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Occlusions are a nuisance for monocular 3D face reconstruction

Target Image FLAME, SIGGRAPH 2017 DECA, TOG 2021

CFR-GAN, WACV 2022 Occ3DMM, IJCV 2018 Extreme3D, CVPR 2018
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Problem with occlusions in 3D reconstruction

Target Image FLAME

SIGGRAPH 2017

DECA

TOG 2021

CFR-GAN

WACV 2022

Occ3DMM

IJCV 2018

Extreme3D

CVPR 2018

Output 1 Output 2 Output 3 Output 4 Output 5

Which one of these is correct?
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Background - How are face 3D models represented?

Source: Egger, et al. "3D Morphable Face Models — Past, Present, and Future." TOG, 2020.
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Existing approaches

Fitting based Learning based

Φ = (β, θ, ψ)

Source: Egger, et al. "3D Morphable Face Models — Past, Present, and Future." TOG, 2020.
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Problem with existing approaches

• Global model to fit to the entire head/face

T (β, θ, ψ) = T̄ +BS(β;S) +BP (θ;P) +BE(ψ; E)

• Singular solution rather than a plurality of solutions
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Our proposed solution

Global +
local model

Stage 1

Mesh-
VAE based
Completion

Stage 2

Determinantal
Point

Processes
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Global + local model

• Fit FLAME on the the D3DFACS and CoMA datasets

• Retain the contributions from the top 10 shape and
expression bases

S̃coarse = T̄ +
NS∑
n=1

βnSn +
NE∑
n=1

ψnEn

• Compute local PCA models using the residual errors
PCA(SgtR − S̃coarseR )→ (SR, ER)
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Mesh-VAE
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VAE is not sufficient for diversity

Data

Latent
Space

VAE DPP

• Determinantal Point Processes:
Li,j = qiSi,jqj ,

qi

qj

qi

qj
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Our formulation of the DPP kernel

z

. . .

• Similarity
Si,j = exp

(
− k

mediani,j(disti,j)
disti,j

)

• Quality
qi = exp(−max(0, zTi zi − 3

√
d))

• Expected cardinality as DPP loss
Ldpp = −tr

(
I− (L + I)−1

)
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Diverse3DFace - the overview
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Qualitative results - Face mask

Li et al.,
2017

Feng et
al., 2021

Ju et
al., 2022

Egger et
al., 2018

Trán et
al., 2018

Diverse 3D Reconstructions by Our Approach (Diverse3DFace)
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Qualitative results - Eyeglasses

Li et al.,
2017

Feng et
al., 2021

Ju et
al., 2022

Egger et
al., 2018

Trán et
al., 2018
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Qualitative results - Random occlusion

Li et al.,
2017

Feng et
al., 2021

Ju et
al., 2022

Egger et
al., 2018

Trán et
al., 2018
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Quantitative evaluation metrics

• Closest Sample Error (CSE): Mean-vertex error between the ground-truth and
the closes reconstructed shape (↓)

• Average Self Distance (ASD): Mean-vertex error between a sample and its
closest neighbor, averaged across all the samples
• Average Self Distance-Visible (ASD-V) (↓)
• Average Self Distance-Occluded (ASD-O) (↑)
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Quantitative evaluation of Diverse3DFace

Baselines:
1. FLAME+DPP - Step 1 (with FLAME) + Step 3
2. Global+Local+DPP - Step 1 + Step 3
3. Global+Local+VAE - Step 1 + Step 2
4. FLAME+VAE+DPP - Step 1 (with FLAME) + Step 2 + Step 3
5. Diverse3DFace - Step 1 + Step 2 + Step 3
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Qualitative evaluation on real occlusions

Target
Image

Fitting by Global-
local model

3D Reconstructions by Diverse3DFace
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Conclusions

• Robustness and diversity as the desired objectives

• Proposed Diverse3DFace to achieve the aforementioned objectives

• Proposed a three step solution including a global+local shape model, Mesh-VAE
based shape completion and DPP based diversification

• Quantitative and qualitative experiments comparisons against several baselines
show the efficacy of the proposed approach

• Limitations:
• Dependence on the initial landmark or face-mask estimates
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