

Lan Wang and Vishnu Boddeti Michigan State University

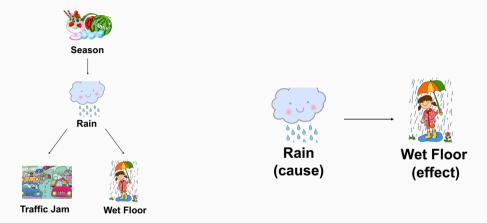
XAI4CV: Explainable Artificial Intelligence for Computer Vision

What is a causal relationship?

What is a causal relationship?

 Causal models capture the relations between random variables, which can be represented as graphs.

What is a causal relationship?



 Causal models capture the relations between random variables, which can be represented as graphs.

• Causal direction between two variables.

How to Infer Causal Relations?

Example: Inferring the effect of treatment on some outcome.¹

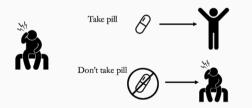


Figure 1: Causal effect

¹https://www.bradyneal.com/causal-inference-course

Causal Discovery: Intervention

Example: Inferring the effect of treatment on some outcome.¹

Figure 2: No causal effect

Figure 1: Causal effect

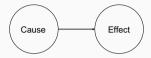
¹https://www.bradyneal.com/causal-inference-course

• In applications like computer vision: A large amount of data has already been collected.

• In applications like computer vision: A large amount of data has already been collected.

• It is difficult and even impossible to conduct control experiments (intervention) in most case.

Causal Discovery from Observational Data



Learning-based causal discovery

Exploit the manifestations of *causal footprint* present in real-world observational data.^a

^aPeters, Jonas, et al. "Causal discovery with continuous additive noise models." (2014).

• Relationships in causal direction are "simpler" than those in the anti-causal direction.

• Complexity metrics: MSE², Renyi Entropy³, Kolmogorov complexity⁴.

 2 Blöbaum, Patrick, et al. "Cause-effect inference by comparing regression errors." AISTATS 2018.

³Kocaoglu, Murat, et al. "Entropic causal inference." AAAI 2017.

⁴Marx, Alexander, and Jilles Vreeken. "Telling cause from effect using MDL-based local and global regression." ICDM 2017

Dataset \rightarrow Model \rightarrow Causal Relation

Supervised methods

Exploit any and all possible causal signals in the observational data through learning.

⁵Lopez-Paz, David, et al. "Discovering causal signals in images." CVPR 2017.

⁶Goudet, Olivier, et al. "Learning functional causal models with generative neural networks." arXiv 2017

⁷Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." arXiv 2017.

Dataset \rightarrow Model \rightarrow Causal Relation

Supervised methods

Exploit any and all possible causal signals in the observational data through learning.

• NCC⁵, GNN⁶, CE-VAE ⁷

⁵Lopez-Paz, David, et al. "Discovering causal signals in images." CVPR 2017.

⁶Goudet, Olivier, et al. "Learning functional causal models with generative neural networks." arXiv 2017

⁷Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." arXiv 2017.

Unsupervised methods

• Applied directly to the

observational data which are

agnostic to the data domain.

- Exploit only one type of causal footprint.
- Difficult to decide no causal relation case.

Unsupervised methods

• Applied directly to the

observational data which are

agnostic to the data domain.

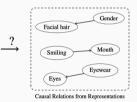
- Exploit only one type of causal footprint.
- Difficult to decide no causal relation case.

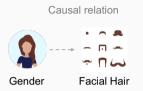
Supervised methods

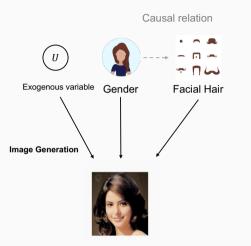
- Can infer no causal relation case.
- Need groundtruth causal labels to train the causal classifier

