CSE 840: Computational Foundations of Artificial Intelligence Aug 28, 2023	
Vector Spaces, Basis and Dimension, Direct Sum	
Instructor: Vishnu Boddeti	Scribe: Batuhan Yucer, Onur Can Yucedag

1 Vector Spaces

Definition 1 A group is a set of elements \mathbf{G} with an operation $+: \mathbf{G} \times \mathbf{G} \rightarrow \mathbf{G}$ that satisfies the following properties:
(+ is used as a representative symbol for any operation, and does not necessarily mean "addition")
(P1) Associativity: $\forall a, b, c \in \mathbf{G}:(a+b)+c=a+(b+c)$
(P2) Identity element: $\exists e \in \mathbf{G}, \forall g \in \mathbf{G}: e+g=g+e=g$ $\boldsymbol{E} . \boldsymbol{g}$. For the addition operation, the identity element is 0 .
(P3) Inverse element: $\forall a \in \mathbf{G}, \exists b \in \mathbf{G}: a+b=b+a=e$ E.g. For the addition operation, $b=-a$.

A group is called a commutative group (or abelian group) if it also satisfies the following property:
(P4) Commutativity: $\forall a, b \in \mathbf{G}: a+b=b+a$

Examples:

- $\left(\mathbb{R}^{n},+\right)$ is a group.
- $\left(\mathbb{R}^{+}, \cdot\right)$ is a group.
- $\left(\mathbb{R}^{-}, \cdot\right)$ is not a group.
- Given the set of permutation matrices

$$
\mathbf{S}_{\mathbf{n}}:=\{\pi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\} \mid \pi \text { is bijective }\}
$$

and the combination operation

$$
\begin{aligned}
& \circ: \mathbf{S}_{\mathbf{n}} \times \mathbf{S}_{\mathbf{n}} \rightarrow \mathbf{S}_{\mathbf{n}} \\
& \pi_{1} \circ \pi_{2}(i):=\pi_{1}\left(\pi_{2}(i)\right)
\end{aligned}
$$

$\left(\mathbf{S}_{\mathbf{n}}, \circ\right)$ is a group.

Definition $2 A$ field is a set of elements \mathbf{F} with two operations $+, \cdot: \mathbf{F} \times \mathbf{F} \rightarrow \mathbf{F}$ that satisfies the following properties:
(P1) $(\mathbf{F},+)$ is a commutative group with the identity element 0.
(P2) $(\mathbf{F} \backslash\{0\}, \cdot)$ is a commutative group with the identity element 1.
(P3) Distributivity: $\forall a, b, c \in \mathbf{F}: a \cdot(b+c)=a \cdot b+a \cdot c$

Examples:

- $(\mathbb{R},+, \cdot)$ is a field.
- $(\mathbb{C},+, \cdot)$ is a field.
- Given $n \in \mathbb{Z}$, the set

$$
\mathbf{Z}_{\mathbf{n}}:=\{0,1, \ldots, n-1\}
$$

and the operations

$$
\begin{aligned}
& a+{ }_{n} b:=(a+b) \bmod n \\
& a \cdot{ }_{n} b:=(a \cdot b) \bmod n
\end{aligned}
$$

(subscript n denotes that the operations are defined on these n integers)
$\left(\mathbf{Z}_{\mathbf{n}},+_{n},{ }_{n}\right)$ is a field if and only if n is a prime.

Definition 3 Let \mathbf{F} be a field with identity elements 0 and 1. A vector space defined over the field \mathbf{F} is a set \mathbf{V} with two mappings
$+: \mathbf{V} \times \mathbf{V} \rightarrow \mathbf{V}$ (vector addition)
$\cdot: \mathbf{F} \times \mathbf{V} \rightarrow \mathbf{V}$ (scalar multiplication)
that satisfies the following properties:
(P1) $(\mathbf{V},+)$ is a commutative group.
(P2) Multiplicative identity: $\forall v \in \mathbf{V}: 1 \cdot v=v$
(P3) Distributivity: $\forall a, b \in \mathbf{F}, \forall u, v \in \mathbf{V}$:

$$
\begin{aligned}
& a \cdot(u+v)=a \cdot u+a \cdot v \\
& (a+b) \cdot u=a \cdot u+b \cdot u
\end{aligned}
$$

Remark 4 The elements of \mathbf{V} are called vectors, and the elements of \mathbf{F} are called scalars.

