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Qutline

m Example of correlation pattern recognition
m Matched filters
m Composite correlation filters
m Correlation filter applications in biometrics
o Face recognition
0 Eye detection
a Iris recognition
a Ocular recognition
o Cancellable biometric filters
O Biometric encryption
m Summary
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Correlation Pattern Recognition

c(rx,ry):”r(x,y)s(x—rx,y—ry)dxdy

= Determine the cross-correlation between a carefully designed template
r(x,y) and test image s(x,y) for all possible shifts.

= When the test image is authentic, correlation output exhibits a peak.
= |f the test image is of an impostor, the correlation output will be low.

= Simple matched filters won’t work well in practice, due to rotations, scale
changes and other differences between test and reference images.

= Advanced distortion-tolerant correlation filters developed previously for
automatic target recognition (ATR) applications, now being adapted for
biometric recognition.

B.V.K. Vijaya Kumar, A. Mahalanobis and R. Juday, Correlation Pattern Recognition, Cambridge University
Press, UK, November 2005.
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Shift-Invariance

m Desired pattern can be anywhere in the input scene.

m Simple matched filters unacceptably sensitive to rotations,
scale changes, etc.
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O Kumar, Mahalanobis and Takessian, IEEE Trans. Image Proc., 2000.

O Optimal tradeoff circular harmonic function (OTCHF) filters

O OTCHF designed to yield low peaks for rotations outside -45 to +45 degrees

B.V.K. Vijaya Kumar, A. Mahalanobis and A. Takessian, “Optimal tradeoff
) circular harmonic function (OTCHF) correlation filter methods providing
({) Electrical & Computer controlled in-plane rotation response,” IEEE Trans. Image Processing, vol. 9, 7
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Example of Correlation Pattern
Recognition
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Correlation Filters
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Example Impostor Correlation Output
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Peak to Sidelobe Ratio (PSR)

m PSR invariant to constant illumination changes

1. Locate peak

2. Mask a small
pixel region

Peak — mean
(o)

PSR =

3. Compute the mean and ¢ in a
bigger region centered at the peak

m Match declared when PSR is large, i.e., peak must not only
be large, but sidelobes must be small.
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CMU PIE Database
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Trainon 3, 7, 16
Test on 10
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Marios Savvides, “Reduced-Complexity Face Recognition using Advanced
Correlation Filters and Fourier subspace Methods for Biometric Applications,”

Electrical & Computer ) - P
«) ENGINEERING Ph.D. Thesis, Carnegie Mellon University, 2004

CarnegieMellon

- Same Filter
- Cropped Face
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Same Filter

Cropped Face (one eye
blocked)

PSR =30.60
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Off-center test image

Shift-invariance
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Features of Correlation Filters

Q Shift-invariant; no need for centering the test image
O Graceful degradation

U Can handle multiple appearances of the reference
Image in the test image

L Closed-form solutions based on well-defined
metrics

B.V.K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt., Vol. 31,
pp. 4773-4801, 1992.
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Matched Filters

CarnegieMellon

Target Detection

Input -

r{x)=s(x)+n(x)

Filter
H(f)

L Developed for optimal detection of radar returns
L Received signal r(.) is either just noise (i.e., no target)
or reflected signal + noise (i.e., target present)

L Received signal input to a filter with frequency
response H(f) and its output peak compared to a
threshold to make the target decision

O What should H(f) be?

BN

Compare to
| Threshold

Sample

Electrical & Computer
O ENGINERRING

Decision
o

at peak

Vijayakumar Bhagavatula
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Signal-to-Noise Ratio (SNR)

- Filter peak output in the absence of noise is
v, = [SOH(Er
- Output vanance due to input additive noise 1s
= [B0lHO dr

- Signal-to-noise ratio (SNR) 1s the ratio of peak mtensity to noise variance

swr - Pl —‘-[SmHmdfr

o [P,0EO ar
- To find filter H(f) that maximizes SNR, we use Cauchy-Schwartz inequality
[0 < [laolsr [IBolar

with equality if and only if A(f) = «B*(f) with o an arbitrary constant.

“ ) Electrical & Computer Viayakumar Bhagavatula 23
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Optimal Filter

- Let us try following choices for A(f) and B(f)

4 = 29w 35 = BB,

N Ealh)

- Then SNR is upperbounded as follows

s — ]2 5
| P‘“’zdﬂm,;amd/’ 'P‘*’C,!j df\l [EOER [[' o df|
SNR = e - = . = SNRyx
[PanlE @I dr [P0IE I ar ‘[Pamlﬂml'df
with equality if and oaly if H(f) = afg}l
«‘) EElf\ldéclall\lgllECEoﬁq NUtg Vijayakumar Bhagavatula 24
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Matched Filter

Q1If the noise is white, its power spectral density is a
constant, i.e., P,(f) = N,.

