Mitigating Information Leakage in Image Representations: A Maximum Entropy Approach

Proteek Roy and Vishnu Boddeti

Michigan State University

CVPR 2019

- >>> Representation Learning: The Bright Side
 - * Deep Embeddings:

- >>> Representation Learning: The Bright Side
 - * Deep Embeddings:

* Features contain a lot of information

* basis for generalizing and transferring to other tasks

- >>> Representation Learning: The Bright Side
 - * Deep Embeddings:

- * Features contain a lot of information
 - * basis for generalizing and transferring to other tasks
- * Applications include:

Figure: Image Retrieval

>>> Representation Learning: The Dark Side

>>> Representation Learning: The Dark Side

* Features contain a lot of information

- >>> Representation Learning: The Dark Side
 - * Features contain a lot of information

* Information may inadvertently be sensitive

- >>> Representation Learning: The Dark Side
 - * Features contain a lot of information

- * Information may inadvertently be sensitive
 - * compromise privacy of data owner
 - * result in unfair or biased decision systems

- >>> Representation Learning: The Dark Side
 - * Features contain a lot of information

- * Information may inadvertently be sensitive
 - * compromise privacy of data owner
 - * result in unfair or biased decision systems

* Soft attribute from face features

Liu et al., ICCV 2015

Mai et al., PAMI 2018

Mitigating Information Leakage

Develop representation learning algorithms that can *intentionally* and *permanently* obscure sensitive information while retaining task dependent information.

* Three player zero-sum game between:

* Three player zero-sum game between:

* Encoder extracts features z

* Three player zero-sum game between:

- * Encoder extracts features z
- * Target Predictor for desired task from features z

* Three player zero-sum game between:

- * Encoder extracts features z
- * Target Predictor for desired task from features $m{z}$
- * Adversary extracts sensitive information from features $m{z}$

* Three player zero-sum game between:

- * Encoder extracts features z
- * Target Predictor for desired task from features $m{z}$
- * Adversary extracts sensitive information from features z

* Minimum Likelihood Adversarial Representation Learning:

$$\min_{\boldsymbol{\theta}_E, \boldsymbol{\theta}_T} \max_{\boldsymbol{\theta}_A} \qquad \underbrace{J_1(\boldsymbol{\theta}_E, \boldsymbol{\theta}_T)}_{-\alpha} \qquad -\alpha \qquad \underbrace{J_2(\boldsymbol{\theta}_E, \boldsymbol{\theta}_A)}_{-\alpha} \qquad (1)$$

likelihood of predictor

likelihood of adversary

* Adversary

Adversary

Limitations:

- * Encoder target distribution leaks information !!
- * Practice: simultaneous SGD does not reach equilibrium
- * Class Imbalance: likelihood biases solution to majority class

Key Idea

Key Idea

>>> Maximum Entropy Adversarial Representation Learning

Key Idea

>>> Maximum Entropy Adversarial Representation Learning

Key Idea

>>> MaxEnt-ARL Properties

- * Theoretical
 - * Three player non-zero sum game
 - * At equilibrium, encoder induces uniform distribution in adversary when $s\perp\!\!\!\perp t$
 - * Obtain conditions for stability of solution around equillibrium through linearization.

>>> MaxEnt-ARL Properties

- * Theoretical
 - * Three player non-zero sum game
 - * At equilibrium, encoder induces uniform distribution in adversary when $s\perp\!\!\!\perp t$
 - * Obtain conditions for stability of solution around equillibrium through linearization.

- * Practical
 - * Semi-Supervised Mode: encoder does not need sensitive labels
 - * Less susceptible to class imbalance than ML-ARL

>>> Three Player Game: Linear Case

$$x \longrightarrow \underbrace{w_1 \times (\cdot)}_{w_1 \times (\cdot)} \longrightarrow \underbrace{z}_{w_3 \times (\cdot)} \underbrace{w_3 \times (\cdot)}_{w_3 \times (\cdot)} \longrightarrow q_T(t|z)$$

- * Each entity is linear scalar multiplication
- * Global solution is $(w_1,w_2,w_3)=(0,0,0)$

- >>> Numerical Experiments: Fair Classification
 - * UCI Datatset: Creditworthiness Prediction

* UCI Datatset: Income Prediction

>>> Numerical Experiments: Fair Classification

* UCI Datatset: Creditworthiness Prediction Target: Credit Prediction

* UCI Datatset: Income Prediction

>>> Numerical Experiments: Fair Classification

* UCI Datatset: Creditworthiness Prediction Target: Credit Prediction Adversary:

* UCI Datatset: Income Prediction

>>> Numerical Experiments: Extended Yale B Faces

- * 38 identities and 5 illumination directions
- * Target: Identity Label
- * Sensitive: Illumination Label

>>> Numerical Experiments: Extended Yale B Faces

- * 38 identities and 5 illumination directions
- * Target: Identity Label
- * Sensitive: Illumination Label

Method	s (lighting)	t (identity)
LR	96	78
NN + MMD (NIPS 2014)	-	82
VFAE (ICLR 2016)	57	85
ML-ARL (NIPS 2017)	57	89
Maxent-ARL	40	89

>>> Numerical Experiments: CIFAR-100

- * 100 classes categorized into 20 superclasses
- * Target: Superclass Label
- * Sensitive: Class Label

- >>> Numerical Experiments: CIFAR-100
 - * 100 classes categorized into 20 superclasses
 - * Target: Superclass Label
 - * Sensitive: Class Label

Trade-Off: Likelihood

- >>> Numerical Experiments: CIFAR-100
 - * 100 classes categorized into 20 superclasses
 - * Target: Superclass Label
 - * Sensitive: Class Label

Trade-Off: Likelihood

Trade-Off: Entropy

* A striving step towards explicitly controlling information in learned representations.

- * A striving step towards explicitly controlling information in learned representations.
- * MaxEnt-ARL: optimize the encoder to maximize entropy of adversary instead of minimizing likelihood.

- * A striving step towards explicitly controlling information in learned representations.
- * MaxEnt-ARL: optimize the encoder to maximize entropy of adversary instead of minimizing likelihood.
- * MaxEnt-ARL enjoys theoretical and practical benefits.

- * A striving step towards explicitly controlling information in learned representations.
- * MaxEnt-ARL: optimize the encoder to maximize entropy of adversary instead of minimizing likelihood.
- * MaxEnt-ARL enjoys theoretical and practical benefits.

Code:

https://github.com/human-analysis/MaxEnt-ARL.git

More Details: Poster # 175