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>>> Representation Learning: The Dark Side

* Features contain a lot of information

* Information may inadvertently be sensitive

* compromise privacy of data owner

* result in unfair or biased decision systems

* Soft attribute from face features
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Figure 8. Visualization of neurons in ANet (a) after pre-training (b) after fine-tuning (Best viewed in color)
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Figure 9. (a) Layer-wise comparison of ANet after pre-training (b) Best
performing neurons analysis of ANet after fine-tuning. Best performing
neurons are different for different attributes. The proposed accuracies are
averaged over attributes which select their own subsets of best performing
neurons.

For example, the neurons in (a.1) and (a.4) correspond
to ‘gender’ and ‘race’, respectively. It reveals that the
high-level hidden neurons of ANet can implicitly learn
to discover semantic concepts, even though they are only
optimized for face recognition using identity information
and attribute labels are not used in pre-training. We also
observe that most of these concepts are intrinsic to face
identity, such as the shape of facial components, gender,
and race.

To better explain this phenomena, we compare the
accuracy of attribute prediction using features at different
layers of ANet right after pre-training. They are FC, C4,
and C3. The forty attributes are roughly separated into
two groups, which are identity-related attributes, such as
gender and race, and identity-non-related attributes, e.g.
attributes of expressions, wearing hat and sunglasses. We
select some representative attributes for each group and plot
the results in Fig.9(a), which shows that the performance of
FC outperforms C4 and C3 in the group of identity-related
attributes, but they are relatively weaker when dealing with
identity-non-related attributes. This is because the top layer
FC learns identity features, which are insensitive to intra-
personal face variations.

Fine-tuning Expands Semantic Concepts Fig.8 shows

that after fine-tuning, ANet can expand these concepts to
more attribute types. Fig.8(b) visualizes the neurons in the
FC layer, which are ranked by their responses in descending
order with respect to several test images. Human can assign
semantic meaning to each of these neurons. We found that
a large number of new concepts can be observed. Remark-
ably, these neurons express diverse high-level meanings
and cooperate to explain the test images. The activations
of all the neurons are visualized in Fig.8(b), and they are
sparse. In some sense, attributes presented in each test
image are explained by a sparse linear combination of these
concepts. For instance, the first image is described as “a
lady with bangs, brown hair, pale skin, narrow eyes and high
cheekbones”, which well matches human perception.

To validate this, we explore how the number of neurons
influences attribute prediction accuracies. Best performing
neurons for each attribute are identified by sorting corre-
sponding SVM weights. Fig.9(b) illusatrates that only 10%
of ANet best performing neurons are needed to achieve
90% of the original performance of a particular attribute3.
In contrast, HOG+PCA does not have the sparse nature
and need more than 95% features Besides, the best single
performing neuron of ANet outperforms that of HOG+PCA
by 25 percent in average prediction accuracy.

3.2. Attribute Prediction

Performance Comparison The attribute prediction per-
formance is reported in Table.1. On CelebA, the prediction
accuracies of FaceTracer [14], PANDA-w [32], PANDA-l
[32], and our LNets+ANet are 81, 79, 85, and 87 percent
respectively, while the corresponding accuracies on LFWA
are 74, 71, 81, and 84percent. Our method outperforms
PANDA-w by nearly 10 percent. Remarkably, even when
PANDA-l is equipped with groundtruth bounding boxes
and landmark positions, our method still achieves 3percent
gain. The strength of our method is illustrated not only
on global attributes, e.g. “Chubby” and “Young”, but also
on fine-grained facial traits, e.g. “Mastache” and “Pointy
Nose”. We also report performance on 19 extended at-
tributes and compare our result with [14] and [2]. The eval-

3Best performing neurons are different for different attributes.
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TABLE 1
Comparison of major algorithms for face image reconstruction from their corresponding templates

Algorithm Template features Evaluation Remarks

MDS [11] PCA, BIC, COTS Type-I attacka: TAR of 72% using BICb and 73% using COTSc at an
FAR of 1.0% on FERET

Linear model with limited
capacity

RBF
regression [9] LQP [12] Type-II attackd: 20% rank-1 identification error rate on FERET;

EER = 29% on LFW;
RBF model may have

limited generative capacity

CNN [13] Final feature of
FaceNet [14]

Reported results were mainly based on visualizations and no
comparable statistical results was reported

White-box template
extractor was assumed

Cole et. al., [15]
Intermediate

feature of
FaceNet [14]e

High-quality images (e.g.,
front-facing, neutral-pose)
are required for training.

This paper Final feature of
FaceNet [14]

Type-I attack: TARf of 95.20% (LFW) and 73.76% (FRGC v2.0) at an
FAR of 0.1%; rank-1 identification rate 95.57% on color FERET
Type-II attack: TAR of 58.05% (LFW) and 38.39% (FRGC v2.0) at

an FAR of 0.1%; rank-1 identification rate 92.84% on color FERET

Requires a large number of
images for network training

a Type-I attack refers to matching the reconstructed image against the face image from which the template was extracted.
b BIC refers to Bayesian intra/inter-person classifier [16].
c COTS refers to commercial off-the-shelf system. A local-feature-based COTS was used in [11].
d Type-II attack refers to matching the reconstructed image against a face image of the same subject that was not used for template creation.
e Output of 1024-D ‘avgpool’ layer of the “NN2” architecture.
f TAR for LFW and FRGC v2.0 cannot be directly compared because their similarity thresholds differ.

0.84 0.78 0.82 0.93

(a) Successful match

0.09 0.10 0.12 0.13

(b) Unsuccessful match

Fig. 2. Example face images reconstructed from their templates using
the proposed method (VGG-NbB-P). The top row shows the original
images (from LFW) and the bottom row shows the corresponding recon-
structions. The numerical value shown between the two images is the
cosine similarity between the original and its reconstructed face image.
The similarity threshold is 0.51 (0.38) at FAR = 0.1% (1.0%).

are still far from practical because of the severe trade-off
between matching accuracy and system security [19], [20].

