Automatic Differentiation
CSE 891: Deep Learning
Vishnu Boddeti
Monday September 21, 2020
Automatic Differentiation Modes
- Consider:
$$\mathcal{L} = F(G(H(x)))$$
- Forward-Mode Differentiation:
$$
\begin{eqnarray}
\frac{\partial \mathcal{L}}{\partial x} =\left(\frac{\partial \mathcal{L}}{\partial F}\left(\frac{\partial F}{\partial G}\left(\frac{\partial G}{\partial H}\frac{\partial H}{\partial x}\right)\right)\right) \nonumber
\end{eqnarray}
$$
- Reverse-Mode Differentiation:
$$
\begin{eqnarray}
\frac{\partial \mathcal{L}}{\partial x} = \left(\left(\left(\frac{\partial \mathcal{L}}{\partial F}\frac{\partial F}{\partial G}\right)\frac{\partial G}{\partial H}\right)\frac{\partial H}{\partial x}\right) \nonumber
\end{eqnarray}
$$