CSE 840: Computational Foundations of Artificial Intelligence Aug 28, 2023 Vector Spaces, Basis and Dimension, Direct Sum Instructor: Vishnu Boddeti Scribe: Batuhan Yucer, Onur Can Yucedag

1 Vector Spaces

Definition 1 A group is a set of elements **G** with an operation + : **G** × **G** \rightarrow **G** that satisfies the following properties:

(+ is used as a representative symbol for any operation, and does not necessarily mean "addition")

- (P1) Associativity: $\forall a, b, c \in \mathbf{G} : (a+b) + c = a + (b+c)$
- (P2) Identity element: $\exists e \in \mathbf{G}, \forall g \in \mathbf{G} : e + g = g + e = g$ E.g. For the addition operation, the identity element is 0.
- (P3) Inverse element: $\forall a \in \mathbf{G}, \exists b \in \mathbf{G} : a + b = b + a = e$ E.g. For the addition operation, b = -a.

A group is called a **commutative group** (or **abelian group**) if it also satisfies the following property:

(P4) Commutativity: $\forall a, b \in \mathbf{G} : a + b = b + a$

Examples:

- $(\mathbb{R}^n, +)$ is a group.
- (\mathbb{R}^+, \cdot) is a group.
- (\mathbb{R}^-, \cdot) is <u>**not**</u> a group.
- Given the set of permutation matrices

$$\mathbf{S_n} := \{ \pi : \{1, 2, \dots, n\} \to \{1, 2, \dots, n\} \mid \pi \text{ is bijective} \}$$

and the combination operation

$$\circ: \mathbf{S_n} \times \mathbf{S_n} \to \mathbf{S_n}$$

$$\pi_1 \circ \pi_2(i) := \pi_1(\pi_2(i))$$

 $(\mathbf{S_n}, \circ)$ is a group.

Definition 2 A *field* is a set of elements \mathbf{F} with two operations $+, \cdot : \mathbf{F} \times \mathbf{F} \to \mathbf{F}$ that satisfies the following properties:

- (P1) $(\mathbf{F}, +)$ is a commutative group with the identity element 0.
- (P2) $(\mathbf{F} \setminus \{0\}, \cdot)$ is a commutative group with the identity element 1.

(P3) **Distributivity:** $\forall a, b, c \in \mathbf{F} : a \cdot (b + c) = a \cdot b + a \cdot c$

Examples:

- $(\mathbb{R}, +, \cdot)$ is a field.
- $(\mathbb{C}, +, \cdot)$ is a field.
- Given $n \in \mathbb{Z}$, the set

 $\mathbf{Z}_{\mathbf{n}} := \{0, 1, \dots, n-1\}$

and the operations

 $a +_n b := (a + b) \mod n$ $a \cdot_n b := (a \cdot b) \mod n$

(subscript n denotes that the operations are defined on these n integers)

 $(\mathbf{Z}_{\mathbf{n}}, +_n, \cdot_n)$ is a field **if and only if** n is a prime.

Definition 3 Let \mathbf{F} be a field with identity elements 0 and 1. A vector space defined over the field \mathbf{F} is a set \mathbf{V} with two mappings

 $\begin{array}{l} +: \mathbf{V} \times \mathbf{V} \to \mathbf{V} \ (vector \ addition) \\ \cdot: \mathbf{F} \times \mathbf{V} \to \mathbf{V} \ (scalar \ multiplication) \end{array}$

that satisfies the following properties:

- (P1) $(\mathbf{V}, +)$ is a commutative group.
- (P2) Multiplicative identity: $\forall v \in \mathbf{V} : 1 \cdot v = v$
- (P3) **Distributivity:** $\forall a, b \in \mathbf{F}, \forall u, v \in \mathbf{V}$:
 - $a \cdot (u+v) = a \cdot u + a \cdot v$ $(a+b) \cdot u = a \cdot u + b \cdot u$

Remark 4 The elements of \mathbf{V} are called vectors, and the elements of \mathbf{F} are called scalars.

Examples:

- \mathbb{R}^n with the standard operations $(+, \cdot)$ is a vector space.
- Function spaces:

 $\mathcal{F}(X,\mathbb{R}) := \left\{ f : X \to \mathbb{R} \right\}$

is the space of all real-valued function on a set X. Given the operation

 $+: \mathcal{F}(X, \mathbb{R}) \times \mathcal{F}(X, \mathbb{R}) \to \mathcal{F}(X, \mathbb{R})$ (f+g)(x) := f(x) + g(x)

where $f, g \in \mathcal{F}(X, \mathbb{R})$ and $x \in X$

and the operation

$$egin{aligned} &\cdot: \mathbb{R} imes \mathcal{F}(X, \mathbb{R}) o \mathcal{F}(X, \mathbb{R}) \ &(\lambda \cdot f)(x) := \lambda \cdot f(x) \end{aligned}$$

where $\lambda \in \mathbb{R}$, $f \in \mathcal{F}(X, \mathbb{R})$ and $x \in X$

 $(\mathcal{F}(X,\mathbb{R}),+,\cdot)$ is a real-vector space.

- $\mathcal{C}(X) := \{ f : X \to \mathbb{R} \mid f \text{ is continuous} \}$ also forms a vector space.
- $\mathcal{C}^r([a,b]) := \{f : [a,b] \to \mathbb{R} \mid f \text{ is } r \text{ times continuously differentiable}\}$ also forms a vector space.

