Feed Forward Networks: Learning


CSE 891: Deep Learning

Vishnu Boddeti

Monday September 13, 2021

Today

  • Risk Minimization
  • Loss Functions
  • Regularization

Recap

Recap: Simple Neural Network

  • Neuron pre-activation (or input activation)
  • $a(\mathbf{x}) = b + \sum_i w_ix_i = b + \mathbf{w}^T\mathbf{x}$
  • Neuron (output) activation
  • $h(\mathbf{x}) = g(a(\mathbf{x})) = g\left(b+\sum_iw_ix_i\right)$
  • $\mathbf{w}$ are the connection weights
  • $b$ is the neuron bias
  • $g(\cdot)$ is called activation function

Recap: Multilayer Neural Network

  • Could have $L$ hidden layers:
    • layer pre-activation for $k>0$ ($\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x}$)
    • $\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$
    • hidden layer activation ($k$ from 1 to $L$):
    • $\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$
    • output layer activation ($k=L+1$):
    • $\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = f(\mathbf{x})$

Risk Minimization

Empirical Risk Minimization

  • Framework to design learning algorithms
  • $$\underset{\theta}{\operatorname{arg min}} \mathbb{E}_{P(x,y)}\left[l\left(f(\mathbf{x}^t;\mathbf{\theta}),\mathbf{y}^t\right)\right] + \lambda\Omega(\mathbf{\theta})$$ $$\underset{\theta}{\operatorname{arg min}} \frac{1}{T} \sum_t l\left(f(\mathbf{x}^t;\mathbf{\theta}),\mathbf{y}^t\right) + \lambda\Omega(\mathbf{\theta})$$
  • Learning is cast as an optimization problem
  • Loss Function: $l(f(\mathbf{x}^t;\mathbf{\theta}),\mathbf{y}^t)$
  • $\Omega(\mathbf{\theta})$ is a regularizer

Log-Likelihood

  • NN estimates $f(\mathbf{x})_c=p(y=c|\mathbf{x})$
    • we could maximize the probabilities of $y_t$ given $\mathbf{x}_t$ in the training set
  • To frame as minimization, we minimize the negative log-likelihood
  • $$l(f(\mathbf{x}),y) = -\log \sum_c 1_{y=c}f(\mathbf{x})_c = -\log f(\mathbf{x})_y$$
    • we take the log to simplify numerical stability and math simplicity
    • sometimes referred to as cross-entropy

Loss Functions

Loss Functions: Classification

  • $l(\hat{y},y) = \sum_i \mathcal{I}(\hat{y}_i \neq y_i)$
  • Surrogate Loss Functions:
    • Squared Loss: $\left(y-f(\mathbf{x})\right)^2$
    • Logistic Loss: $\log\left(1+e^{-yf(\mathbf{x})}\right)$
    • Hinge Loss: $\left(1-yf(\mathbf{x})\right)_+$
    • Squared Hinge Loss: $\left(1-yf(\mathbf{x})\right)_+^2$
    • Cross-Entropy Loss: $-\sum_{i} y_i\log f(\mathbf{x})_i$

Loss Functions: Regression

  • Euclidean Loss: $\|\mathbf{y}-f(\mathbf{x})\|_2^2$
  • Manhattan Loss: $\|\mathbf{y}-f(\mathbf{x})\|_1$
  • Huber Loss:
  • $$ \begin{cases} \frac{1}{2}\|\mathbf{y}-f(\mathbf{x})\|_2^2 & \quad \text{for } \|\mathbf{y}-f(\mathbf{x})\| < \delta\\ \delta\|\mathbf{y}-f(\mathbf{x})\|_1 -\frac{1}{2}\delta^2 & \quad \text{otherwise}\\ \end{cases} $$
  • KL Divergence: $\sum_i p_ilog\left(\frac{p_i}{q_i}\right)$

Loss Functions: Embeddings

  • Cosine Distance: $\frac{\mathbf{x}^T\mathbf{y}}{\|x\|\|y\|}$
  • Triplet Loss: $\left(1+d(\mathbf{x}_i,\mathbf{x}_j)-d(\mathbf{x}_i,\mathbf{x}_k)\right)_{+}$
  • Mahalanobis Distance: $(\mathbf{x}-\mathbf{y})^T\mathbf{M}(\mathbf{x}-\mathbf{y})$

Cross-Entropy Loss Example

Unnormalized Log-Prob Unnormalized Prob. Prob. Correct Prob
3.2 24.5 0.13 1.00
5.1 164.0 0.87 0.00
-1.7 0.18 0.00 0.00

