples: . Vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \in \mathbb{R}^{3}$ are linearly independent

- Functions $\sin (x)$ and $\cos (x)$ are lin. ind.
- Any set of $d+1$ vectors in \mathbb{R}^{2} is linearly dependent.

Basis and Dimension
Def: A subset B of a vector space V is called a (Hamel) basis if
$(P 1) \operatorname{span}(B) \longrightarrow$ finite linear combinations
(PI) $\operatorname{span}(B)=V$ even for infinite dimensional
(P2) B is linearly independent spaces.
Examples: . The canonical basis of \mathbb{R}^{3} :

$$
\begin{aligned}
& \text { The canonical basis of } \\
& \left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\binom{0}{0},\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \text { Basis is not } \\
& \text { unique }
\end{aligned}
$$

- Another basis of \mathbb{R}^{3}

$$
\begin{aligned}
& \text { Another basis of } \mathbb{R}^{3} \\
& \left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { or }\left(\begin{array}{c}
1.8 \\
0.8 \\
0.4
\end{array}\right),\left(\begin{array}{c}
-2.2 \\
0.3 \\
0.3
\end{array}\right) \cdot\binom{1.3}{3.5}
\end{aligned}
$$

Proposition: If $u=\left\{u_{1}, \ldots u_{n}\right\}$ spans a vector space V, then the set u can be reduced to a basis of V.
Informal Proof:

- If u is already linearly independent, doe
- If u is dependent: $\exists a \in U$ that is a linear combination of the other vectors in U. We will remove it.
keep removing vectors until remaining vectors are linearly independent.
Formal Proof:
- Why does this procedure terminate?
. Why resulting set is a non-empty set.

Def: A vector space is called finite-dimensiaral if it has at least one finite basis.

Proposition: Let $V=\left\{u_{1}, \ldots u_{n}\right\} \subset V$ be a set of linearly independent vectors, and let V be a finite-dimensional vector space, then U com be extended to a basis of V.
Proof (sketch): Let $\omega_{r}, \omega_{2} \ldots \omega_{m}$ be a basis of V. Consider the $\operatorname{set}\left\{u_{1}, u_{2} \ldots u_{n}, w_{1}, w_{2} \ldots u_{m}\right\}$ Remove vectors "from the end" until the remaining vectors are linearly independent.

- remaining set span V
- remaining set is linearly independent by construction.
- remaining set contains U.

Extend every independent set to a basis For infinte-dimensional spaces need Zorn's Lemma to prove proposition.

Corollary: Let V be a finite-dimensional Vector space, then any two bases of V have the same length

Def: The length of a basis of a finite dimensional rector space is called the dimension of V.
We have seen what a basis is and what a subspace is. The notion which connects the two is sum and direct sum.
Def: Assume that u_{1}, u_{2} are subspaces of v. The sum of the two spaces is defined as,

$$
\begin{aligned}
& \text { defined as, } \\
& \text { for } \\
& \text { novilapping } u_{1}+u_{2}:=\left\{u_{1}+u_{2} \mid u \in U_{1}, u_{2} \in U_{2}\right\} \\
& \text { subspaces }
\end{aligned}
$$

helps
define define $\begin{gathered}\text { notion } \\ \text { element in the sum can be written in }\end{gathered}$ not space
o its exactly one way. Notation: $U_{1} \oplus U_{2}$ complement

Proposition: Suppose V is a finite-dimensional vector space, and $U \subset V$ is a subspace. Then there exists a subspace $w \mathcal{C}^{V}$, such that $u \oplus w=v$.
Proof (sketch): Let the set $\left\{u_{1}, u_{2} \ldots u_{n}\right\}$ be a basis of U. Extend it to a basis of V, say the resulting set is

$$
\begin{aligned}
& \{\underbrace{u_{1}, \ldots u_{n}}_{\rightarrow u}, \underbrace{v_{1}, v_{2} \ldots v_{m}}_{\rightarrow w}\} . \text { Define } \\
& W=\operatorname{span}\left\{v_{r}, v_{2} \ldots v_{m}\right\}
\end{aligned}
$$