Face templates are typically compact binary or real-
valued feature representations8 that are extracted from face
images to increase the efficiency and accuracy of similar-
ity computation. Over the past couple of decades, a large
number of approaches have been proposed for face repre-
sentations. These representations can be broadly categorized
into (i) shallow [12], [21], [22], and (ii) deep (convolutional
neural network or CNN) representations [14], [23], [24], ac-
cording to the depth of their representational models9. Deep
representations have shown their superior performances in
face evaluation benchmarks (such as LFW [25], YouTube
Faces [14], [26], and NIST IJB-A [24], [27]). Therefore, it is
imperative to investigate the invertibility of deep templates
to determine their vulnerability to template reconstruction
attacks. However, to the best of our knowledge, no such
work has been reported.

In our study of template reconstruction attacks, we made
no assumptions about subjects used to train the target face
recognition system. Therefore, only public domain face im-
ages were used to train our template reconstruction model.

8. As face templates refer to face representations stored in a face
recognition system, these terms are used interchangeably in this paper.

9. Some researchers [23] refer to shallow representations as those that
are not extracted using deep networks.

The available algorithms for face image reconstruction from
templates [9], [11]10, [13], [15] are summarized in Table 1.
The generalizability of the published template reconstruc-
tion attacks [9], [11] is not known, as all of the training and
testing images used in their evaluations were subsets of the
same face dataset. No statistical study in terms of template
reconstruction attack has been reported in [13], [15].

To determine to what extent face templates derived from
deep networks can be inverted to obtain the original face
images, a reconstruction model with sufficient capacity is
needed to invert the complex mapping used in the deep
template extraction model [28]. De-convolutional neural
network (D-CNN)11 [29], [30], [31] is one of the straight-
forward deep models for reconstructing face images from
deep templates. To design a D-CNN with sufficient model
capacity12, one could increase the number of output chan-
nels (filters) in each de-convolution layer [32]. However, this
often introduces noisy and repeated channels since they are
treated equally during the training.

To address the issues of noisy (repeated) channels and
insufficient channel details, inspired by DenseNet [33] and
MemNet [34], we propose a neighborly de-convolutional net-
work framework (NbNet) and its building block, neighborly
de-convolution blocks (NbBlocks). The NbBlock produces
the same number of channels as a de-convolution layer
by (a) reducing the number of channels in de-convolution
layers to avoid the noisy and repeated channels; and (b) then
creating the reduced channels by learning from their neigh-
boring channels which were previously created in the same
block to increase the details in reconstructed face images. To
train the NbNets, a large number of face images are required.
Instead of following the time-consuming and expensive pro-
cess of collecting a sufficiently large face dataset [35], [36],

10. MDS method in the context of template reconstructible was
initially proposed for reconstructing templates by matching scores
between the target subject and attacking queries. However, it can also
be used for template reconstruction attacks [11].

11. Some researchers refer to D-CNNs as CNNs. However, given that
its purpose is the inverse of a CNN, we distinguish D-CNN and CNN.

12. The ability of a model to fit a wide variety of functions [28].
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Figure 9. (a) Layer-wise comparison of ANet after pre-training (b) Best
performing neurons analysis of ANet after fine-tuning. Best performing
neurons are different for different attributes. The proposed accuracies are
averaged over attributes which select their own subsets of best performing
neurons.

For example, the neurons in (a.1) and (a.4) correspond
to ‘gender’ and ‘race’, respectively. It reveals that the
high-level hidden neurons of ANet can implicitly learn
to discover semantic concepts, even though they are only
optimized for face recognition using identity information
and attribute labels are not used in pre-training. We also
observe that most of these concepts are intrinsic to face
identity, such as the shape of facial components, gender,
and race.

To better explain this phenomena, we compare the
accuracy of attribute prediction using features at different
layers of ANet right after pre-training. They are FC, C4,
and C3. The forty attributes are roughly separated into
two groups, which are identity-related attributes, such as
gender and race, and identity-non-related attributes, e.g.
attributes of expressions, wearing hat and sunglasses. We
select some representative attributes for each group and plot
the results in Fig.9(a), which shows that the performance of
FC outperforms C4 and C3 in the group of identity-related
attributes, but they are relatively weaker when dealing with
identity-non-related attributes. This is because the top layer
FC learns identity features, which are insensitive to intra-
personal face variations.

Fine-tuning Expands Semantic Concepts Fig.8 shows

that after fine-tuning, ANet can expand these concepts to
more attribute types. Fig.8(b) visualizes the neurons in the
FC layer, which are ranked by their responses in descending
order with respect to several test images. Human can assign
semantic meaning to each of these neurons. We found that
a large number of new concepts can be observed. Remark-
ably, these neurons express diverse high-level meanings
and cooperate to explain the test images. The activations
of all the neurons are visualized in Fig.8(b), and they are
sparse. In some sense, attributes presented in each test
image are explained by a sparse linear combination of these
concepts. For instance, the first image is described as “a
lady with bangs, brown hair, pale skin, narrow eyes and high
cheekbones”, which well matches human perception.

To validate this, we explore how the number of neurons
influences attribute prediction accuracies. Best performing
neurons for each attribute are identified by sorting corre-
sponding SVM weights. Fig.9(b) illusatrates that only 10%
of ANet best performing neurons are needed to achieve
90% of the original performance of a particular attribute3.
In contrast, HOG+PCA does not have the sparse nature
and need more than 95% features Besides, the best single
performing neuron of ANet outperforms that of HOG+PCA
by 25 percent in average prediction accuracy.

