Higher order derivatives

Consider \(f: \mathbb{R}^n \to \mathbb{R} \), assume it is differentiable, so all partial derivatives \(\frac{\partial f}{\partial x_i} : \mathbb{R}^n \to \mathbb{R} \) exist. If this function is differentiable, we can take its derivative:

\[
\frac{d}{dx_i} \left(\frac{df}{dx_j} \right) = \frac{\partial^2 f}{\partial x_i \partial x_j}
\]

These are called second order partial derivatives. \(\frac{\partial^2 f}{\partial x_i \partial x_j} \neq \frac{\partial^2 f}{\partial x_j \partial x_i} \)

⚠️ in general, we cannot change the order of derivatives.

Example: \(f(x, y) = \frac{x \cdot y^3}{x^2 + y^2} \)

\[
\nabla f(x, y) = \left(\frac{y^3(y^2 - x^2)}{(x^2 + y^2)^2}, \frac{xy^2(3x^2 + y^2)}{(x^2 + y^2)^2} \right)
\]

Have: \(\frac{\partial f}{\partial x}(0, y) = y \quad \forall \ y \), \(\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = 1 \)

\(\frac{\partial f}{\partial y}(x, 0) = 0 \quad \forall \ x \), \(\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = 0 \)
Def: We say that \(f: \mathbb{R}^n \to \mathbb{R} \) is continuously differentiable if all partial derivatives exist and are continuous.

We say that \(f \) is twice continuously differentiable if \(f \) is continuously differentiable and all its partial derivatives \(\frac{\partial f}{\partial x_i} \) are again continuously differentiable.

Notation: \(C^k(\mathbb{R}^n, \mathbb{R}^m) = \{ f: \mathbb{R}^n \to \mathbb{R}^m \mid k \text{ times cont. differentiable} \} \)

\(C^\infty(\mathbb{R}^n, \mathbb{R}^m) = \{ f: \mathbb{R}^n \to \mathbb{R}^m \mid \infty \text{ often cont. diff.} \} \)

Theorem (Schwartz): Assume that \(f \) is twice continuously differentiable. Then we can exchange the order in which we take partial derivatives: \(\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} \)

Analogously: \(k \) times cont. diff. \(\Rightarrow \) can exchange order of first \(k \) partial derivatives.
Caution about derivatives

\(f : \mathbb{R}^n \rightarrow \mathbb{R} \) \quad \text{← function}

\(\nabla f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) \quad \text{← first derivative: } n \text{ partial derivatives}

\(H f : \mathbb{R}^n \rightarrow \mathbb{R}^{n \times n} \) \quad \text{← second derivative: } \begin{align*}
&n^2 \text{ "partial derivatives"} \\
&\frac{\partial f}{\partial x_i; \partial x_j}
\end{align*}

\underline{Def:} \quad \text{Hessian matrix}

\(f : \mathbb{R}^n \rightarrow \mathbb{R} \), then we define the Hessian of \(f \) at point \(x \) by,

\[
(H f)_{ij} (x) := \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \quad i, j = 1, 2, \ldots, n
\]
Minima/Maxima

Def: $f: \mathbb{R}^n \to \mathbb{R}$ differentiable. If $\forall f(x) = 0$ then we call x a **critical point**.

f has a **local minimum** at x_0 if there exists $\varepsilon > 0$, such that $\forall x \in B_\varepsilon(x_0): f(x) \geq f(x_0)$

f has a **strict local minimum** at x_0 if $\exists \varepsilon > 0$ such that $\forall x \in B_\varepsilon(x_0): f(x) > f(x_0)$

f has a **local maximum** (resp, a strict local maximum) $\forall x \in B_\varepsilon(x_0): f(x) \leq f(x_0)$.

If f is diff. and x_0 is a critical point that is neither a local min./local max. we call it a **saddle point**.
f has a global minimum at x_0 if
\[\forall x: f(x) \geq f(x_0) \]

How can we identify which type of point we have?