QL Optimal filter H(f) is proportional to S*(f), the complex
conjugate of the Fourier transform (FT) of the
transmitted signal s(t)

L Optimal filter’s magnitude matches the magnitude of
the reference signal FT, hence matched filter

O Optimal filter’s phase is exactly negative of the phase
of the reference signal FT

Electrical & COm Ute' Vijayakumar Bhagavatula 5
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Matched Filter Output Peak

QIf the test signal is identical to the reference signal s(t),

matched filter output peak occurs at the origin

QIf the test signal is s(t-A), the output peak occurs at A,
I.e., Output peak location gives the input location

0 Matched 0 o
—  » Filter — - [
|
|
A -
Eﬁt&ﬁ{l &E CEOFT NUtéT Vijayakumar Bhagavatula 2
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Cross-Correlation

O Test signal r(t)
QFilter H(f) = S*(f), matched to reference signal s(t)

L Matched filter output y(.) is the cross-correlation of r(t)
and s(t)

QA If r(t) = s(t), output is the autocorrelation function
O Autocorrelation larger than cross-correlation
U Easily extended to images and higher dimensions
y(X)=IFT{R(f)H ()} =IFT{R(f)S"(f)}
=conv{r(t),s(-t)} :Ir(t)s(t+x)dt

Electrical & Computer Vijayakumar Bhagavatula za
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Power of Cross-Correlation

366x364 Reference Image

Electrical & Computer Vijayakumar Bhagavatula 28
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Test Scene

‘! ) Electrical & Computer Vijayakumar Bhagavatula 2
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Noisy Test Scene

ENGINEERING
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Very Noisy Test Scene

100 150 200 250
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Occluded Test Scene

.
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Cross-Correlation via FFTs

L Cross-correlation implemented efficiently via fast
Fourier transform (FFT)

L For every test image, need two FFTs

o —{ R rr [
r(x) Correlation
H(D) Output
Correlation
Filter

Filter Reference
Design ¢ Image s(x)

‘! ) Electrical & Computer Vijayakumar Bhagavatula 33
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Convolution vs. Correlation

Randam Signal Carrelation Convalution
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L Convolution useful for filtering
U Correlation useful for matching
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Circular Correlation

QWhen using N-point FFTs, we get N-point circular
correlation rather than linear correlation

U Circular correlation is an aliased version of linear
correlation

Cy [k]= X C[kiN]
QTo avoid circular correlation, we pad the two

signals/images with zeros and use sufficiently large
FFTs.

‘! ) Electrical & Computer Vijayakumar Bhagavatula 3%
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Linear vs. Circular Correlation
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Sensitivity to Rotation

L Reference image rotated counter clockwise by 30
degrees

50 100 150 200 250 300 350 400 450 500
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Composite Correlation Filters
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Composite Correlation Filters

L Matched filter (MF) overly sensitive to rotations and
scale changes

QIn principle, we can design one MF for each rotated view,
but the number of filters will become impractically large

L Composite filters (also known as synthetic discriminant
function or SDF filters) designed to provide improved
tolerance to distortions (e.g., rotations, scale changes,
etc.)

QA Filters designed from training sets containing distorted
views of the reference target

Electrical & Computer

ENGINEERING
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Vector Representation

m Animage in the frequency

m Filter h

_d2><l [ v Jd?x1
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Correlation Peak

L For MF, the correlation peak is guaranteed to occur at the
origin when the query is the centered reference image

LWhen the test image is a shifted version of the reference,
the correlation peak location indicates the shift

L X(u,v) is the 2-D discrete Fourier transform (DFT) of the
iImage x(m,n)

L SDF filters constrain the correlation values at the origin
(loosely called peaks) for centered training images

d-1d-1 d-1d-1

c(0,0)= Zh(i, x(i, J) :ZZH v)=h"x

=0 j= =0 v:

‘! ) E|EthIC6|&C0m Ute' Vijayakumar Bhagavatula 4
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Equal Correlation Peak (ECP) SDF

QA First SDF filter (Hester & Casasent, Applied Optics, 1980)
QFilter h is assumed to be a weighted sum of training
image FTs, i.e.,
h=ax, +a,X, +--+a,X, h=Xa where a=[a a, - a,]
L Weights chosen so that the correlation output (at the

origin) equals a pre-specified value (e.g., 1 for authentic
iImages and 0 for impostor images) for training images

x‘h=c for i=12,--,N = X'h=c
QThis leads to the following solution for filter vector
X" (Xa)=c=a=(X'X) c=h=Xa=X(X"X) ¢

“ ) Electrical & Computer Vijayakumar Bhagavatula 42
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Database for (ECP) SDF
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(ECP) SDF Template

L Correlation peak is not very sharp making localization
Inaccurate
QA Filter controls only one value in the correlation outputs

L Sidelobes can be larger than the controlled value

Electrical & Computer

ENGINEERING
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Correlation Plane Energy

L Sharp correlation peaks enable accurate localization of
the target in the test scene (e.g., the task of locating eyes
in a face image)

L Sharp peaks can be obtained by minimizing the
correlation plane energy while constraining the
correlation peak (at the origin) to 1

O Correlation plane energy can be expressed as follows
=2 2R =R XTI (s ) -non

where D,.. . =Diag{|X (L1) [X (L2 - |x(d.d)}
(() EEIel\T&clallﬂ &ECEOﬁ’\ uter Vijayakumar Bhagavatula 4

Minimum Average Correlation
(MACE) Filter

U ACE = h'Dh
5<Z+1A1 = v t=1,..,N

- S p— . 1 N

“u, Dk, k) = =3 [%(K)|?

IF ) ,\7 1
=1

T oo | average — ACE

U,
%_\ — }H Energy
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Minimum Average Correlation Energy
(MACE) Filter

O Minimizing average correlation energy can be done directly in the frequency
domain by averaging the correlation plane energies E; as follows.