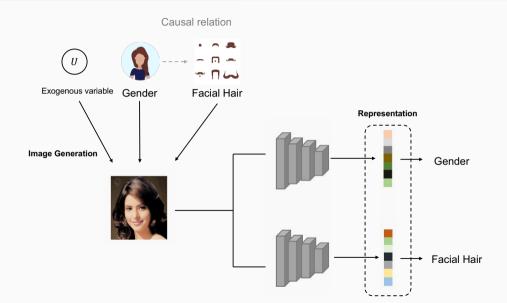
Attribute Labels

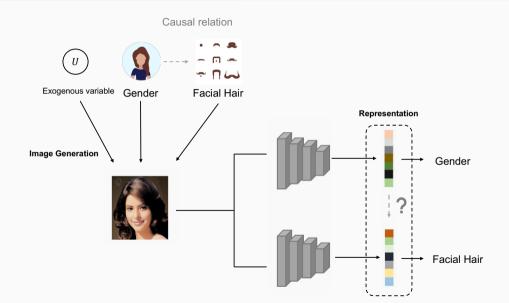
Attribute-Specific Representations



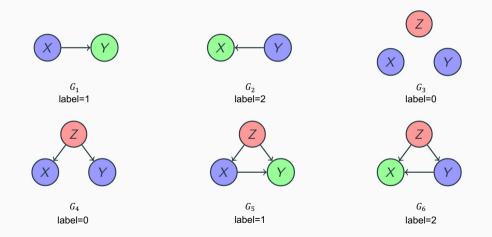






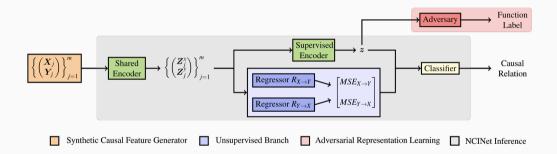


Synthetic Causal Feature Generators: six causal scenarios⁸



⁸Kalainathan, Diviyan, et al. "Discriminant Learning Machines." Cause Effect Pairs in Machine Learning. Springer, Cham, 2019. 155-189.

Neural Causal Inference Net (NCINet)



- *L_C*: Cross-entropy loss
- L_R : Regression loss

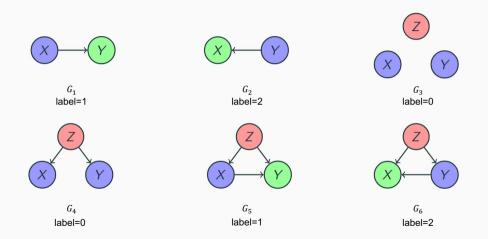
 $Loss = L_{C} + L_{R} + \lambda L_{A}$

• LA: Adversarial loss

Experimental Design

In Real World Scenario:

- Problem:
 - Ground truth causal relations are not known.
- Our Solution:
 - Generate controlled data with known causal relations.



Generate labels of 6 graphs using Gibbs sampling (3 classes for both X Y and Z)

Step 2: Generate images: 3D shape

- Two factors are decided by generated X and Y: floor hue, wall hue.
- The other factors are exogenous variables: object hue, scale, shape, and orientation.
- Add random noise: Gaussian, Shot, or Impulse.

Step 2: Sample images: CASIA-WebFace

- Annotations: color of hair, eyes, eye wear, facial hair, forehead, mouth, smiling, etc.
- Sample images with attributes consistent with generated labels.

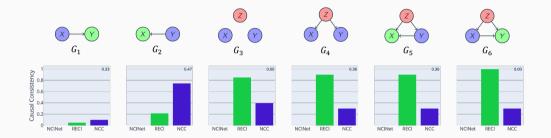
• Given $(x_j, y_j)_{i=1}^m$, split it into multiple non-overlapping subsets.

• Measure how many subsets are consistent with the causal relation between the labels.

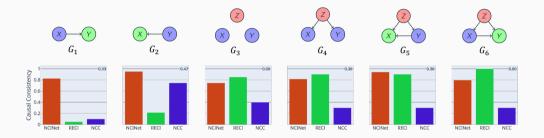
Causal consistency =
$$\frac{\#$$
consistent subsets}{\#subsets

• Prevent outliers

Causal Inference with known relations between labels: 3D shape



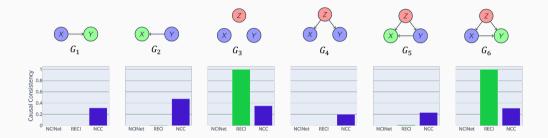
Causal Inference with known relations between labels: 3D shape



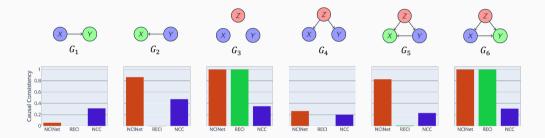
Takeaway

In controlled scenarios, learned attribute-specific representations indeed satisfy the same causal relations as the attributes.

Causal Inference with known relations between labels: CASIA-Webface



Causal Inference with known relations between labels: CASIA-Webface

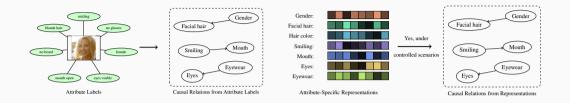


Takeaway

In more complex scenarios, the causal consistency decreases.

- Generalization Ability
- Question: What is the relation between the causal consistency and training epochs?
- Question: What is the effect of overfitting on causal consistency of representations?
- Question: How does dimensionality of representation affect causal consistency?
- Question: How does network architecture affect causal consistency?

Conclusion



- Learned attribute-specific representations indeed satisfy the same causal relations between the corresponding attribute labels under controlled scenarios.
- Causal relations are positively correlated with predictive ability of representations.
- More investigation is needed for complex scenarios and data with weak causal relations.

https://github.com/human-analysis/causal-relations-between-representations