Examples:

- \mathbb{R}^{n} with the standard operations $(+, \cdot)$ is a vector space.
- Function spaces:

$$
\mathcal{F}(X, \mathbb{R}):=\{f: X \rightarrow \mathbb{R}\}
$$

is the space of all real-valued function on a set X. Given the operation
$+: \mathcal{F}(X, \mathbb{R}) \times \mathcal{F}(X, \mathbb{R}) \rightarrow \mathcal{F}(X, \mathbb{R})$
$(f+g)(x):=f(x)+g(x)$
where $f, g \in \mathcal{F}(X, \mathbb{R})$ and $x \in X$
and the operation
$\cdot: \mathbb{R} \times \mathcal{F}(X, \mathbb{R}) \rightarrow \mathcal{F}(X, \mathbb{R})$
$(\lambda \cdot f)(x):=\lambda \cdot f(x)$
where $\lambda \in \mathbb{R}, f \in \mathcal{F}(X, \mathbb{R})$ and $x \in X$
$(\mathcal{F}(X, \mathbb{R}),+, \cdot)$ is a real-vector space.

- $\mathcal{C}(X):=\{f: X \rightarrow \mathbb{R} \mid f$ is continuous $\}$ also forms a vector space.
- $\mathcal{C}^{r}([a, b]):=\{f:[a, b] \rightarrow \mathbb{R} \mid f$ is r times continuously differentiable $\}$ also forms a vector space.

Definition 5 Let \mathbf{V} be a vector space over field \mathbf{F}, and $\mathbf{U} \subset \mathbf{V}$ be a non-empty set. \mathbf{U} is a subspace of \mathbf{V} if it is closed under linear combinations:
$\forall \lambda, \mu \in \mathbf{F}, \forall u, v \in \mathbf{U}: \lambda \cdot u+\mu \cdot v \in \mathbf{U}$

Examples:

- $\mathcal{C}(X)$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.
- The sets of symmetric matrices of size $n \times n$ is a subspace of $\mathbb{R}^{n \times n}$ (all matrices of size $n \times n$; real valued matrices are assumed).
- The set $\{u, v\} \subset \mathbf{V}$ is not a subspace of \mathbf{V}; because $\lambda \cdot u+\mu \cdot v \notin\{u, v\}$ for an arbitrarily chosen $\lambda, \mu \in \mathbb{R}$, meaning that the set is not closed under linear combinations.

Definition 6 Let \mathbf{V} be a vector space over field \mathbf{F}. Given $u_{1}, u_{2}, \ldots, u_{n} \in \mathbf{V}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbf{F}$, $\sum_{i=1}^{n} \lambda_{i} u_{i}$ is called a linear combination.

The set of all existing linear combinations of $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is the span (or linear hull) of $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$:
$\operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{n}\right):=\left\{\sum_{i=1}^{n} \lambda_{i} u_{i} \mid \lambda_{i} \in \mathbf{F}\right\}$
The set $\mathbf{U}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is the generator of $\operatorname{span}(\mathbf{U})$.

Definition $7 A$ set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent if the following condition holds:
$\sum_{i=1}^{n} \lambda_{i} v_{i} \Rightarrow \lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$

Examples:

- Vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \in \mathbb{R}^{3}$ are linearly independent.
- Functions $\sin (x)$ and $\cos (x)$ are linearly independent.
- Any set of $d+1$ vectors in \mathbb{R}^{d} are linearly dependent.

2 Basis and Dimension

Definition 8 A subset \mathbf{B} of a vector space \mathbf{V} is called a (Hamel) basis if the following conditions hold:
(P1) $\operatorname{span}(\mathbf{B})=\mathbf{V}$
(P2) \mathbf{B} is linearly independent.