E = > [HuV['|X V) =h" XX h=h"D,h

%@

N X
E; =h+{ﬁzxixi*}h=h %@

i=1

_1
Eave - N

N
i=1l

Xi(d)

o Minimizing average correlation energy h*Dh subject to the constraints
X*h=c leads to the MACE filter solution

h=DIX (X*DiX)lc

A. Mahalanobis, B.V.K. Vijaya Kumar, and D. Casasent, “Minimum average correlation energy filters,” Appl.
Opt. 26, pp. 3633-3630, 1987.
Electrical & Computer Vijayakumar Bhagavatula 47
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MACE Filter Properties

O MACE filter produces sharp peaks leading to good localization and
discrimination

O MACE filter emphasizes high spatial frequencies leading to noise sensitivity
and poor generalization

“ ) Electrical & Computer Vijayakumar Bhagavatula 48
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Output Noise Variance

O Input image corrupted by additive noise with power
spectral density P,(u,v)
O Correlation output will be corrupted by additive noise
with power spectral density P,,(u,v)[H(u,v)|?
L Output noise variance (ONV) given as follows
ONV =Y 3"|H (u,v)[ P, (u,v)=hPh

where P, . =Diag{P,(L1) PR,(L2) - P,(d,d)}

49
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Minimum Variance Correlation Filter

540 N\

<+ u 1
’ QMinimum variance SDF produces

Deterministic - )

part of filters that enhance low spatial
output plane .

frequencies and thus produce

> broad correlation peaks

Random
part of
output plane " - . .
putp W B.V.K. Vijaya Kumar, "Minimum variance synthetic

/ discriminant functions,” JOSA-A, vol. 3, 1579-84, 1986
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Optimal Trade-off SDF (OTSDF)

LIMACE filter minimizes average correlation energy (ACE)
while satisfying X*h=c

L Minimum variance SDF (MVSDF) filter minimizes output
noise variance (ONV) while satisfying X*h=c

LMACE amplifies high frequencies whereas MVSDF
amplifies low frequencies, i.e., the two goals conflict

L OTSDF is aimed minimizing one of the two criteria (e.g.,
ACE) while holding the other (e.g., ONV) constant and
satisfying X*h=c

Noreor = T X(X'TX) "¢ where T=aD+v1-a’P, 0<a <l

Ph. Refregier, “Filter Design For Optical Pattern Recognition: Multicriteria Optimization
Approach,™ Optics Letters, Vol. 15, 854-856, 1990.
«) EIectncaI&Com uter Vijayakumar Bhagavatula 51
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Correlation Filters: Enrollmen -
Verification

Training Images
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Brief Correlation Filter History

U First Synthetic Discriminant Function (SDF) filter (Hester and
Casasent, 1980): a weighted sum of training images

U Generalized SDF (Bahri and Kumar, 1986): doesn’t have to be a
weighted sum of training images, better solutions available

U Minimum variance SDF (Kumar, 1986): minimum noise sensitivity
U Minimum average correlation energy (MACE) filters (Mahalanobis,

Kumar and Casasent, 1987): minimize correlation energy leading to
sharp correlation peaks

U Optimal tradeoff SDF (Refregier, 1992): optimal combinations of
MVSDF and MACE filters

O Maximum average correlation height (MACH) filter (Mahalanobis,
Kumar, Song, Sims and Epperson, 1994): relaxed peak constraints,
filter design requires no matrix inversion

‘! ) Electrical & Computer Vijayakumar Bhagavatula 53
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Brief Correlation Filter History (Cont’d.)

U Distance classifier correlation filter (DCCF) (Mahalanobis, Kumar and
Sims, 1996): classification based on the entire correlation plane, not
just the peak

U Polynomial correlation filter (PCF) (Mahalanobis and Kumar, 1997):
Generalize correlation filters to include point nonlinearities

U Optimal trade-off circular harmonic function (OTCHF) filter (Kumar,
Mahalanobis and Takessian, 2000): correlation filter with specified
response to in-plane rotations

U Quadratic correlation filter (QCF) (Mahalanobis, Muise & Stanfill, 2004):
shift-invariant quadratic correlation via a bank of linear filters

U Mellin radial harmonic transform (MRHT) filters (Kerekes and Kumar,
2006): correlation filter with controlled response to scale changes

U Max-margin correlation filters (MMCF) (Boddeti, Rodriguez, Kumar and
Mahalanobis, 2011): combines CFs with support vector machines

“ ) Electrical & Computer Vijayakumar Bhagavatula 54

ENGINEERING

6/9/2012

27



CarnegieMellon

Correlation Filters on Face Recognition
Grand Challenge (FRGC) Data

A ENGINEERING

CarnegieMellon

Face Recognition Grand Challenge
(FRGC): Expt. 4

m To facilitate the advancement of face recognition research, FRGC
was organized by NIST

Generic training set of 12,776 images from 222 subjects
Gallery set of 16,028 controlled face images from 466 people
Probe set of 8,014 uncontrolled face images from same 466 people

Baseline principal components algorithm (PCA) yields a verification
rate of 12% at 0.1% false accept rate (FAR)

P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview of the Face
Recognition Grand Challenge,” In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2005

“ ) Electrical & Computer Vijayakumar Bhagavatula 56
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FRGC Gallery Images

i i

Controlled (Indoor)

16,028 gallery images of 466 people

Electrical & Computer 57
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FRGC Probe Images

Uncontrolled (Indoor)

8,014 gallery images of 466 people

Electrical & Computer 58
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FRGC Dataset: Experiment 4

Feature extraction Feature space generation

Reduced Dimensionality Feature Reduced Dimensionality Feature
P Representation of Gallery Set Representation of Probe Set
project 16,028 8,014

umar Bhagavat

CarnegieMellon

FRGC ROC
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False accept rate

The verification rate of PCA is about 12% at False Accept Rate 0.1%.

