Generative Adversarial Networks
CSE 891: Deep Learning
Vishnu Boddeti
Wednesday November 25, 2020
\(\mathcal{F}(\mathbf{x},\theta, \phi) = \mathbb{E}_{p(x^{obs})}[\log D_{\theta}(\mathbf{x}^{obs})] + \mathbb{E}_{p(z)}[\log (1-D_{\theta}(f_{\phi}(z)))]\)\begin{eqnarray} \mathbf{z} &\sim& p(\mathbf{z}) \nonumber \\ \mathbf{x}^{gen} &=& f_{\phi}(\mathbf{z}) \nonumber \end{eqnarray}