$\mathbb{R}$ |
set of Real numbers |
|
$\mathbb{C}$ |
set of Complex numbers |
|
$\mathbb{N}$ |
set of natural numbers |
|
$\mathcal{N}$ |
any set of numbers |
|
$\forall$ |
For all |
|
$\exists$ |
There exists |
|
$\in$ |
belongs to |
|
$\subset$ |
subset |
|
$\ni$ or $ |
$ |
such that |
iff |
if and only if |
|
$\mapsto$ |
maps to |
|
$\rightarrow$ |
converges to |
|
$\Rightarrow$ |
implies |
|
$\mathcal{F}(X,\mathbb{R})$ |
space of functions from $X \mapsto \mathbb{R}$ |
|
$\mathcal{C}(X, \mathbb{R})$ |
space of continuous functions from $X \mapsto \mathbb{R}$ |
|
$\mathcal{C}^r([a,b])$ |
space of $r$-times continuously differentiable functions from in $[a, b]$ |
|
$\mathcal{L}(U,V)$ |
a linear mapping from vector space $U$ to vector space $V$ |
|