Electrical & Computer Vi 60
ijayakumar Bhagavatula
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Correlation

ilters for Face Verification

~ Only1
training'images
Low performance

A i Filter Design:
[t OTSDF, CHF, ..

-------------- Enrollment

correlation filter A Verification

H oA

256 million correlations

Similarity Score

testim
Long time

61
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Class-dependence Feature Analysis (CFA)

* Motivation

— Improve the recognition rate by using the generic training
set

- Reduce the processing time by extracting features using
inner products

+ Class-dependence Feature Analysis
— Model a population for recognition using a set of people

“ ) Electrical & Computer Vijayakumar Bhagavatula 62
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Class Dependent Feature Analysis (CFA)

Example: building the MACE filter for class 2

P . ClassZ .. . Class 222,

U =[000 0]

[1111]

y 5 l h mace-2

w=[0000]""

:> mace-2 U1
Nogee = D X(X'DX) 0 u= :UZ
EElﬁt(”i‘-iar!J&EcEmR“ NU'E' Vijayakumar Bhagavatula 63 u,
CarnegieMellon
MACE Faces
CFA basis vectors ~ h, ... =D X(X'D™*X) ™ u u=[u;,Uy,...,uy]"

u, =[111..1,1" ... Uy =[1110. 1,51
Pices - all zeros except u; Nimace-202 : all zeros except Uy,
Xg
. Lmear CFA .
. yk =H Xk [hmace 1 ""mace-2 * hmace-222] Xk = [Cl CZ"'CZZZ]
Test input with no Nonlinear CFA using Kernels
trained filters Yie =[K(hmace1' Xk)’ K(hmacezlxk) "'K(hmaCEZZZ'Xk) =[c1 CZCZZZ]
({) Electrical & Computer 64
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Performance on FRGC Expt. 4

82.4% @ 0.1 % FAR
/ (Latest Performance)

n 1
% OPCA
r °°8 B GSLDA
c 0.6 OCFA
o
S o4 B KCFA-v1
< .
&) B KCFA-v3
w— 0.2
(Y.
= B KCFA-v5
S |
>
Exp 4
PCA: Principal Components Analysis GSLDA: Gram-Schmit Linear Discriminant Analysis

CFA: Class-dependence Feature Analysis KCFA: Kernel Class-dependence Feature Analysis

B.V.K. Vijaya Kumar, M. Savvides and C. Xie, “Correlation Pattern Recognition for Face recognition,” Proc. IEEE, vol. 94, Nov. 2006.

(() Electrical & Computer 65
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Eigenphases
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PCA in Frequency Domain

* Is there any advantage to carrying out PCA on the Fourier
transforms of training images?

+ Since FT is unitary, no differences (except for sign changes) in the
eigenfaces obtamed via space domaln or frequency domaln

‘! ) Electrical & Computer Vijayakumar Bhagavatula

ENGINEERING

Importance of FT Phase

A

MAGNITUDE|B| PHASE(A)

1
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MACE vs. Phase-only MACE
MACE . Phase-only MACE -
({) Electrical & Computer Vijayakumar Bhagavatula 69
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Eigenphases

+ PCA carried out on the phase-only versions of training image
Fourier transforms

Frequency Domain

Space Domain

M. Savvides and B.V.K. Vijaya Kumar, “Eigenphases vs. Eigenfaces,” Intl. Conf. on Pattern Recognition
(ICPR), 810-813, 2004.
({) Electrical & Computer Vijayakumar Bhagavatula 70
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PIE Database Experiments
1 3,7,16 9 5-12
2 1,10,16 10 5-10
3 2,7,16 11 5,7,9,10
4 4713 12 7,10,19
5 1,2,7,16 13 6,7,8
6 3,10,16 14 8,9,10
7 3,16,20 15 18,19,20
8 5-10,18,19,20
A ENGNEERRE

Test Images

Training Images used were full images
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Recognition Rates (Full Test Images)

Recognition Accuracy (%)
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ENGINEERING

Recognition Rate:
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Recognition of Left-half Blocked Test Images

Recognition comparison using only the right half of the faces as test images
100

Recognition Accuracy (%)
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Recognition comparison using test images with only the eye section visible

100 T
ol W
80+ b

£ 70t —=— Eigenphases
g —— Fisherfaces
5 60f —F- 3D Linear Subspace |
g —4— Eigenfaces
= 90r
=
T 40}
()]
o
g 3ot

20+

10+

0

0

Experiment #
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Recognition of Test Images with Eye Region

75

Tolerance to Occlusions

Electrical & Computer
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Cropped test images (trained on full images)

0% Pixels Blocked 20% Pixels Blocked 40% Pixels Blocked 60% Pixels Blocked 80% Pixels Blocked

Recogretion Rate using Training Set #2 Tested on Partial Verical Blocked mages
1 T T T T T T

T 0 T T
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% i
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& : @ :
% 3 W B
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- ! 2 :
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i« i e 8
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¥ L i
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% Percent of Pixels blocked % Percent of Pixets blocked

Training set #1 (3 diverse lighting images) Training set #2 (3 frontal lighting images)

Electrical & € " M. Savvides, B.V.K. Vijaya Kumar and P.K. Khosla, "Robust, Shift-Invariant Biometric
ﬁ) ERI&CI?\IEEOE Nu(eir Identification from Partial Face Images", Biometric Technologies for Human Identffication
(OR51, SPIE Defense and Security Symposium, Vol. 5404, p. 124-135, August 2004.