3.2. Attribute Prediction

Performance Comparison The attribute prediction per-
formance is reported in Table.1. On CelebA, the prediction
accuracies of FaceTracer [14], PANDA-w [32], PANDA-l
[32], and our LNets+ANet are 81, 79, 85, and 87 percent
respectively, while the corresponding accuracies on LFWA
are 74, 71, 81, and 84percent. Our method outperforms
PANDA-w by nearly 10 percent. Remarkably, even when
PANDA-l is equipped with groundtruth bounding boxes
and landmark positions, our method still achieves 3percent
gain. The strength of our method is illustrated not only
on global attributes, e.g. “Chubby” and “Young”, but also
on fine-grained facial traits, e.g. “Mastache” and “Pointy
Nose”. We also report performance on 19 extended at-
tributes and compare our result with [14] and [2]. The eval-
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TABLE 1
Comparison of major algorithms for face image reconstruction from their corresponding templates

Algorithm Template features Evaluation Remarks

MDS [11] PCA, BIC, COTS Type-I attacka: TAR of 72% using BICb and 73% using COTSc at an
FAR of 1.0% on FERET

Linear model with limited
capacity

RBF
regression [9] LQP [12] Type-II attackd: 20% rank-1 identification error rate on FERET;

EER = 29% on LFW;
RBF model may have

limited generative capacity

CNN [13] Final feature of
FaceNet [14]

Reported results were mainly based on visualizations and no
comparable statistical results was reported

White-box template
extractor was assumed

Cole et. al., [15]
Intermediate

feature of
FaceNet [14]e

High-quality images (e.g.,
front-facing, neutral-pose)
are required for training.

This paper Final feature of
FaceNet [14]

Type-I attack: TARf of 95.20% (LFW) and 73.76% (FRGC v2.0) at an
FAR of 0.1%; rank-1 identification rate 95.57% on color FERET
Type-II attack: TAR of 58.05% (LFW) and 38.39% (FRGC v2.0) at

an FAR of 0.1%; rank-1 identification rate 92.84% on color FERET

Requires a large number of
images for network training

a Type-I attack refers to matching the reconstructed image against the face image from which the template was extracted.
b BIC refers to Bayesian intra/inter-person classifier [16].
c COTS refers to commercial off-the-shelf system. A local-feature-based COTS was used in [11].
d Type-II attack refers to matching the reconstructed image against a face image of the same subject that was not used for template creation.
e Output of 1024-D ‘avgpool’ layer of the “NN2” architecture.
f TAR for LFW and FRGC v2.0 cannot be directly compared because their similarity thresholds differ.
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Fig. 2. Example face images reconstructed from their templates using
the proposed method (VGG-NbB-P). The top row shows the original
images (from LFW) and the bottom row shows the corresponding recon-
structions. The numerical value shown between the two images is the
cosine similarity between the original and its reconstructed face image.
The similarity threshold is 0.51 (0.38) at FAR = 0.1% (1.0%).

are still far from practical because of the severe trade-off
between matching accuracy and system security [19], [20].

Face templates are typically compact binary or real-
valued feature representations8 that are extracted from face
images to increase the efficiency and accuracy of similar-
ity computation. Over the past couple of decades, a large
number of approaches have been proposed for face repre-
sentations. These representations can be broadly categorized
into (i) shallow [12], [21], [22], and (ii) deep (convolutional
neural network or CNN) representations [14], [23], [24], ac-
cording to the depth of their representational models9. Deep
representations have shown their superior performances in
face evaluation benchmarks (such as LFW [25], YouTube
Faces [14], [26], and NIST IJB-A [24], [27]). Therefore, it is
imperative to investigate the invertibility of deep templates
to determine their vulnerability to template reconstruction
attacks. However, to the best of our knowledge, no such
work has been reported.

In our study of template reconstruction attacks, we made
no assumptions about subjects used to train the target face
recognition system. Therefore, only public domain face im-
ages were used to train our template reconstruction model.

8. As face templates refer to face representations stored in a face
recognition system, these terms are used interchangeably in this paper.

9. Some researchers [23] refer to shallow representations as those that
are not extracted using deep networks.

The available algorithms for face image reconstruction from
templates [9], [11]10, [13], [15] are summarized in Table 1.
The generalizability of the published template reconstruc-
tion attacks [9], [11] is not known, as all of the training and
testing images used in their evaluations were subsets of the
same face dataset. No statistical study in terms of template
reconstruction attack has been reported in [13], [15].

To determine to what extent face templates derived from
deep networks can be inverted to obtain the original face
images, a reconstruction model with sufficient capacity is
needed to invert the complex mapping used in the deep
template extraction model [28]. De-convolutional neural
network (D-CNN)11 [29], [30], [31] is one of the straight-
forward deep models for reconstructing face images from
deep templates. To design a D-CNN with sufficient model
capacity12, one could increase the number of output chan-
nels (filters) in each de-convolution layer [32]. However, this
often introduces noisy and repeated channels since they are
treated equally during the training.

To address the issues of noisy (repeated) channels and
insufficient channel details, inspired by DenseNet [33] and
MemNet [34], we propose a neighborly de-convolutional net-
work framework (NbNet) and its building block, neighborly
de-convolution blocks (NbBlocks). The NbBlock produces
the same number of channels as a de-convolution layer
by (a) reducing the number of channels in de-convolution
layers to avoid the noisy and repeated channels; and (b) then
creating the reduced channels by learning from their neigh-
boring channels which were previously created in the same
block to increase the details in reconstructed face images. To
train the NbNets, a large number of face images are required.
Instead of following the time-consuming and expensive pro-
cess of collecting a sufficiently large face dataset [35], [36],

10. MDS method in the context of template reconstructible was
initially proposed for reconstructing templates by matching scores
between the target subject and attacking queries. However, it can also
be used for template reconstruction attacks [11].

11. Some researchers refer to D-CNNs as CNNs. However, given that
its purpose is the inverse of a CNN, we distinguish D-CNN and CNN.

12. The ability of a model to fit a wide variety of functions [28].
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Figure 9. (a) Layer-wise comparison of ANet after pre-training (b) Best
performing neurons analysis of ANet after fine-tuning. Best performing
neurons are different for different attributes. The proposed accuracies are
averaged over attributes which select their own subsets of best performing
neurons.

For example, the neurons in (a.1) and (a.4) correspond
to ‘gender’ and ‘race’, respectively. It reveals that the
high-level hidden neurons of ANet can implicitly learn
to discover semantic concepts, even though they are only
optimized for face recognition using identity information
and attribute labels are not used in pre-training. We also
observe that most of these concepts are intrinsic to face
identity, such as the shape of facial components, gender,
and race.