The Hamel basis concerns only finite linear combinations, even for infinite dimensional vector spaces.

Examples:

- The canonical basis of \mathbb{R}^{3}

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

- Another basis of \mathbb{R}^{3} :

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { or }\left(\begin{array}{l}
0.5 \\
0.8 \\
0.4
\end{array}\right),\left(\begin{array}{l}
1.8 \\
0.3 \\
0.3
\end{array}\right),\left(\begin{array}{c}
-2.2 \\
-1.3 \\
3.5
\end{array}\right)
$$

Proposition 9 If $\mathbf{U}=\left\{u_{1}, \ldots, u_{n}\right\}$ spans a vector space \mathbf{V}, then the set \mathbf{U} can be reduced to a basis of \mathbf{V}

Proof:

1. If \mathbf{U} is already linearly independent, then $\mathbf{U}=\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ in \mathbf{V} is a basis of \mathbf{V}.
2. If vectors in \mathbf{U} are linearly dependent: $\exists a \in \mathbf{U}$ that is a linear combination of the other vectors in U. Remove vector a. Repeat this step until remaining vectors are linearly independent.

Definition 10 A vector space is called finite-dimensional if it has at least one finite basis.

Proposition 11 Let $\mathbf{U}=\left\{u_{1}, \ldots, u_{n}\right\} \subset \mathbf{V}$ be a set of linearly independent vectors, and let \mathbf{V} be a finite-dimensional vector space, then \mathbf{U} can be extended to a basis of \mathbf{V}.

Proof: Let $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be a basis of \mathbf{V}. Consider the set $\left\{u_{1}, u_{2}, \ldots, u_{n}, w_{1}, w_{2}, \ldots, w_{m}\right\}$.
Remove vectors "from the end" until the remaining vectors are linearly independent

- Remaining set spans \mathbf{V}
- Remaining set is linearly independent by construction
- Remaining set contains \mathbf{U}

As a consequence of this proof, we can extend every independent set to a basis.
This proof only works on finite-dimensional vector spaces. For infinite-dimensional spaces, Zorn's Lemma is needed to prove the proposition.

Corollary 12 Let \mathbf{V} be a finite-dimensional vector space, then any two bases of \mathbf{V} have the same length.

Definition 13 The length of a basis of a finite dimensional vector space is called the dimension of \mathbf{V}.

3 Sum and Direct Sum

Definition 14 Assume that $\mathbf{U}_{\mathbf{1}}, \mathbf{U}_{\mathbf{2}}$ are subspaces of \mathbf{V}. The sum of the two spaces is defined as: $\mathbf{U}_{\mathbf{1}}+\mathbf{U}_{\mathbf{2}}:=\left\{u_{1}+u_{2} \mid u_{1} \in \mathbf{U}_{\mathbf{1}}, u_{2} \in \mathbf{U}_{\mathbf{2}}\right\}$

The sum is called a direct sum, if each element in the sum can be written in exactly one way: $\mathbf{U}_{1} \bigoplus \mathbf{U}_{\mathbf{2}}$

Proposition 15 Suppose \mathbf{V} is a finite-dimensional vector space, and $\mathbf{U} \subset \mathbf{V}$ is a subspace. Then there exists a subspace $\mathbf{W} \subset \mathbf{V}$, such that $\mathbf{U} \bigoplus \mathbf{W}=\mathbf{V}$.

Proof: Let the set $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a basis of \mathbf{U}. Extend it to a basis of \mathbf{V}, say the resulting set is:

$$
\begin{aligned}
& \{\underbrace{u_{1}, u_{2}, \ldots, u_{n}}_{\operatorname{span}(\mathbf{U})}, \underbrace{v_{1}, v_{2}, \ldots, v_{m}}_{\operatorname{span}(\mathbf{W})}\} \\
& \mathbf{W}=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}
\end{aligned}
$$

For non-overlapping subspaces, the direct sum helps to define the notion of space and its complement. Here, the subspace \mathbf{W} is the complement of the subspace \mathbf{U}; together, they form the vector space V.