Horizontal cropping

0% Pixels Blocked 20% Pixels Blocked 40% Pixels Blocked 0% Pixels Blocked 80% Pixels Blocked

Recognition Rate using Training Set #1 Tested on Pariial Horizontal Blocked images Recognition Rate using Training Set £2 Tested on Partial Horizontal Blocked Images
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Vijayakumar Bhagavatula

i Ei 2 u
Q) Boasiieenme

6/9/2012

39



©

CarnegieMellon

Recognition using selected face regions

Face Section #1 Face Section#2 Face Section #3 Face Section #4 Face Section #5

.'

Recogrtion Rate using Traireng Sel #1 Tested on Diferent Facial Secions
 —. T T

Recognition Rale using Training Sel #2 Tested on Diferent Facal Sections

@0 a5
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2 g 15
I 75 f;‘
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Central Cropping

0% Pixels Blocked 29% Pixels Blocked 54% Pixels Blocked 73% Pixels Blocked 87% Pixels Blocked

Recognition Rale using Training Sel #1 Tested on central Face blocks

Recognition Rate using Training Set #2 Tested on central Face blocks

L e e ———— == 100 =T T
o0 a0
80 80
é 1 ] E 70
: 40 QPMAGE [ v ey
; ! w- BP-MACE | | i | .
i ; i i BPMACE | ! y : i
W40 N W W W W R T R R
% Percent of Pixels blocked % Pescent of Pixels blocked
Using Training set #1 Using Training set #2
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Central crop + background

0% Pixels Blocked 29% Pixels Blocked 54% Pixels Blocked

100 —=-
o0 -
80¢
E
ﬁéﬂ-
14
#
e | i : | : \ ] 1 £ i i T :
= Umce SRR 2ol IEE ] i \
404 GPMACE X : + i L ¥ QE-MACE
¥ ERACE S ! 0H o BPMACE | 4
| -4 BP-MAGE-1 i i i i + BP-MAGE-1 E
0 W 20 W 4 S0 60 70 80 %0 0 — " =
Zero intensity background Textured background
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Partial Face Identification-test on cropped DB

A =100 % I
ceuracy = 100 % Trainon 3, 7, 16 for

seices § each person (Lights)
v B

Accuracy = 99.5 % (7 misses)

Trainon 3, 7, 16 for
each person (No Lights)

30 Pixels I
M. Savvides, R. Abiantun, J. Heo, S. Park, C. Xie, B.V.K. Vijaya Kumar, “
Partial & Holistic Face Recognition on FRGC-I1 data using Support

q Electrical & Computer  \ctor Machine,” Com isi iti 82
, puter Vision and Pattern Recognition Workshop,
) ENG'NEER NG 2006. CVPRW '06. Conference on , 2006.

5 Pixels ¢
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Unconstrained MACE (UMACE) filter

+ UMACE Filter is similar to MACE except peak values are not constrained
to yield a specific value

+ Maximize average peak height |h*m|> while minimizing average
correlation energy (h*Dh) leads to h=D"m

+ Dis adiagonal matrix containing average power spectrum of the training
images

* m s column vector containing the 2D Fourier transform of the average
training image

+ UMACE filter is simpler as it does not require matrix inversion

«  Similarly, unconstrained OTSDF (UOTSDF) is given by h=T"m where

T=aD++1-a?’P, 0<a<1

‘! ) Electrical & Computer Vijayakumar Bhagavatula 83

ENGINEERING

CarnegieMellon

Iris Recognition using
Correlation Filters
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Iris Biometric

Pattern source: muscle ligaments (sphincter, dilator), and
connective tissue

Inner boundary

Outer boundary (pupil)
(sclera)

Sphincter ring

Dilator muscles

({) Electrical & Computer
ENGINEERING
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Iris Segmentation

g v
y

“Unwrapping” the iris

Inner boundary (with pupil)

({) Electrical & Computer
ENGINEERING
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Daugman'’s Iris Recognition Method

B — 2bits code

S — 2 bits code_,

Circular Edge Detector ~ Gabor Wavelet Analysis 2048 bits iris code

J. G. Daugman, “High confidence visual recognition of persons by a test of statistical independence,”
IEEE Trans. Pattern Anal. Machine Intell., Vol.15, pp. 1148-1161, 1993.

(() Electrical & Computer g7
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Matching the Contours

b inner
w&%“‘“ product

M[ el

Lo Cross-
@ “ correlation

(\ ) —- H(XH, Vo, Fo

—— ( ) - [1(X, V), 10)

B ¥

O Cross-correlation yields inner product of the contour template with
the input image for all possible shifts
O Approximates circular Hough transform

J. Thornton, “Iris Pattern Matching: A Probabilistic Model based on Discriminative

) Electrical & Computer  Cues,” Ph.D. Dissertation, CMU, 2007. 88
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Iris Segmentation

contour filter

bank H(x,y,7) radial gradients

Cross-
correlation

downsampled
image
w&ém__ argmax
* e — &x,p,r)
=

Electrical & Computer 89
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Sample Segmentations
ICE CMU

© N ¢ S
o NS < [N
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Iris Recognition using Correlation Filters

We design a correlation filter for each iris class using a set of training images.

Determining an iris match with a correlation filter

A FFT R FFT1 R match
Ve y > >

Segmented RN~

iris pattern

Correlation
filter

J. Thornton, M. Savvides and B.V.K. Vijaya Kumar, “A unified Bayesian approach to deformed pattern matching of iris images,” IEEE
Trans. Patt. Anal. Mach. Intell., vol. 29, 596-606, 2007.
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Iris Pattern Deformation

ULandmark points for all images within one class

Clear deformation from:
= Tissue changes AND/OR

= Deviations in iris boundaries.