To better explain this phenomena, we compare the
accuracy of attribute prediction using features at different
layers of ANet right after pre-training. They are FC, C4,
and C3. The forty attributes are roughly separated into
two groups, which are identity-related attributes, such as
gender and race, and identity-non-related attributes, e.g.
attributes of expressions, wearing hat and sunglasses. We
select some representative attributes for each group and plot
the results in Fig.9(a), which shows that the performance of
FC outperforms C4 and C3 in the group of identity-related
attributes, but they are relatively weaker when dealing with
identity-non-related attributes. This is because the top layer
FC learns identity features, which are insensitive to intra-
personal face variations.

Fine-tuning Expands Semantic Concepts Fig.8 shows

that after fine-tuning, ANet can expand these concepts to
more attribute types. Fig.8(b) visualizes the neurons in the
FC layer, which are ranked by their responses in descending
order with respect to several test images. Human can assign
semantic meaning to each of these neurons. We found that
a large number of new concepts can be observed. Remark-
ably, these neurons express diverse high-level meanings
and cooperate to explain the test images. The activations
of all the neurons are visualized in Fig.8(b), and they are
sparse. In some sense, attributes presented in each test
image are explained by a sparse linear combination of these
concepts. For instance, the first image is described as “a
lady with bangs, brown hair, pale skin, narrow eyes and high
cheekbones”, which well matches human perception.

To validate this, we explore how the number of neurons
influences attribute prediction accuracies. Best performing
neurons for each attribute are identified by sorting corre-
sponding SVM weights. Fig.9(b) illusatrates that only 10%
of ANet best performing neurons are needed to achieve
90% of the original performance of a particular attribute3.
In contrast, HOG+PCA does not have the sparse nature
and need more than 95% features Besides, the best single
performing neuron of ANet outperforms that of HOG+PCA
by 25 percent in average prediction accuracy.

3.2. Attribute Prediction

Performance Comparison The attribute prediction per-
formance is reported in Table.1. On CelebA, the prediction
accuracies of FaceTracer [14], PANDA-w [32], PANDA-l
[32], and our LNets+ANet are 81, 79, 85, and 87 percent
respectively, while the corresponding accuracies on LFWA
are 74, 71, 81, and 84percent. Our method outperforms
PANDA-w by nearly 10 percent. Remarkably, even when
PANDA-l is equipped with groundtruth bounding boxes
and landmark positions, our method still achieves 3percent
gain. The strength of our method is illustrated not only
on global attributes, e.g. “Chubby” and “Young”, but also
on fine-grained facial traits, e.g. “Mastache” and “Pointy
Nose”. We also report performance on 19 extended at-
tributes and compare our result with [14] and [2]. The eval-

3Best performing neurons are different for different attributes.
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TABLE 1
Comparison of major algorithms for face image reconstruction from their corresponding templates

Algorithm Template features Evaluation Remarks

MDS [11] PCA, BIC, COTS Type-I attacka: TAR of 72% using BICb and 73% using COTSc at an
FAR of 1.0% on FERET

Linear model with limited
capacity

RBF
regression [9] LQP [12] Type-II attackd: 20% rank-1 identification error rate on FERET;

EER = 29% on LFW;
RBF model may have

limited generative capacity

CNN [13] Final feature of
FaceNet [14]

Reported results were mainly based on visualizations and no
comparable statistical results was reported

White-box template
extractor was assumed

Cole et. al., [15]
Intermediate

feature of
FaceNet [14]e

High-quality images (e.g.,
front-facing, neutral-pose)
are required for training.

This paper Final feature of
FaceNet [14]

Type-I attack: TARf of 95.20% (LFW) and 73.76% (FRGC v2.0) at an
FAR of 0.1%; rank-1 identification rate 95.57% on color FERET
Type-II attack: TAR of 58.05% (LFW) and 38.39% (FRGC v2.0) at

an FAR of 0.1%; rank-1 identification rate 92.84% on color FERET

Requires a large number of
images for network training

a Type-I attack refers to matching the reconstructed image against the face image from which the template was extracted.
b BIC refers to Bayesian intra/inter-person classifier [16].
c COTS refers to commercial off-the-shelf system. A local-feature-based COTS was used in [11].
d Type-II attack refers to matching the reconstructed image against a face image of the same subject that was not used for template creation.
e Output of 1024-D ‘avgpool’ layer of the “NN2” architecture.
f TAR for LFW and FRGC v2.0 cannot be directly compared because their similarity thresholds differ.

0.84 0.78 0.82 0.93

(a) Successful match

0.09 0.10 0.12 0.13

(b) Unsuccessful match

Fig. 2. Example face images reconstructed from their templates using
the proposed method (VGG-NbB-P). The top row shows the original
images (from LFW) and the bottom row shows the corresponding recon-
structions. The numerical value shown between the two images is the
cosine similarity between the original and its reconstructed face image.
The similarity threshold is 0.51 (0.38) at FAR = 0.1% (1.0%).

are still far from practical because of the severe trade-off
between matching accuracy and system security [19], [20].

Face templates are typically compact binary or real-
valued feature representations8 that are extracted from face
images to increase the efficiency and accuracy of similar-
ity computation. Over the past couple of decades, a large
number of approaches have been proposed for face repre-
sentations. These representations can be broadly categorized
into (i) shallow [12], [21], [22], and (ii) deep (convolutional
neural network or CNN) representations [14], [23], [24], ac-
cording to the depth of their representational models9. Deep
representations have shown their superior performances in
face evaluation benchmarks (such as LFW [25], YouTube
Faces [14], [26], and NIST IJB-A [24], [27]). Therefore, it is
imperative to investigate the invertibility of deep templates
to determine their vulnerability to template reconstruction
attacks. However, to the best of our knowledge, no such
work has been reported.

In our study of template reconstruction attacks, we made
no assumptions about subjects used to train the target face
recognition system. Therefore, only public domain face im-
ages were used to train our template reconstruction model.

8. As face templates refer to face representations stored in a face
recognition system, these terms are used interchangeably in this paper.

9. Some researchers [23] refer to shallow representations as those that
are not extracted using deep networks.

The available algorithms for face image reconstruction from
templates [9], [11]10, [13], [15] are summarized in Table 1.
The generalizability of the published template reconstruc-
tion attacks [9], [11] is not known, as all of the training and
testing images used in their evaluations were subsets of the
same face dataset. No statistical study in terms of template
reconstruction attack has been reported in [13], [15].