Intuition in \mathbb{R}:

- **Local Minimum**: $f'(x) = 0$, $f''(x) > 0$

- **Local Maximum**: $f'(x) = 0$, $f''(x) < 0$

- **Saddle Point**: $f'(x) = 0$, $f''(x) = 0$
Theorem: \(f: \mathbb{R}^n \to \mathbb{R}, \ f \in C^2(\mathbb{R}^n) \). Assume that \(x_0 \) is a critical point, i.e. \(\nabla f(x_0) = 0 \). Then:

(i) If \(x_0 \) is a local minimum (maximum), then the Hessian \(Hf(x_0) \) is positive semi definite (negative semi definite).

(ii) If \(Hf(x_0) \) is positive definite (negative definite), then \(x_0 \) is a strict local min (max). If \(Hf(x_0) \) is indefinite then \(x_0 \) is a saddle point.
Example: Linear least squares

\[f: \mathbb{R}^n \rightarrow \mathbb{R} \]

\[\text{pred } \hat{y}(w) = A w \]

(weight vector)

(input data)

(\text{params we want to find})

\[f(w) = \| y - \hat{y}(w) \|_2^2 = \| y - Aw \|_2^2 \]

how good pred. is with param \(w \).

Want to minimize \(f(w) \). Need to look at \(\nabla f: \mathbb{R}^n \rightarrow \mathbb{R}^n \).

Compute gradient:

\[f(\mathbf{w}) = \sum_{j=1}^{n} (y_j - \sum_{k=1}^{n} a_{jk} w_k)^2 \]

\[\frac{df}{d\omega_i} = \sum_{j=1}^{n} (-a_{ji}) \cdot 2 \cdot (y_j - \sum_{k=1}^{n} a_{jk} w_k) \]

\[= -2 \cdot \sum_{j=1}^{n} a_{ij} \cdot (\text{At}(y-Aw))_i \]
\(\nabla f(\omega) = -2A^T(y-A\omega) \)

Intuition: "syntax" close to 1-dim case:

\[
\begin{align*}
 f(\omega) &= (y-a\omega)^2 \\
 f'(\omega) &= -a(y-a\omega) \quad 2 = -2a(y-a\omega)
\end{align*}
\]

Matrix-vector calculus: lookup table ("matrix cookbook") for gradients of many important functions:

\(f: \mathbb{R}^n \rightarrow \mathbb{R} \)

- \(f(x) = a^T x \quad (a \in \mathbb{R}^n) \)
 \[
 = \langle a, x \rangle \\
 \frac{\partial f}{\partial x} = a \in \mathbb{R}^n
 \]

- \(f(x) = x^T A x \Rightarrow \frac{\partial f}{\partial x} = (A + A^T)x \in \mathbb{R}^n \)

\(f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R} \)

- \(f(x) = \begin{pmatrix} a^T & b \end{pmatrix} \Rightarrow \frac{\partial f}{\partial x} = a \cdot b^T \in \mathbb{R}^{n \times m} \)
\[
f(x) = \frac{a^T x^T C x b}{x^m X^m x^m x^m m^x x^1}
\]
\[
\frac{\partial f}{\partial x} = C^T x a b + C x b a^T
\]
\[f(x) = \text{tr}(x) \rightarrow \text{Trace}\]
\[
\frac{\partial f}{\partial x} = I
\]
\[f(x) = \text{tr}(A x) \Rightarrow \frac{\partial f}{\partial x} = A\]
\[f(x) = \text{tr}(x^T A x) \Rightarrow \frac{\partial f}{\partial x} = (A + A^T)x\]
\[f(x) = \det(x) \rightarrow \text{Determinant}\]
\[
\frac{\partial f}{\partial x} = \det(x) \cdot (x^T)^{-1}
\]
\[
\frac{\partial \det}{\partial x_{sr}} = \det(x) \cdot (x^{-1})_{rs}
\]
$f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{n \times m}$

inverse.

$f(A) = A^{-1}, \quad f_{ij} : = (A^*)_{ij}.$

$$\frac{\partial f_{ij}}{\partial a_{uv}} = - (a_{iu})^{-1} (a_{uv})^{-1}$$