Supervised Learning Applications - II
CSE 891: Deep Learning
Vishnu Boddeti
Wednesday November 08, 2021
Regression: Object Alignment
Regression: Object Alignment
Structured Output Prediction
- Traditional Learning: Mapping $f : \mathcal{X} \rightarrow \mathbb{R}$
- Structured Output Learning: Mapping $f : \mathcal{X} \rightarrow \mathcal{Y}$
Semantic Segmentaion
Image Annotations
Human Pose Estimation
Human Pose Estimation
Pose Estimation: Difficulty
Pose Estimation: Difficulty
Parts Model
Deformable Parts Model
Parts Model
Pose Estimation: Results
Dense Structured Output Prediction
- Recognizing and delineating objects in an image
- Classifying each pixel in the image
- A fully connected graphical model can account for contextual information in the image.
Dense CRF
- Pairwise energies are defined for every pixel pair in the image.
\begin{equation}
E(\mathbf{x}) = \sum_{i} unary(x_i) + \sum_{(i,j) \in G} pairwise(x_i,x_j) \nonumber
\end{equation}
- Exact inference is not feasible.
- Use approximate mean field inference.
Mean Field Approximation
Unrolling Message Passing
Learning Message Passing
3D Computer Vision
3D Representations
Depth Estimation
Depth Estimation Network
- Eigen, Puhrsh, and Fergus, “Depth Map Prediction from a Single Image using a Multi-Scale Deep Network”, NeurIPS 2014
- Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015
- Slide Credit: Justin Johnson
Depth Estimation Loss
- $L_2$ distance is scale variant
- Absolute scale/depth are ambiguous from a single image
- We need a scale invariant loss
$$
\begin{equation}
D(\mathbf{y},\mathbf{y}^*) = \frac{1}{2n^2}\sum_{i,j} \left( (\log y_i - \log y_j) - (\log y^*_i - \log y^*_j) \right)^2
\end{equation}
$$
3D Surface Normal Estimation
3D Surface Normal Estimation Network
- Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015
- Slide Credit: Justin Johnson
Pixel2Mesh
- Iterative Refinement
- Graph Convolution
- Vertex ALigned Features
- Chamfer Loss Function
- Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018
Neural Radiance Fields
- Mildenhall et al, ”NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”, ECCV 2020
Motion Deblurring
- Purohit et al "Region-Adaptive Dense Network for Efficient Motion Deblurring" AAAI 2019
- Purohit et al "Spatially-Attentive Patch-Hierarchical Network for Adaptive Motion Deblurring" CVPR 2020
Motion Deblurring Results
- Purohit et al "Region-Adaptive Dense Network for Efficient Motion Deblurring" AAAI 2019
- Purohit et al "Spatially-Attentive Patch-Hierarchical Network for Adaptive Motion Deblurring" CVPR 2020
Video from Single Motion Blurred Image
- Purohit et al "Bringing Alive Blurred Moments" CVPR 2019
Video from Single Motion Blurred Image
- Purohit et al "Bringing Alive Blurred Moments" CVPR 2019
Knowledge Distillation: Key Idea
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Knowledge Distillation: Idea Map
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
What Should We Distill?
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
How Does it Work?
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Distilling Final Feature
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Distilling Intermediate Features
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Student Model Design
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Online and Self Distillation
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Adversarial Knowledge Distillation
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Distillation from Teacher Ensemble
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Distillation from Teacher Ensemble
- Wu et al "Distilled Person Re-identification: Towards a More Scalable System" CVPR 2019
Knowledge for Domain Adaptation
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Knowledge for Synthetic Data
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Knowledge for Synthetic Data
- Yin et al "Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion" CVPR 2020
Model Quantization
- Gou et al "Knowledge Distillation: A Survey" Arxiv 2006.05525
Model Quantization
- Kim et al "QKD: Quantization-aware Knowledge Distillation" Arxiv 1911.12491
Feature Normalized Knowledge Distillation
- Xu et al "Feature Normalized Knowledge Distillation for Image Classification" ECCV 2020
Knowledge Distialltion for Privacy Preserving Learning
- Papernot et al "Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data", ICLR 2017
Distilling Relational Knowledge
- Park et al "Relational Knowledge Distillation" CVPR 2019
Knowledge Distialltion: Black Magic?
- Yuan et al "Revisiting Knowledge Distillation via Label Smoothing Regularization", CVPR 2020
Label Smoothing
$y_c^{LS} = (1-\alpha)y_c + \alpha\frac{1}{C}$
- With label smoothing, the model is encouraged to treat each incorrect class as equally probable.
- Muller et al "When Does Label Smoothing Help?" NeurIPS 2019