To determine to what extent face templates derived from
deep networks can be inverted to obtain the original face
images, a reconstruction model with sufficient capacity is
needed to invert the complex mapping used in the deep
template extraction model [28]. De-convolutional neural
network (D-CNN)11 [29], [30], [31] is one of the straight-
forward deep models for reconstructing face images from
deep templates. To design a D-CNN with sufficient model
capacity12, one could increase the number of output chan-
nels (filters) in each de-convolution layer [32]. However, this
often introduces noisy and repeated channels since they are
treated equally during the training.

To address the issues of noisy (repeated) channels and
insufficient channel details, inspired by DenseNet [33] and
MemNet [34], we propose a neighborly de-convolutional net-
work framework (NbNet) and its building block, neighborly
de-convolution blocks (NbBlocks). The NbBlock produces
the same number of channels as a de-convolution layer
by (a) reducing the number of channels in de-convolution
layers to avoid the noisy and repeated channels; and (b) then
creating the reduced channels by learning from their neigh-
boring channels which were previously created in the same
block to increase the details in reconstructed face images. To
train the NbNets, a large number of face images are required.
Instead of following the time-consuming and expensive pro-
cess of collecting a sufficiently large face dataset [35], [36],

10. MDS method in the context of template reconstructible was
initially proposed for reconstructing templates by matching scores
between the target subject and attacking queries. However, it can also
be used for template reconstruction attacks [11].

11. Some researchers refer to D-CNNs as CNNs. However, given that
its purpose is the inverse of a CNN, we distinguish D-CNN and CNN.

12. The ability of a model to fit a wide variety of functions [28].
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Figure 9. (a) Layer-wise comparison of ANet after pre-training (b) Best
performing neurons analysis of ANet after fine-tuning. Best performing
neurons are different for different attributes. The proposed accuracies are
averaged over attributes which select their own subsets of best performing
neurons.

For example, the neurons in (a.1) and (a.4) correspond
to ‘gender’ and ‘race’, respectively. It reveals that the
high-level hidden neurons of ANet can implicitly learn
to discover semantic concepts, even though they are only
optimized for face recognition using identity information
and attribute labels are not used in pre-training. We also
observe that most of these concepts are intrinsic to face
identity, such as the shape of facial components, gender,
and race.

To better explain this phenomena, we compare the
accuracy of attribute prediction using features at different
layers of ANet right after pre-training. They are FC, C4,
and C3. The forty attributes are roughly separated into
two groups, which are identity-related attributes, such as
gender and race, and identity-non-related attributes, e.g.
attributes of expressions, wearing hat and sunglasses. We
select some representative attributes for each group and plot
the results in Fig.9(a), which shows that the performance of
FC outperforms C4 and C3 in the group of identity-related
attributes, but they are relatively weaker when dealing with
identity-non-related attributes. This is because the top layer
FC learns identity features, which are insensitive to intra-
personal face variations.

Fine-tuning Expands Semantic Concepts Fig.8 shows

that after fine-tuning, ANet can expand these concepts to
more attribute types. Fig.8(b) visualizes the neurons in the
FC layer, which are ranked by their responses in descending
order with respect to several test images. Human can assign
semantic meaning to each of these neurons. We found that
a large number of new concepts can be observed. Remark-
ably, these neurons express diverse high-level meanings
and cooperate to explain the test images. The activations
of all the neurons are visualized in Fig.8(b), and they are
sparse. In some sense, attributes presented in each test
image are explained by a sparse linear combination of these
concepts. For instance, the first image is described as “a
lady with bangs, brown hair, pale skin, narrow eyes and high
cheekbones”, which well matches human perception.

To validate this, we explore how the number of neurons
influences attribute prediction accuracies. Best performing
neurons for each attribute are identified by sorting corre-
sponding SVM weights. Fig.9(b) illusatrates that only 10%
of ANet best performing neurons are needed to achieve
90% of the original performance of a particular attribute3.
In contrast, HOG+PCA does not have the sparse nature
and need more than 95% features Besides, the best single
performing neuron of ANet outperforms that of HOG+PCA
by 25 percent in average prediction accuracy.

3.2. Attribute Prediction

Performance Comparison The attribute prediction per-
formance is reported in Table.1. On CelebA, the prediction
accuracies of FaceTracer [14], PANDA-w [32], PANDA-l
[32], and our LNets+ANet are 81, 79, 85, and 87 percent
respectively, while the corresponding accuracies on LFWA
are 74, 71, 81, and 84percent. Our method outperforms
PANDA-w by nearly 10 percent. Remarkably, even when
PANDA-l is equipped with groundtruth bounding boxes
and landmark positions, our method still achieves 3percent
gain. The strength of our method is illustrated not only
on global attributes, e.g. “Chubby” and “Young”, but also
on fine-grained facial traits, e.g. “Mastache” and “Pointy
Nose”. We also report performance on 19 extended at-
tributes and compare our result with [14] and [2]. The eval-

3Best performing neurons are different for different attributes.
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TABLE 1
Comparison of major algorithms for face image reconstruction from their corresponding templates

Algorithm Template features Evaluation Remarks

MDS [11] PCA, BIC, COTS Type-I attacka: TAR of 72% using BICb and 73% using COTSc at an
FAR of 1.0% on FERET

Linear model with limited
capacity

RBF
regression [9] LQP [12] Type-II attackd: 20% rank-1 identification error rate on FERET;

EER = 29% on LFW;
RBF model may have

limited generative capacity

CNN [13] Final feature of
FaceNet [14]

Reported results were mainly based on visualizations and no
comparable statistical results was reported

White-box template
extractor was assumed

Cole et. al., [15]
Intermediate

feature of
FaceNet [14]e

High-quality images (e.g.,
front-facing, neutral-pose)
are required for training.

