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>>> Representation Learning: The Bright Side

* Deep Embeddings:

E(x,0g)

* Features contain a lot of information
* basis for generalizing and transferring to other tasks
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>>> Representation Learning: The Dark Side

* Features contain a lot of information

* Information may inadvertently be sensitive
* compromise privacy of data owner
* result in unfair or biased decision systems

* Soft attribute from face features * Reconstruction from face features
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>>> Central Aim of This Paper
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Mitigating Information Leakage

Develop representation learning algorithms that can
wntentionally and permanently obscure sensitive information

while retaining task dependent information.
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>>> Problem Setting: Adversarial Representation Learning

E(x,0g)

z € R?
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— qr(t|z)

* Encoder extracts features =z

* Target Predictor for desired task from features z
* Adversary extracts sensitive information from features z

70

* Three player zero-sum game between:

* Minimum Likelihood Adversarial Representation Learning:

0p.60r 64
likelihood of predictor likelihood of adversary

min max J1(0E,0T) — JQ(OE,OA)
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>>> Optimizing Likelihood Can be Sub-Optimal

* Adversary * Encoder * Equillibrium
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>>> Optimizing Likelihood Can be Sub-Optimal

* Adversary * Encoder * Equillibrium
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Probability
Probability
Probability
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Limitations:
* Encoder target distribution leaks information !!

* Practice: simultaneous SGD does not reach equilibrium
* Class Imbalance: 1likelihood biases solution to majority class
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>>> Maximum Entropy Adversarial Representation Learning

Key Idea

Optimize the encoder to maximize entropy of adversary as

opposed to minimizing its likelihood.
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>>> Maximum Entropy Adversarial Representation Learning

Key Idea

Optimize the encoder to maximize entropy of adversary as

opposed to minimizing its likelihood.

* Adversary * Encoder * Equilibrium
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>>> MaxEnt-ARL Properties

* Theoretical

* Three player non-zero sum game

* At equilibrium, encoder induces uniform distribution in adversary
when s 1L ¢

* Obtain conditions for stability of solution around equillibrium
through linearization.
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>>> MaxEnt-ARL Properties

* Theoretical

* Three player non-zero sum game

* At equilibrium, encoder induces uniform distribution in adversary
when s 1L ¢

* Obtain conditions for stability of solution around equillibrium
through linearization.

* Practical

* Semi-Supervised Mode: encoder does not need sensitive labels

* Less susceptible to class imbalance than ML-ARL
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>>> Three Player Game: Linear Case

I—) WRION—> ¢ (s|2)
r —> EKIAON—> =

L ey — - (t2)
* Each entity is linear scalar multiplication

* Global solution is (wy,ws,ws) = (0,0,0)

Minimum Likelihood Maximum Entropy
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>>> Numerical Experiments: Fair Classification

* UCI Datatset: Creditworthiness Prediction
Target: Credit Prediction Adversary: Gender Prediction
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* UCI Datatset: Income Prediction
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>>> Numerical Experiments: Extended Yale B Faces
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* 38 identities and 5 illumination directions
* Target: Identity Label

* Sensitive: Illumination Label
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>>> Numerical Experiments: Extended Yale B Faces
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* Target: Identity Label

* Sensitive: Illumination Label

Method || s (lighting) | t (identity)
LR 96 78
NN + MMD (NIPS 2014) - 82
VFAE (ICLR 2016) 57 85
ML-ARL (NIPS 2017) 57 89
Maxent-ARL 40 89
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>>> Numerical Experiments: CIFAR-100

* 100 classes categorized into 20 superclasses
* Target: Superclass Label

* Sensitive: Class Label
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Numerical Experiments: CIFAR-100

100 classes categorized into 20 superclasses
Target: Superclass Label
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>>> Summary

* A striving step towards explicitly controlling information in
learned representations.
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>>> Summary

* A striving step towards explicitly controlling information in
learned representations.

* MaxEnt-ARL: optimize the encoder to maximize entropy of
adversary instead of minimizing likelihood.

* MaxEnt-ARL enjoys theoretical and practical benefits.

Code:

https://github.com/human-analysis/MaxEnt-ARL.git

More Details: Poster # 175
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