Mitigating Information Leakage in Image Representations: A Maximum Entropy Approach Proteek Roy and <u>Vishnu Boddeti</u> Michigan State University CVPR 2019 >>> Representation Learning: The Bright Side * Deep Embeddings: [2/13] >>> Representation Learning: The Bright Side * Deep Embeddings: - * Features contain a lot of information - * basis for generalizing and transferring to other tasks [2/13] #### >>> Representation Learning: The Bright Side * Deep Embeddings: - * Features contain a lot of information - * basis for generalizing and transferring to other tasks - * Applications include: Figure: Face Recognition Figure: Image Retrieval [-]\$ _ >>> Representation Learning: The Dark Side - >>> Representation Learning: The Dark Side * Features contain a lot of information - readules compain a 100 of information - >>> Representation Learning: The Dark Side - $\ensuremath{\boldsymbol{\ast}}$ Features contain a lot of information * Information may inadvertently be sensitive - >>> Representation Learning: The Dark Side - * Features contain a lot of information - * Information may inadvertently be sensitive - * compromise privacy of data owner - * result in unfair or biased decision systems - >>> Representation Learning: The Dark Side - * Features contain a lot of information - * Information may inadvertently be sensitive - * compromise privacy of data owner - * result in unfair or biased decision systems * Soft attribute from face features Liu et al., ICCV 2015 * Reconstruction from face features Mai et al., PAMI 2018 [*]\$ _ >>> Central Aim of This Paper ### Mitigating Information Leakage Develop representation learning algorithms that can intentionally and permanently obscure sensitive information while retaining task dependent information. [4/13] * Three player zero-sum game between: - * Three player zero-sum game between: - * Encoder extracts features z - * Three player zero-sum game between: - * Encoder extracts features z - * Target Predictor for desired task from features z - * Three player zero-sum game between: - * Encoder extracts features z - * Target Predictor for desired task from features z - * Adversary extracts sensitive information from features z - * Three player zero-sum game between: - * Encoder extracts features z - * Target Predictor for desired task from features z - * Adversary extracts sensitive information from features z - * Minimum Likelihood Adversarial Representation Learning: $$\min_{\boldsymbol{\theta}_{E}, \boldsymbol{\theta}_{T}} \max_{\boldsymbol{\theta}_{A}} \underbrace{J_{1}(\boldsymbol{\theta}_{E}, \boldsymbol{\theta}_{T})}_{\text{likelihood of predictor}} -\alpha \underbrace{J_{2}(\boldsymbol{\theta}_{E}, \boldsymbol{\theta}_{A})}_{\text{likelihood of adversary}} \tag{1}$$ [~]\$_ * Adversary * Adversary * Encoder [6/13] * Adversary * Encoder * Equillibrium [6/13] #### Limitations: - * Encoder target distribution leaks information !! - * Practice: simultaneous SGD does not reach equilibrium - * Class Imbalance: likelihood biases solution to majority class [6/13] #### Key Idea Optimize the encoder to maximize entropy of adversary as opposed to minimizing its likelihood. $\,$ [7/13] #### Key Idea Optimize the encoder to maximize entropy of adversary as opposed to minimizing its likelihood. * Adversary [*]\$ _ #### Key Idea Optimize the encoder to maximize entropy of adversary as opposed to minimizing its likelihood. [7/13] #### Key Idea Optimize the encoder to maximize entropy of adversary as opposed to minimizing its likelihood. [7/13] >>> MaxEnt-ARL Properties - * Theoretical - * Three player non-zero sum game - * At equilibrium, encoder induces uniform distribution in adversary when $s \perp\!\!\!\perp t$ - * Obtain conditions for stability of solution around equillibrium through linearization. [8/13] >>> MaxEnt-ARL Properties - * Theoretical - * Three player non-zero sum game - * At equilibrium, encoder induces uniform distribution in adversary when $s \perp\!\!\!\perp t$ - * Obtain conditions for stability of solution around equillibrium through linearization. - * Practical - * Semi-Supervised Mode: encoder does not need sensitive labels - * Less susceptible to class imbalance than ML-ARL [*]\$ _ >>> Three Player Game: Linear Case $$x \longrightarrow w_1 \times (\cdot) \longrightarrow z \longrightarrow w_2 \times (\cdot) \longrightarrow q_D(s|z)$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$ - * Each entity is linear scalar multiplication - * Global solution is $(w_1,w_2,w_3)=(0,0,0)$ >>> Numerical Experiments: Fair Classification st UCI Datatset: Creditworthiness Prediction * UCI Datatset: Income Prediction [10/13] ### >>> Numerical Experiments: Fair Classification * UCI Datatset: Creditworthiness Prediction Target: Credit Prediction * UCI Datatset: Income Prediction Target: Income Prediction #### >>> Numerical Experiments: Fair Classification * UCI Datatset: Creditworthiness Prediction Target: Credit Prediction German 0.85 * UCI Datatset: Income Prediction [10/13] >>> Numerical Experiments: Extended Yale B Faces * 38 identities and 5 illumination directions * Target: Identity Label * Sensitive: Illumination Label [1]\$ _ >>> Numerical Experiments: Extended Yale B Faces * 38 identities and 5 illumination directions * Target: Identity Label * Sensitive: Illumination Label | Method | s (lighting) | t (identity) | |----------------------|--------------|--------------| | LR | 96 | 78 | | NN + MMD (NIPS 2014) | - | 82 | | VFAE (ICLR 2016) | 57 | 85 | | ML-ARL (NIPS 2017) | 57 | 89 | | Maxent-ARL | 40 | 89 | [11/13] * 100 classes categorized into 20 superclasses * Target: Superclass Label >>> Numerical Experiments: CIFAR-100 * Sensitive: Class Label [12/13] >>> Numerical Experiments: CIFAR-100 * 100 classes categorized into 20 superclasses * Target: Superclass Label * Sensitive: Class Label Trade-Off: Likelihood [12/13] >>> Numerical Experiments: CIFAR-100 * 100 classes categorized into 20 superclasses * Target: Superclass Label * Sensitive: Class Label Trade-Off: Likelihood Trade-Off: Entropy [12/13] # >>> Summary * A striving step towards explicitly controlling information in * A striving step towards explicitly controlling information in learned representations. ## >>> Summary * A striving stop towards explicitly controlling information is * A striving step towards explicitly controlling information in learned representations. * MaxEnt-ARL: optimize the encoder to maximize entropy of adversary instead of minimizing likelihood. ## >>> Summary - * A striving step towards explicitly controlling information in learned representations. - * MaxEnt-ARL: optimize the encoder to maximize entropy of adversary instead of minimizing likelihood. - * MaxEnt-ARL enjoys theoretical and practical benefits. ## >>> Summary - * A striving step towards explicitly controlling information in learned representations. - * MaxEnt-ARL: optimize the encoder to maximize entropy of adversary instead of minimizing likelihood. - * MaxEnt-ARL enjoys theoretical and practical benefits. #### Code: https://github.com/human-analysis/MaxEnt-ARL.git ### More Details: Poster # 175