This paper Final feature of
FaceNet [14]

Type-I attack: TARf of 95.20% (LFW) and 73.76% (FRGC v2.0) at an
FAR of 0.1%; rank-1 identification rate 95.57% on color FERET
Type-II attack: TAR of 58.05% (LFW) and 38.39% (FRGC v2.0) at

an FAR of 0.1%; rank-1 identification rate 92.84% on color FERET

Requires a large number of
images for network training

a Type-I attack refers to matching the reconstructed image against the face image from which the template was extracted.
b BIC refers to Bayesian intra/inter-person classifier [16].
c COTS refers to commercial off-the-shelf system. A local-feature-based COTS was used in [11].
d Type-II attack refers to matching the reconstructed image against a face image of the same subject that was not used for template creation.
e Output of 1024-D ‘avgpool’ layer of the “NN2” architecture.
f TAR for LFW and FRGC v2.0 cannot be directly compared because their similarity thresholds differ.
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Fig. 2. Example face images reconstructed from their templates using
the proposed method (VGG-NbB-P). The top row shows the original
images (from LFW) and the bottom row shows the corresponding recon-
structions. The numerical value shown between the two images is the
cosine similarity between the original and its reconstructed face image.
The similarity threshold is 0.51 (0.38) at FAR = 0.1% (1.0%).

are still far from practical because of the severe trade-off
between matching accuracy and system security [19], [20].

Face templates are typically compact binary or real-
valued feature representations8 that are extracted from face
images to increase the efficiency and accuracy of similar-
ity computation. Over the past couple of decades, a large
number of approaches have been proposed for face repre-
sentations. These representations can be broadly categorized
into (i) shallow [12], [21], [22], and (ii) deep (convolutional
neural network or CNN) representations [14], [23], [24], ac-
cording to the depth of their representational models9. Deep
representations have shown their superior performances in
face evaluation benchmarks (such as LFW [25], YouTube
Faces [14], [26], and NIST IJB-A [24], [27]). Therefore, it is
imperative to investigate the invertibility of deep templates
to determine their vulnerability to template reconstruction
attacks. However, to the best of our knowledge, no such
work has been reported.

In our study of template reconstruction attacks, we made
no assumptions about subjects used to train the target face
recognition system. Therefore, only public domain face im-
ages were used to train our template reconstruction model.

8. As face templates refer to face representations stored in a face
recognition system, these terms are used interchangeably in this paper.

9. Some researchers [23] refer to shallow representations as those that
are not extracted using deep networks.

The available algorithms for face image reconstruction from
templates [9], [11]10, [13], [15] are summarized in Table 1.
The generalizability of the published template reconstruc-
tion attacks [9], [11] is not known, as all of the training and
testing images used in their evaluations were subsets of the
same face dataset. No statistical study in terms of template
reconstruction attack has been reported in [13], [15].

To determine to what extent face templates derived from
deep networks can be inverted to obtain the original face
images, a reconstruction model with sufficient capacity is
needed to invert the complex mapping used in the deep
template extraction model [28]. De-convolutional neural
network (D-CNN)11 [29], [30], [31] is one of the straight-
forward deep models for reconstructing face images from
deep templates. To design a D-CNN with sufficient model
capacity12, one could increase the number of output chan-
nels (filters) in each de-convolution layer [32]. However, this
often introduces noisy and repeated channels since they are
treated equally during the training.

To address the issues of noisy (repeated) channels and
insufficient channel details, inspired by DenseNet [33] and
MemNet [34], we propose a neighborly de-convolutional net-
work framework (NbNet) and its building block, neighborly
de-convolution blocks (NbBlocks). The NbBlock produces
the same number of channels as a de-convolution layer
by (a) reducing the number of channels in de-convolution
layers to avoid the noisy and repeated channels; and (b) then
creating the reduced channels by learning from their neigh-
boring channels which were previously created in the same
block to increase the details in reconstructed face images. To
train the NbNets, a large number of face images are required.
Instead of following the time-consuming and expensive pro-
cess of collecting a sufficiently large face dataset [35], [36],

10. MDS method in the context of template reconstructible was
initially proposed for reconstructing templates by matching scores
between the target subject and attacking queries. However, it can also
be used for template reconstruction attacks [11].

11. Some researchers refer to D-CNNs as CNNs. However, given that
its purpose is the inverse of a CNN, we distinguish D-CNN and CNN.

12. The ability of a model to fit a wide variety of functions [28].
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Figure 9. (a) Layer-wise comparison of ANet after pre-training (b) Best
performing neurons analysis of ANet after fine-tuning. Best performing
neurons are different for different attributes. The proposed accuracies are
averaged over attributes which select their own subsets of best performing
neurons.

For example, the neurons in (a.1) and (a.4) correspond
to ‘gender’ and ‘race’, respectively. It reveals that the
high-level hidden neurons of ANet can implicitly learn
to discover semantic concepts, even though they are only
optimized for face recognition using identity information
and attribute labels are not used in pre-training. We also
observe that most of these concepts are intrinsic to face
identity, such as the shape of facial components, gender,
and race.

To better explain this phenomena, we compare the
accuracy of attribute prediction using features at different
layers of ANet right after pre-training. They are FC, C4,
and C3. The forty attributes are roughly separated into
two groups, which are identity-related attributes, such as
gender and race, and identity-non-related attributes, e.g.
attributes of expressions, wearing hat and sunglasses. We
select some representative attributes for each group and plot
the results in Fig.9(a), which shows that the performance of
FC outperforms C4 and C3 in the group of identity-related
attributes, but they are relatively weaker when dealing with
identity-non-related attributes. This is because the top layer
FC learns identity features, which are insensitive to intra-
personal face variations.

Fine-tuning Expands Semantic Concepts Fig.8 shows

that after fine-tuning, ANet can expand these concepts to
more attribute types. Fig.8(b) visualizes the neurons in the
FC layer, which are ranked by their responses in descending
order with respect to several test images. Human can assign
semantic meaning to each of these neurons. We found that
a large number of new concepts can be observed. Remark-
ably, these neurons express diverse high-level meanings
and cooperate to explain the test images. The activations
of all the neurons are visualized in Fig.8(b), and they are
sparse. In some sense, attributes presented in each test
image are explained by a sparse linear combination of these
concepts. For instance, the first image is described as “a
lady with bangs, brown hair, pale skin, narrow eyes and high
cheekbones”, which well matches human perception.

