Mathematical Notation

Symbol Description
$\mathbb{R}$ set of Real numbers
$\mathbb{C}$ set of Complex numbers
$\mathbb{N}$ set of natural numbers
$\mathcal{N}$ any set of numbers
$\forall$ For all
$\exists$ There exists
$\in$ belongs to
$\subset$ subset
$\ni$ or $:$ or $|$ or $s.t.$ such that
iff if and only if
$\mapsto$ maps to
$\rightarrow$ converges to
$\Rightarrow$ implies
$\mathcal{F}(X,\mathbb{R})$ space of functions from $X \mapsto \mathbb{R}$
$\mathcal{C}(X, \mathbb{R})$ space of continuous functions from $X \mapsto \mathbb{R}$
$\mathcal{C}^r([a,b])$ space of $r$-times continuously differentiable functions in $[a, b]$
$\mathcal{L}(U,V)$ a linear mapping from vector space $U$ to vector space $V$