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>>> Representation Learning: The Bright Side

* Deep Embeddings:

E(x,θE)

z ∈ R
d

* Features contain a lot of information
* basis for generalizing and transferring to other tasks

* Applications include:
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>>> Representation Learning: The Dark Side
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>>> Representation Learning: The Dark Side

* Features contain a lot of information

* Information may inadvertently be sensitive
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>>> Representation Learning: The Dark Side

* Features contain a lot of information

* Information may inadvertently be sensitive
* compromise privacy of data owner

* result in unfair or biased decision systems
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>>> Representation Learning: The Dark Side

* Features contain a lot of information

* Information may inadvertently be sensitive
* compromise privacy of data owner

* result in unfair or biased decision systems

* Soft attribute from face features
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Liu et al., ICCV 2015

* Reconstruction from face features
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Mai et al., PAMI 2018
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>>> Central Aim of This Paper

Mitigating Information Leakage

Develop representation learning algorithms that can

intentionally and permanently obscure sensitive information

while retaining task dependent information.
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>>> Problem Setting: Adversarial Representation Learning

E(x,θE)

z ∈ R
d

T (x,θT ) qT (t|z)

A(x,θA) qA(s|z)

* Three player zero-sum game between:

* Encoder extracts features z

* Target Predictor for desired task from features z

* Adversary extracts sensitive information from features z

* Minimum Likelihood Adversarial Representation Learning:

min
θE ,θT

max
θA

J1(θE ,θT )
︸ ︷︷ ︸

likelihood of predictor

−α J2(θE ,θA)
︸ ︷︷ ︸

likelihood of adversary

(1)

[~]$ [5/13]



>>> Optimizing Likelihood Can be Sub-Optimal
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Limitations:

* Encoder target distribution leaks information !!

* Practice: simultaneous SGD does not reach equilibrium

* Class Imbalance: likelihood biases solution to majority class
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>>> Maximum Entropy Adversarial Representation Learning

Key Idea

Optimize the encoder to maximize entropy of adversary as

opposed to minimizing its likelihood.
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>>> MaxEnt-ARL Properties

* Theoretical

* Three player non-zero sum game

* At equilibrium, encoder induces uniform distribution in adversary

when s ⊥⊥ t

* Obtain conditions for stability of solution around equillibrium

through linearization.
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>>> MaxEnt-ARL Properties

* Theoretical

* Three player non-zero sum game

* At equilibrium, encoder induces uniform distribution in adversary

when s ⊥⊥ t

* Obtain conditions for stability of solution around equillibrium

through linearization.

* Practical

* Semi-Supervised Mode: encoder does not need sensitive labels

* Less susceptible to class imbalance than ML-ARL
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>>> Three Player Game: Linear Case

x w1 × (·) z

w2 × (·)

w3 × (·)

qD(s|z)

qT (t|z)

* Each entity is linear scalar multiplication

* Global solution is (w1, w2, w3) = (0, 0, 0)

Minimum Likelihood Maximum Entropy
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>>> Numerical Experiments: Fair Classification

* UCI Datatset: Creditworthiness Prediction

* UCI Datatset: Income Prediction

[~]$ [10/13]



>>> Numerical Experiments: Fair Classification

* UCI Datatset: Creditworthiness Prediction

German

x LFR VAE VFAE ML MaxEnt
0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
a
rg

e
t 
A

c
c
u
ra

c
y

Target: Credit Prediction

* UCI Datatset: Income Prediction

Adult

x LFR VAE VFAE ML MaxEnt

0.76

0.78

0.8

0.82

0.84

0.86

0.88

T
a
rg

e
t 
A

c
c
u
ra

c
y

Target: Income Prediction

[~]$ [10/13]



>>> Numerical Experiments: Fair Classification

* UCI Datatset: Creditworthiness Prediction

German

x LFR VAE VFAE ML MaxEnt
0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
a
rg

e
t 
A

c
c
u
ra

c
y

Target: Credit Prediction
German

x LFR VAE VFAE ML MaxEnt
0.6

0.65

0.7

0.75

0.8

0.85

S
e
n
s
it
iv

e
 A

c
c
u
ra

c
y

Adversary: Gender Prediction

* UCI Datatset: Income Prediction

Adult

x LFR VAE VFAE ML MaxEnt

0.76

0.78

0.8

0.82

0.84

0.86

0.88

T
a
rg

e
t 
A

c
c
u
ra

c
y

Target: Income Prediction
Adult

x LFR VAE VFAE ML MaxEnt
0.4

0.5

0.6

0.7

0.8

0.9

S
e
n
s
it
iv

e
 A

c
c
u
ra

c
y

Adversary: Gender Prediction

[~]$ [10/13]



>>> Numerical Experiments: Extended Yale B Faces

* 38 identities and 5 illumination directions

* Target: Identity Label

* Sensitive: Illumination Label
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>>> Numerical Experiments: Extended Yale B Faces

* 38 identities and 5 illumination directions

* Target: Identity Label

* Sensitive: Illumination Label

Method s (lighting) t (identity)

LR 96 78

NN + MMD (NIPS 2014) - 82

VFAE (ICLR 2016) 57 85

ML-ARL (NIPS 2017) 57 89

Maxent-ARL 40 89
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>>> Numerical Experiments: CIFAR-100

* 100 classes categorized into 20 superclasses

* Target: Superclass Label

* Sensitive: Class Label
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* 100 classes categorized into 20 superclasses

* Target: Superclass Label

* Sensitive: Class Label

Trade-Off: Likelihood Trade-Off: Entropy
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>>> Summary

* A striving step towards explicitly controlling information in

learned representations.
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>>> Summary

* A striving step towards explicitly controlling information in

learned representations.

* MaxEnt-ARL: optimize the encoder to maximize entropy of

adversary instead of minimizing likelihood.

* MaxEnt-ARL enjoys theoretical and practical benefits.

Code:

https://github.com/human-analysis/MaxEnt-ARL.git

More Details: Poster # 175
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