To validate this, we explore how the number of neurons
influences attribute prediction accuracies. Best performing
neurons for each attribute are identified by sorting corre-
sponding SVM weights. Fig.9(b) illusatrates that only 10%
of ANet best performing neurons are needed to achieve
90% of the original performance of a particular attribute3.
In contrast, HOG+PCA does not have the sparse nature
and need more than 95% features Besides, the best single
performing neuron of ANet outperforms that of HOG+PCA
by 25 percent in average prediction accuracy.

3.2. Attribute Prediction

Performance Comparison The attribute prediction per-
formance is reported in Table.1. On CelebA, the prediction
accuracies of FaceTracer [14], PANDA-w [32], PANDA-l
[32], and our LNets+ANet are 81, 79, 85, and 87 percent
respectively, while the corresponding accuracies on LFWA
are 74, 71, 81, and 84percent. Our method outperforms
PANDA-w by nearly 10 percent. Remarkably, even when
PANDA-l is equipped with groundtruth bounding boxes
and landmark positions, our method still achieves 3percent
gain. The strength of our method is illustrated not only
on global attributes, e.g. “Chubby” and “Young”, but also
on fine-grained facial traits, e.g. “Mastache” and “Pointy
Nose”. We also report performance on 19 extended at-
tributes and compare our result with [14] and [2]. The eval-

3Best performing neurons are different for different attributes.
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TABLE 1
Comparison of major algorithms for face image reconstruction from their corresponding templates

Algorithm Template features Evaluation Remarks

MDS [11] PCA, BIC, COTS Type-I attacka: TAR of 72% using BICb and 73% using COTSc at an
FAR of 1.0% on FERET

Linear model with limited
capacity

RBF
regression [9] LQP [12] Type-II attackd: 20% rank-1 identification error rate on FERET;

EER = 29% on LFW;
RBF model may have

limited generative capacity

CNN [13] Final feature of
FaceNet [14]

Reported results were mainly based on visualizations and no
comparable statistical results was reported

White-box template
extractor was assumed

Cole et. al., [15]
Intermediate

feature of
FaceNet [14]e

High-quality images (e.g.,
front-facing, neutral-pose)
are required for training.

This paper Final feature of
FaceNet [14]

Type-I attack: TARf of 95.20% (LFW) and 73.76% (FRGC v2.0) at an
FAR of 0.1%; rank-1 identification rate 95.57% on color FERET
Type-II attack: TAR of 58.05% (LFW) and 38.39% (FRGC v2.0) at

an FAR of 0.1%; rank-1 identification rate 92.84% on color FERET

Requires a large number of
images for network training

a Type-I attack refers to matching the reconstructed image against the face image from which the template was extracted.
b BIC refers to Bayesian intra/inter-person classifier [16].
c COTS refers to commercial off-the-shelf system. A local-feature-based COTS was used in [11].
d Type-II attack refers to matching the reconstructed image against a face image of the same subject that was not used for template creation.
e Output of 1024-D ‘avgpool’ layer of the “NN2” architecture.
f TAR for LFW and FRGC v2.0 cannot be directly compared because their similarity thresholds differ.
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Fig. 2. Example face images reconstructed from their templates using
the proposed method (VGG-NbB-P). The top row shows the original
images (from LFW) and the bottom row shows the corresponding recon-
structions. The numerical value shown between the two images is the
cosine similarity between the original and its reconstructed face image.
The similarity threshold is 0.51 (0.38) at FAR = 0.1% (1.0%).

are still far from practical because of the severe trade-off
between matching accuracy and system security [19], [20].

Face templates are typically compact binary or real-
valued feature representations8 that are extracted from face
images to increase the efficiency and accuracy of similar-
ity computation. Over the past couple of decades, a large
number of approaches have been proposed for face repre-
sentations. These representations can be broadly categorized
into (i) shallow [12], [21], [22], and (ii) deep (convolutional
neural network or CNN) representations [14], [23], [24], ac-
cording to the depth of their representational models9. Deep
representations have shown their superior performances in
face evaluation benchmarks (such as LFW [25], YouTube
Faces [14], [26], and NIST IJB-A [24], [27]). Therefore, it is
imperative to investigate the invertibility of deep templates
to determine their vulnerability to template reconstruction
attacks. However, to the best of our knowledge, no such
work has been reported.

In our study of template reconstruction attacks, we made
no assumptions about subjects used to train the target face
recognition system. Therefore, only public domain face im-
ages were used to train our template reconstruction model.

8. As face templates refer to face representations stored in a face
recognition system, these terms are used interchangeably in this paper.

9. Some researchers [23] refer to shallow representations as those that
are not extracted using deep networks.

The available algorithms for face image reconstruction from
templates [9], [11]10, [13], [15] are summarized in Table 1.
The generalizability of the published template reconstruc-
tion attacks [9], [11] is not known, as all of the training and
testing images used in their evaluations were subsets of the
same face dataset. No statistical study in terms of template
reconstruction attack has been reported in [13], [15].

To determine to what extent face templates derived from
deep networks can be inverted to obtain the original face
images, a reconstruction model with sufficient capacity is
needed to invert the complex mapping used in the deep
template extraction model [28]. De-convolutional neural
network (D-CNN)11 [29], [30], [31] is one of the straight-
forward deep models for reconstructing face images from
deep templates. To design a D-CNN with sufficient model
capacity12, one could increase the number of output chan-
nels (filters) in each de-convolution layer [32]. However, this
often introduces noisy and repeated channels since they are
treated equally during the training.

To address the issues of noisy (repeated) channels and
insufficient channel details, inspired by DenseNet [33] and
MemNet [34], we propose a neighborly de-convolutional net-
work framework (NbNet) and its building block, neighborly
de-convolution blocks (NbBlocks). The NbBlock produces
the same number of channels as a de-convolution layer
by (a) reducing the number of channels in de-convolution
layers to avoid the noisy and repeated channels; and (b) then
creating the reduced channels by learning from their neigh-
boring channels which were previously created in the same
block to increase the details in reconstructed face images. To
train the NbNets, a large number of face images are required.
Instead of following the time-consuming and expensive pro-
cess of collecting a sufficiently large face dataset [35], [36],

10. MDS method in the context of template reconstructible was
initially proposed for reconstructing templates by matching scores
between the target subject and attacking queries. However, it can also
be used for template reconstruction attacks [11].