({) Electrical & Computer
ENGINEERING
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Eyelid Occlusion

Example : Eyelid artifacts in segmented pattern.

lower upper lower
eyelid eyelid eyelid

Example: match comparison

For significant portion of
area, similarity is lost.

«) Electrical & Computer
ENGINEERING
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Iris Matching Approach

Goal: Accurate pattern matching when patterns experience
= relative nonlinear deformations
= partial occlusions

in addition to blurring and observation noise.

Approach

PROBABILISTIC MODEL:
PATTERN
SAMPLE DEFORMATION & OCCLUSION STATES

N

by GENERATE ESTIMATE

> MATCH
= | EVIDENCE STATES

SCORE

\ 4

PATTERN
TEMPLATE

({) Electrical & Computer
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Hidden Variables: Deformation

Iris plane partitioned into 2D field:

. O O, N .
| (xSl oL s bl red

(Az;, Ay;) for (z,y) € R;

Deformation described by vector field:

gszmmsienny,
0 0 1 e M Y

J. Thornton, M. Savvides and B.V.K. Vijaya Kumar, “A unified Bayesian approach to deformed pattern
matching of iris images,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 29, 596-606, 2007.

({) Electrical & Computer
ENGINEERING

Hidden Variables: Occlusion

Occlusion d ibed by bi field: N = 1 if R; is occluded
cclusion described by binary field: i = Vo if B, is unoccluded

Hidden vars: H £ { Az1, Ay, A1, Azo, Ay, A, ... Azy, Ayn, An}

({) Electrical & Computer
ENGINEERING
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Role of Correlation Filters in Iris Matching

U Correlation filters used to compare a patch from the query to
the corresponding patch from the reference

U Correlation peak provides a measure of the patch similarity

U Correlation peak location provides an estimate of the
relative shift between the two patches

U These patch-based correlation outputs used as clues to infer
the hidden variables (eyelid occlusions and local
deformations)

Electrical & Computer Vijayakumar Bhagavatula 97
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Iris Matching Process

Template
o e 2 P T e o el R L | Similarity evidence {Ci(z,y)}
AR RN GODNDRSCORR R
5 e o 14 12 10 i ) 0 B o
New pattern ‘ R N0 N N Y N Y Y Y M
1 ) D ey Eyelid evidence
CEEETY e T, T, ... TN
o b el el el O R 0
Goal : Infer posterior distribution 2
on hidden states: P(#/0) T oo
Inference technique : Loopy i ©2)
belief propagation @ @

propag 1 Noard

Electrical & Computer
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Iris Challenge Evaluation (ICE) 2005

Define Experiments =

EXp 1 Exp 2
Right Eye Left Eye
1425 Iris Images 1528 Iris Images
(PZ8 Individuals (=08 Individuals
5 Overlapping Individuals
2 132 Total Individuals

Source: Jonathon P. Phillips, NIST _; %

4 ENeinesrive

ICE 2005 Performance

Experiment 1 score distribution

0.14

0.12+

non-match

0.1 scores
0.08 match
scores

0.06 -
0.04

0.02+

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Verification Rate at FAR = 0.1%

Experiment 1: 99.63 % Experiment 2: 99.04 %

({) Electrical & Computer
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ICE 2005 Results
I Bar Plot Performance Results

Fully Automatic, FAR=0.001

100

085 56 nar LIEE) o9y
L

M Exp {Figt eye) n |H I
|¥ Bxp 2 (Lo'toys)

Tehaks CAS2  IUPY  AsBEE  Pales WAL CABZ cASt Camdi Cam2 CMU  ichD  BACEM

1
Z Results from Open Book Challenge Problem
NOT Independent Evaluation

Source: Jonathon P. Phillips, NIST
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Palmprint Recognition using
Correlation Filters
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Palmprint Features

Q Palmprints have a
conglomerate of features.

O These include principal lines,
smaller creases or wrinkles,
fingerprint-like ridges and
textures.

Q Palmprints can be easily
aligned about fiducial points of
the hand’s geometry or shape.

Wrinkles

b

Electrical & Computer Vijayakumar Bhagavatula
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Textures

Principal lines

A v

103

CarnegieMellon

Palmprint Extraction

Q First we find two fiducial
points from the contour
of the hand.

U We rotate the palm so
that the points are
aligned to the vertical
axis.

U A region can be extracted
using these points as a
reference.

((‘) Ef\?&cﬁl\l &E CEOFT NUtéT Vijayakumar Bhagavatula
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Palmprint Matching

QO PolyU Palmprint Database

U 100 palms (classes)

U Left hands flipped to look as right hands
U 3images per class for training

U 3images per class for testing

U 5 different experiments using region sizes
with sides of 64, 80, 96, 112, and 128 pixels

Dataset
used

---m-o e

(() Electrical & Computer | = — — — — wizvakomar Bragsyatgla= — — — — — 105
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Optimal Tradeoff Filter Performance
T
REsuLTs oF OTSDF FILTER CLASSIFIER USING 100 CLASSES.

n Avg FRRz (M) Avg FARz (M2) 1d Acc

04 2.6% (8) 0.07% (23) 97.3%
80 1.0% (3) 0.02% (6) 98.3%
96 0.3% (1) 0.01% (3) 98.6%
112 1.0% (3) 0.01% (3) 99.0%
128 0.3% (1) 0.03% (10) 99.6%

Avg FRRz: Average FRR at zero FAR. M misses out of 300.
Avg FARz: Average FAR at zero FRR. M misses out of 29, 700.
Id Acc: Identification Accuracy.

