$$
\begin{eqnarray}
\mathcal{L}'_{reg} &=& 1 \nonumber \\
\mathcal{R}' &=& \mathcal{L}_{reg}'\frac{d \mathcal{L}}{d \mathcal{R}} \nonumber \\
&=& \mathcal{L}_{reg}'\lambda \nonumber \\
\mathcal{L}' &=& \mathcal{L}_{reg}'\frac{d \mathcal{L}}{d \mathcal{L}} \nonumber \\
&=& \mathcal{L}_{reg}' \nonumber \\
y' &=& \mathcal{L}'\frac{d \mathcal{L}}{dy} \nonumber \\
&=& \mathcal{L}'(y-t) \nonumber \\
\end{eqnarray}
$$
$$
\begin{eqnarray}
z' &=& y'\frac{dy}{dz} \nonumber \\
&=& y'\sigma'(z) \nonumber \\
w' &=& z'\frac{\partial z}{\partial w}+\mathcal{R}'\frac{d \mathcal{R}}{dw} \nonumber \\
&=& z'x + \mathcal{R}'w \nonumber \\
b' &=& z'\frac{\partial z}{\partial b} \nonumber \\
&=& z'
\end{eqnarray}
$$