11. Some researchers refer to D-CNNs as CNNs. However, given that
its purpose is the inverse of a CNN, we distinguish D-CNN and CNN.

12. The ability of a model to fit a wide variety of functions [28].

Mai et al., PAMI 2018
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>>> Central Aim of This Paper

Mitigating Information Leakage

Develop representation learning algorithms that can

intentionally and permanently obscure sensitive information

while retaining task dependent information.
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>>> Problem Setting: Adversarial Representation Learning

E(x,θE)

z ∈ Rd
T (x,θT ) qT (t|z)

A(x,θA) qA(s|z)

* Three player zero-sum game between:

* Encoder extracts features z
* Target Predictor for desired task from features z
* Adversary extracts sensitive information from features z

* Minimum Likelihood Adversarial Representation Learning:

min
θE ,θT

max
θA

J1(θE ,θT )︸ ︷︷ ︸
likelihood of predictor

−α J2(θE ,θA)︸ ︷︷ ︸
likelihood of adversary

(1)
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>>> Optimizing Likelihood Can be Sub-Optimal

* Adversary

P
r
o
b
a
b
i
l
i
t
y

Sensitive Class

1.0

0.0 0.0

* Encoder

P
r
o
b
a
b
i
l
i
t
y

Sensitive Class

0.0

0.5 0.5

* Equillibrium

P
r
o
b
a
b
i
l
i
t
y

Sensitive Class

0.33 0.33 0.33

Limitations:

* Encoder target distribution leaks information !!

* Practice: simultaneous SGD does not reach equilibrium

* Class Imbalance: likelihood biases solution to majority class
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>>> Maximum Entropy Adversarial Representation Learning

Key Idea

Optimize the encoder to maximize entropy of adversary as

opposed to minimizing its likelihood.
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>>> MaxEnt-ARL Properties

* Theoretical

* Three player non-zero sum game

* At equilibrium, encoder induces uniform distribution in adversary

when s ⊥⊥ t

* Obtain conditions for stability of solution around equillibrium

through linearization.

* Practical

* Semi-Supervised Mode: encoder does not need sensitive labels

* Less susceptible to class imbalance than ML-ARL
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>>> Three Player Game: Linear Case

x w1 × (·) z

w2 × (·)

w3 × (·)

qD(s|z)

qT (t|z)

* Each entity is linear scalar multiplication

* Global solution is (w1, w2, w3) = (0, 0, 0)

Minimum Likelihood Maximum Entropy
[~]$ [9/13]
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>>> Numerical Experiments: Fair Classification

* UCI Datatset: Creditworthiness Prediction
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* UCI Datatset: Income Prediction

Adult

x LFR VAE VFAE ML MaxEnt

0.76

0.78

0.8

0.82

0.84

0.86

0.88

T
a
rg

e
t 
A

c
c
u
ra

c
y

Target: Income Prediction
Adult

x LFR VAE VFAE ML MaxEnt
0.4

0.5

0.6

0.7

0.8

0.9

S
e
n
s
it
iv

e
 A

c
c
u
ra

c
y

Adversary: Gender Prediction

[~]$ [10/13]



>>> Numerical Experiments: Fair Classification

* UCI Datatset: Creditworthiness Prediction

German

x LFR VAE VFAE ML MaxEnt
0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
a
rg

e
t 
A

c
c
u
ra

c
y

Target: Credit Prediction

German

x LFR VAE VFAE ML MaxEnt
0.6

0.65

0.7

0.75

0.8

0.85

S
e
n
s
it
iv

e
 A

c
c
u
ra

c
y

Adversary: Gender Prediction

* UCI Datatset: Income Prediction

Adult

x LFR VAE VFAE ML MaxEnt

0.76

0.78

0.8

0.82

0.84

0.86

0.88

T
a
rg

e
t 
A

c
c
u
ra

c
y

Target: Income Prediction

Adult

x LFR VAE VFAE ML MaxEnt
0.4

0.5

0.6

0.7

0.8

0.9

S
e
n
s
it
iv

e
 A

c
c
u
ra

c
y

Adversary: Gender Prediction

[~]$ [10/13]



>>> Numerical Experiments: Fair Classification

* UCI Datatset: Creditworthiness Prediction

German

x LFR VAE VFAE ML MaxEnt
0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
a
rg

e
t 
A

c
c
u
ra

c
y

Target: Credit Prediction
German

x LFR VAE VFAE ML MaxEnt
0.6

0.65

0.7

0.75

0.8

0.85

S
e
n
s
it
iv

e
 A

c
c
u
ra

c
y

Adversary: Gender Prediction

* UCI Datatset: Income Prediction

Adult

x LFR VAE VFAE ML MaxEnt

0.76

0.78

0.8

0.82

0.84

0.86

0.88

T
a
rg

e
t 
A

c
c
u
ra

c
y

Target: Income Prediction
Adult

x LFR VAE VFAE ML MaxEnt
0.4

0.5

0.6

0.7

0.8

0.9

S
e
n
s
it
iv

e
 A

c
c
u
ra

c
y

Adversary: Gender Prediction

[~]$ [10/13]



>>> Numerical Experiments: Extended Yale B Faces

* 38 identities and 5 illumination directions

* Target: Identity Label

* Sensitive: Illumination Label

Method s (lighting) t (identity)

LR 96 78

NN + MMD (NIPS 2014) - 82

VFAE (ICLR 2016) 57 85

ML-ARL (NIPS 2017) 57 89

Maxent-ARL 40 89
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>>> Numerical Experiments: CIFAR-100

* 100 classes categorized into 20 superclasses

* Target: Superclass Label

* Sensitive: Class Label

Trade-Off: Likelihood Trade-Off: Entropy
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>>> Summary

* A striving step towards explicitly controlling information in

learned representations.

* MaxEnt-ARL: optimize the encoder to maximize entropy of

adversary instead of minimizing likelihood.

* MaxEnt-ARL enjoys theoretical and practical benefits.

Code:

https://github.com/human-analysis/MaxEnt-ARL.git

More Details: Poster # 175
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