| $\mathbb{R}$ |
set of Real numbers |
| $\mathbb{C}$ |
set of Complex numbers |
| $\mathbb{N}$ |
set of natural numbers |
| $\mathcal{N}$ |
any set of numbers |
| $\forall$ |
For all |
| $\exists$ |
There exists |
| $\in$ |
belongs to |
| $\subset$ |
subset |
| $\ni$ or $:$ or $|$ or $s.t.$ |
such that |
| iff |
if and only if |
| $\mapsto$ |
maps to |
| $\rightarrow$ |
converges to |
| $\Rightarrow$ |
implies |
| $\mathcal{F}(X,\mathbb{R})$ |
space of functions from $X \mapsto \mathbb{R}$ |
| $\mathcal{C}(X, \mathbb{R})$ |
space of continuous functions from $X \mapsto \mathbb{R}$ |
| $\mathcal{C}^r([a,b])$ |
space of $r$-times continuously differentiable functions in $[a, b]$ |
| $\mathcal{L}(U,V)$ |
a linear mapping from vector space $U$ to vector space $V$ |