P. Hennings, B.V.K. Vijaya Kumar and M. Savvides, “Palmprint classification using multiple advanced correlation
filters and palm-specific segmentation,” IEEE Trans. Information Forensics and Security, vol. 2, 613-622, 2007.

“ ) Electrical & Computer Vijayakumar Bhagavatula 106
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Eye Detection using Correlation
Filters

Electrical & Computer

) ENGINEERINE

CarnegieMellon

Eye Detection

U Eye detection can be useful for inter-ocular distance-based
geometric normalization of ocular images

U Viola and Jones eye detector perhaps the best known
U More recent work by Bolme using Average Synthetic Exact Filters

(ASEFs, CVPR 2009) and Minimum Output Sum of Squared Error
Filter (MOSSE, CVPR 2010) to locate eyes in face images

U We developed an improved correlation filter formulation called Max-
Margin Correlation Filter (MMCF) and used it for eye detection

D. S. Bolme, B. A. Draper, and J. R. Beveridge, “Average of Synthetic Exact Filters,” Computer Vision and
Pattern Recognition. 2009.

D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual Object Tracking using Adaptive Correlation
Filters, “Computer Vision and Pattern Recognition. 2010.

“ ) Electrical & Computer Vijayakumar Bhagavatula 108
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Eye Detection Experiments

U FERET database (Phillips et al., IEEE T-PAMI, 2000)

U OpenCV face detector used to extract 128x128 images with eyes at
pixel locations (32,40) and (96,40)

U To make the eye detection challenging, we applied a random
similarity transform with translation of up to +/- 4 pixels, scale up to
+/- 10% and rotations up to +/- p/16 radians

U 3400 images of 1204 people

U We randomly partitioned the dataset with 512 images used for
training, 675 for parameter selection by cross-validation and the rest
for testing

Electrical & Com uter
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Example Correlation Ouputs

Proe Image Right Eye Left Eye

Correlation Correlation
Output Output
«‘) Eﬁt&cﬁh &E CEOFT NUtéT Vijayakumar Bhagavatula 110
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Eye Detection Results

P-P
O Accuracy of eye location quantified by D= |I|P| - P|I|

Q P is the ground truth location, Pis the predicted location
U P, and P, are the true locations of the left and the right eye

U Localization (i.e., D < 0.1) performance results averaged over 5
different runs with random partitions for training and testing and
random similarity transforms

ASEF MOSSE MMCF
Left 91.2 94.1 95.1
Right 90.6 92.9 93.6

U Our results for ASEF and MOSSE are consistent with those reported
by Bolme for the same task
U MMCF outperforms ASEF and MOSSE in eye location task

Electrical & Computer Vijayakumar Bhagavatula m
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Ocular Recognition using
Correlation Filters

({) Electrical & Computer
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Challenging Ocular Image Recognition (COIR)

U Ocular recognition: use iris regions as well as periocular regions to
achieve improved matching

U Goal: to improve the matching of the ocular images in challenging
acquisition conditions (occlusions, eye gaze angle differences, low
spatial resolution, shadows, different spectral bands (RGB, near-IR),
etc.)

bll(yif

Shadow LOW_ Color Iris Image
Resolution
«) E|ectr|cal&com uter Vijayakumar Bhagavatula 13
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Face and Ocular Challenge Series (FOCS)

Dataset
QImages were captured from moving subjects, in an un-
constrained environment.

L Number of images: 9588
U Resolution of images: 750 x 600
L Number of subjects: 136

L Number of samples per subject
- Not consistent. Varies from 2 ~ 236 samples/subject

- Mean: 70
- Median: 59
- 123 subjects have more than 10 samples each
«‘) EElf\Idéclall\l‘gllECEoﬁ‘ NUtg Vijayakumar Bhagavatula 114
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FOCS: Challenges
Occlusion Off-angle Gaze

PR |

Movement IHlumination

115
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Probabilistic Deformation Model

U Probabilistic deformation models (PDMs) for improved iris/ocular
matching

U By segmenting the template and query images into patches we can measure
the relative deformation through cross correlation.

U MAP estimation is then implemented to maximize the posterior probability
distribution on latent deformation variables. Effectively learning the proper
‘movements’ for similar patterns to assign a higher match score, while
uncorrelated query images will exhibit seemingly random ‘movements’ giving
them a lower match score.

Template

============a= Similarity evidence {Ci(z,y)}
- 1 15 1 5 SR B
e s o o o R S e 00 5 I G O Y I Y
New pattern ) CUDOUEENONEan
e O R 0" Eyelid evidence
l...-......--. T, T2y TN
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Example Ocular Deformation

Genuine Full Correlation Plane

Result
Template

Genuine

Impostor Full Correlation Plane

Result

fhi A
Jiy
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Performance of Ocular Recognition
Approaches

Left-with-left Right-with-right

EER FRR EER FRR
PDM 23.4% | 58.5% 23.9% | 61.4%
GOH 32.9% | 97.4% 33.2% | 97.0%
m-SIFT 28.8% | 67.8% 27.2% | 65.9%
Iris 33.1% | 81.3% 352% | 81.2%

FRR at 0.1% FAR

Vishnu Naresh Boddeti, Jonathon Smereka and B.V.K. Vijaya Kumar, “A comparative evaluation of iris and ocular
recognition methods on challenging ocular images,” Intl. Joint Conference on Biometrics (IJCB), October 2011.

