Reimann Integral:

\[f : \mathbb{R} \to \mathbb{R} \]

\[
\int_{a}^{b} f(x) \, dx \approx \sum_{k} \text{vol}(I_k) \cdot f(m_k)
\]

Problems of Reimann integral:

(i) difficult to extend to higher dimensions.

(ii) dependence on continuity.

(iii) limit processes

\[
\lim_{n \to \infty} \int_{a}^{b} f_n(x) \, dx = \int_{a}^{b} \lim_{n \to \infty} f_n(x) \, dx
\]

Lebesgue Integrals.
Let X be set, $P(X)$ power set of X.

Example: $X = \{a, b\}$, $P(X) = \{\emptyset, X, \{a\}, \{b\}\}$

Def: $\mathcal{A} \subseteq P(X)$ is called a σ-algebra:

(a) $\emptyset, X \in \mathcal{A}$

(b) $A \in \mathcal{A} \Rightarrow A^c := X \setminus A \in \mathcal{A}$

(c) $A_i \in \mathcal{A}, i \in \mathbb{N} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

Def: A measurable space consists of a set X and a σ-algebra \mathcal{A} over X. Notation: (X, \mathcal{A}). The sets $A \in \mathcal{A}$ are called \mathcal{A}-measurable sets.

Examples:

1. $\mathcal{A} = \{\emptyset, X\}$ \Rightarrow smallest

2. $\mathcal{A} = P(X)$ \Rightarrow largest
Let \mathcal{A}_i be a σ-algebra on X, $i \in I$ (index set).

Then $\bigcap_{i \in I} \mathcal{A}_i$ is also a σ-algebra on X.

Def: For $\mathcal{M} \subseteq \mathcal{P}(X)$, there is a smallest σ-algebra that contains \mathcal{M}:

$$\sigma(\mathcal{M}) := \bigcap \{A \subseteq M \mid A \text{ is a } \sigma\text{-algebra}\}$$

Example: $X = \{a, b, c, d\}$, $\mathcal{M} = \{\{a\}, \{b\}\}$

$$\sigma(\mathcal{M}) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}, \{a, c, d\}, \{c, d\}\}$$

Def: Let (X, \mathcal{T}) be a topological space. (Let X be a metric space)

(Def. X be a subset of \mathbb{R}^n)

Let $\mathcal{B}(X)$ be the Borel σ-algebra on X.

(σ-algebra generated by the open sets).

$$\mathcal{B}(X) := \sigma(\mathcal{T})$$
Measures

Def: Let \((X, \mathcal{A})\) be a measurable space. Consider a map \(\mu: \mathcal{A} \to [0, \infty] = [0, \infty) \cup \{\infty\}\) is called a measure if it satisfies:

(a) \(\mu(\emptyset) = 0\)

(b) Additivity: \(\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)\) with \(A_i \cap A_j = \emptyset\), if \(i \neq j\) for all \(A_i \in \mathcal{A}\).

Def: A measurable space \((X, \mathcal{A})\) endowed with a measure \(\mu\) is called a measure space \((X, \mathcal{A}, \mu)\).
Examples: \(X, A = P(X) \)

(a) counting measure: \(\mu(A) := \begin{cases} \# A & A \text{ has finitely many elements} \\ \infty, & \text{else} \end{cases} \)

Calculation rules in \([0, \infty] \):

\(x + \infty := \infty \quad \forall x \in [0, \infty] \)

\(x \cdot \infty := \infty \quad \forall x \in (0, \infty] \)

\(0 \cdot \infty := 0 \) (\! in most cases in measure theory!)

(b) Dirac measure for \(p \in X \)

\[\delta_p (A) := \begin{cases} 1, & p \in A \\ 0, & \text{else} \end{cases} \]

(c) We want to define a measure on \(X = \mathbb{R}^n \)

1. \(\mu([0,1]^n) = 1 \)

Lebesgue measure

2. \(\mu(x + A) = \mu(A) \quad \forall x \in \mathbb{R}^n \)

(\(\mathcal{F} \)-algebra \(\neq \) power set)
(d) A more useful class of measures on \mathbb{R}. Let $F: \mathbb{R} \to \mathbb{R}$ be a monotonically increasing, continuous.

Define a measure μ_F on $(\mathbb{R}, \mathcal{A})$ by setting $\mu_F(S) = \inf \left\{ \sum_{j=1}^{\infty} F(b_j) - F(a_j) \mid S \subset \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}$

- Cover S by intervals.
- To each interval we assign "elementary volume" $F(b) - F(a)$.
- Take "best" covering.

\[\triangledown \text{ Need to prove: this is a measure!} \]
A subset $N \in \mathcal{A}$ is called a **null set** if $\mu(N) = 0$. We say that a property holds **almost everywhere** if it holds for all $x \in X$ except for x in a null set N.

(in probability theory, we say “almost surely”).