Regularization

Regularization

  • What is regularization?
    • the process of constraining the parameter space
    • alternatively, penalize certain values of $\mathbf{\theta}$
  • Why do we need regularization?
    • In Machine Learning regularization $\Leftrightarrow$ generalization
    • In Deep Learning regularization $\neq$ generalization

$L_2$ Regularization

$$\Omega(\mathbf{\theta}) = \sum_k\sum_i\sum_j(W_{ij}^k)^2 = \sum_k\|\mathbf{W}^k\|_F^2$$
  • Gradient: $\nabla_{\mathbf{W}^k}\Omega(\mathbf{\theta}) = 2\mathbf{W}^k$
  • Only applied on weights, not on biases (weight decay)
  • Can be interpreted as having a Gaussian prior over the weights

$L_1$ Regularization

$$\Omega(\mathbf{\theta}) = \sum_k\sum_i\sum_j|W_{ij}^k|$$
  • Gradient: $\nabla_{\mathbf{W}^k}\Omega(\mathbf{\theta}) = sign(\mathbf{W}^k)$
  • $$sign(W^k)_{i,j} = \begin{cases} 1 & \quad \text{for } W^k_{ij} > 0\\ -1 & \quad \text{for } W^k_{ij} < 0 \end{cases}$$
  • Only applied on weights, but not to biases
  • Unlike $L_2$, $L_1$ will push certain weights to be exactly zero
  • Can be interpreted as having a Laplacian prior over the weights

Regularization Geometry

Equivalent Optimization Problems: $$ \begin{equation} \textbf{P1: } \underset{\mathbf{W}}{\operatorname{arg max}} \||\mathbf{y}-\mathbf{W}\mathbf{x}\||_2^2 + \lambda\||\mathbf{W}\||_2^2 \end{equation} $$ $$ \begin{eqnarray} \textbf{P2: } \underset{\mathbf{W}}{\operatorname{arg max}} && \||\mathbf{W}\||_2^2 \nonumber \\ s.t. && \||\mathbf{y}-\mathbf{W}\mathbf{x}\||_2^2 \leq \alpha \nonumber \end{eqnarray} $$

Looking Through the Bayesian Lens

  • Bayes Rule:
  • $$ \begin{eqnarray} p(\mathbf{\theta}|\mathbf{x},\mathbf{y}) &=& \frac{p(\mathbf{y}|\mathbf{x},\mathbf{\theta})p(\mathbf{\theta})}{p(\mathbf{y}|\mathbf{x})} \\ &=& \frac{p(\mathbf{y}|\mathbf{x},\mathbf{\theta})p(\mathbf{\theta})}{\int_{\mathbf{\theta}}p(\mathbf{y}|\mathbf{x},\mathbf{\theta})p(\mathbf{\theta})} \end{eqnarray} $$
  • Likelihood:
  • $$ p(\mathbf{y}|\mathbf{x},\mathbf{\theta}) = \frac{1}{Z}e^{-E(\mathbf{\theta},\mathbf{x},\mathbf{y})} $$
  • Prior:
  • $$p(\mathbf{\theta}) = \frac{1}{Z}e^{-E(\mathbf{\theta})}$$

Maximum-Aposteriori-Learning (MAP)

$$ \begin{eqnarray} \hat{\mathbf{\theta}} &=& \underset{\theta}{\operatorname{arg max}} \prod_i p(\mathbf{\theta}|\mathbf{x}_i,\mathbf{y}_i) \nonumber \\ \end{eqnarray} $$ $$ \begin{eqnarray} &=& \underset{\theta}{\operatorname{arg max}} p(\mathbf{\theta})\frac{\prod_i p(\mathbf{y}_i|\mathbf{x}_i,\mathbf{\theta})}{\prod_i p(\mathbf{y}_i|\mathbf{x}_i)} \nonumber \\ \end{eqnarray} $$ $$ \begin{eqnarray} &=& \underset{\theta}{\operatorname{arg max}} p(\mathbf{\theta})\prod_i p(\mathbf{y}_i|\mathbf{x}_i,\mathbf{\theta}) \nonumber \\ \end{eqnarray} $$ $$ \begin{eqnarray} &=& \underset{\theta}{\operatorname{arg min}} \left(E(\mathbf{\theta},\mathbf{x},\mathbf{y}) + E(\mathbf{\theta})\right) \nonumber \end{eqnarray} $$
  • Example:
$E(\mathbf{\theta},\mathbf{x},\mathbf{y})=\|\mathbf{y}-\mathbf{X}\mathbf{a}\|_2^2$ and $E(\mathbf{\theta})=\lambda\|\mathbf{a}\|^2_2$

Q & A

Image
XKCD