Vijayakumar Bhagavatula 118
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Fusion Performance

Left-with-left Right-with-right

EER FRR EER | FRR
PDM+GOH 19.5% | 71.7% 19.4% | 70.1%
PDM-+m-SIFT 23.9% | 57.6% 23.3% | 60.0%
GOH-+m-SIFT 31.2% | 96.2% 27.2% | 95.5%
PDM+GOH-+m-SIFT 19.3% | 70.5% 19.3% | 68.8%
(0.1*PDM)+(0.1*GOH)+(0.8*m-SIFT) 18.8% | 63.8% 18.8% | 61.4%
(0.75*PDM)+(0.15*GOH)+(0.10*m-SIFT) 21.7% | 55.4% 21.2% | 58.0%

U Best FRR at 0.1% FAR is 55.4%
U Best EER is 18.8%

R. Jillella, A. Ross, V.N. Boddeti, J. Smereka, B.V.K. Vijaya Kumar and V. Paul Pauca, “Matching highly nonideal ocular images:

An information fusion approach,” International Conference on Biometrics (ICB), New Delhi, India, March 2012.
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Cancelable Correlation Filters
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Cancellable Biometric Filters

L A biometric filter (stored on a card) can be lost or
stolen

— Can we reissue a different one (just as we reissue a
different credit card)?

— There are only a limited set of biometric images per
person (e.g., only one face)
QA new correlation filter can be constructed from the
same biometric

‘! ) Electrical & Computer Vijayakumar Bhagavatula 12
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Enrollment Stage

Training Images Random PSF Encrypted Training Encrypted Template

Images

Random
Number
Generator

seed T

PIN

M. Savvides and B.V.K. Vijaya Kumar, “Cancelable biometric filters for face recognition,” Intl. Conf. on Pattern
Recognition (ICPR), 922-925, 2004.
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Verification Stage

®-

dom Encrypted Test Image Encrypted Template
Convolution
Kernel l

t

*

Test Image

Random
Number

Generator
PSR  «— .
seed T
123

PIN
Electrical & Computer
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Example of Encrypted Images

Authentic

B2 B 3858 5443

Electrical & Computer 124
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Correlation from an Authentic using Kernel 1

|
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Correlation without Encryption

20 /0 B0 B0 100
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Correlation from an Impostor
PSR = 4.05
015
0.1 0.1
0o0s O[T o 0.0s
0.05 | “ f 008
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.04 ) il ‘ .04
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Output from an Authentic using a Cancelled
Kernel
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Biometric Encryption
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Key Extraction from Biometric Authentication

Biometric
Matcher

L Problem: Attacker can substitute the matching
decision from the biometric authentication system

Adversary Override

Biometric Sample

“ ) Electrical & Computer Vijayakumar Bhagavatula 130

ENGINEERING

6/9/2012

65



CarnegieMellon

Multi-peak Correlation Filters

Inverse |
Query Fourier match |

Fourier
Image Transform

Transform
Correlation AL
no maitch et ek RO
Filter i

U The (x,y) coordinates of correlation output peaks
contain the secret key for that person

Vishnu Naresh Boddeti, F. Su and B.V.K. Vijaya Kumar, “A biometric key-binding and template protection
framework using correlation filters,” Intl. Conf. on Biometrics (ICB), 2009.
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Biometric Key Binding: Enrollment

Extract Design Image
Password
Parameters Filter Transformation
Hash of Data Template

internal processing
enrollment data stored in secure database
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Biometric Key Binding: Authentication

Release Key
Image Retrieve Hash
Probe Correlation
Transformation Key of Key

input data
internal processing
authentication result
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Databases

» CMU-PIE and CMU-Multi PIE face databases with
illumination variation, frontal pose and neutral expression

with 65 and 320 people respectively. Images of size
128x128 were used.

ELrE

» PolyU Palmprint database with 350 people. Images of size
128x128 were used.
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Single User Key-binding

Key Retrieval Failure Percentages

Key Size (bits) Brute Force Security (bits) Lights Nolights MPIE Palmprint
64 58 0.0 0.0 | 0.1 0.5
128 112 00 0.0 | 0.2 1.2
256 231 00| 0.0 | 0.6 3.0
512 451 00| 43 | 6.0 | 11.7
770 671 0.7 1 20.3 | 189 | 24.1

U Impostor key retrieval rate is zero in all experiments
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Single User Multi-biometric Key-binding

Key Retrieval Failure Percentages

Key Size (bits) Brute Force Security (bits) Lights + Palm Nolights + Palm
64 58 0.0 0.0
128 112 0.2 0.2
256 231 0.0 0.2
512 451 0.5 1.8
800 695 1.3 4.7
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Multi-user Key-binding

Key Retrieval Failure Percentages

Key Size (bits) Brute Force Security (bits) Lights Nolights
64 58 0.0 | 0.0
128 112 0.0 | 0.0
256 231 0.0 | 0.0
512 451 0.0 | 1.0
800 695 00| 24
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Summary

Q Correlation filters

Exhibit excellent performance on face recognition grand
challenge (FRGC) images

Performed well in iris challenge evaluation (ICE)
Performed well on challenging ocular image recognition
Enable the design of cancelable biometric templates

- Enable the binding of secret keys to biometrics

Q Correlation filters provide a single matching engine for a
variety of image biometrics tasks

O While frequency-domain representations are not intuitive,

they can be highly beneficial
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Correlation Pattern
Recognition

Electrical & Computer

ENGINEERING

Correlation Pattern

Recognition
B.V.K. Vijaya Kumar, A. Mahalanobis
& Richard D. Juday
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