Definition 5 Let V be a vector space over field F, and $U \subset V$ be a non-empty set. U is a subspace of V if it is <u>closed</u> under linear combinations:

 $\forall \lambda, \mu \in \mathbf{F}, \ \forall u, v \in \mathbf{U} : \lambda \cdot u + \mu \cdot v \in \mathbf{U}$

Examples:

- $\mathcal{C}(X)$ is a subspace of $\mathcal{F}(X, \mathbb{R})$.
- The sets of symmetric matrices of size $n \times n$ is a subspace of $\mathbb{R}^{n \times n}$ (all matrices of size $n \times n$; real valued matrices are assumed).
- The set $\{u, v\} \subset \mathbf{V}$ is **not** a subspace of \mathbf{V} ; because $\lambda \cdot u + \mu \cdot v \notin \{u, v\}$ for an arbitrarily chosen $\lambda, \mu \in \mathbb{R}$, meaning that the set is not closed under linear combinations.

Definition 6 Let **V** be a vector space over field **F**. Given $u_1, u_2, \ldots, u_n \in \mathbf{V}$ and $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbf{F}$, $\sum_{i=1}^{n} \lambda_i u_i$ is called a linear combination.

The set of all existing linear combinations of $(u_1, u_2, ..., u_n)$ is the **span** (or **linear hull**) of $(u_1, u_2, ..., u_n)$:

 $span(u_1, u_2, \dots, u_n) := \left\{ \sum_{i=1}^n \lambda_i u_i \mid \lambda_i \in \mathbf{F} \right\}$

The set $\mathbf{U} = \{u_1, u_2, \dots, u_n\}$ is the generator of span (\mathbf{U}) .

Definition 7 A set of vectors $v_1, v_2, ..., v_n$ are **linearly independent** if the following condition holds:

$$\sum_{i=1}^{n} \lambda_i v_i \Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$$

Examples:

- Vectors $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ $\in \mathbb{R}^3$ are linearly independent.
- Functions $\sin(x)$ and $\cos(x)$ are linearly independent.
- Any set of d+1 vectors in \mathbb{R}^d are linearly dependent.

2 Basis and Dimension

Definition 8 A subset **B** of a vector space **V** is called a (Hamel) **basis** if the following conditions hold:

- (P1) $span(\mathbf{B}) = \mathbf{V}$
- (P2) **B** is linearly independent.

The **Hamel basis** concerns only finite linear combinations, even for infinite dimensional vector spaces.

Examples:

• The canonical basis of
$$\mathbb{R}^3$$

 $\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$
• Another basis of \mathbb{R}^3 :
 $\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}$ or $\begin{pmatrix} 0.5\\0.8\\0.4 \end{pmatrix}, \begin{pmatrix} 1.8\\0.3\\0.3 \end{pmatrix}, \begin{pmatrix} -2.2\\-1.3\\3.5 \end{pmatrix}$

Proposition 9 If $\mathbf{U} = \{u_1, ..., u_n\}$ spans a vector space \mathbf{V} , then the set \mathbf{U} can be reduced to a basis of \mathbf{V}

Proof:

- 1. If **U** is already linearly independent, then $\mathbf{U} = {\mathbf{u}_1, ..., \mathbf{u}_n}$ in **V** is a basis of **V**.
- 2. If vectors in **U** are linearly dependent: $\exists a \in \mathbf{U}$ that is a linear combination of the other vectors in **U**. Remove vector a. Repeat this step until remaining vectors are linearly independent.

Definition 10 A vector space is called finite-dimensional if it has at least one finite basis.

Proposition 11 Let $\mathbf{U} = \{u_1, ..., u_n\} \subset \mathbf{V}$ be a set of linearly independent vectors, and let \mathbf{V} be a finite-dimensional vector space, then \mathbf{U} can be extended to a basis of \mathbf{V} .

Proof: Let $\{w_1, w_2, ..., w_m\}$ be a basis of **V**. Consider the set $\{u_1, u_2, ..., u_n, w_1, w_2, ..., w_m\}$.

Remove vectors "from the end" until the remaining vectors are linearly independent

- Remaining set spans V
- Remaining set is linearly independent by construction
- Remaining set contains **U**

As a consequence of this proof, we can extend every independent set to a basis.

This proof only works on finite-dimensional vector spaces. For infinite-dimensional spaces, Zorn's Lemma is needed to prove the proposition.

Corollary 12 Let V be a finite-dimensional vector space, then any two bases of V have the same length.

Definition 13 The length of a basis of a finite dimensional vector space is called the dimension of \mathbf{V} .

3 Sum and Direct Sum

Definition 14 Assume that U_1 , U_2 are subspaces of V. The sum of the two spaces is defined as:

 $U_1 + U_2 := \{u_1 + u_2 | u_1 \in U_1, u_2 \in U_2\}$

The sum is called a **direct sum**, if each element in the sum can be written in exactly one way:

 $U_1 \bigoplus U_2$

Proposition 15 Suppose V is a finite-dimensional vector space, and $U \subset V$ is a subspace. Then there exists a subspace $W \subset V$, such that $U \bigoplus W = V$.

Proof: Let the set $\{u_1, u_2, ..., u_n\}$ be a basis of **U**. Extend it to a basis of **V**, say the resulting set is:

$$\{\underbrace{u_1, u_2, \dots, u_n}_{\operatorname{span}(\mathbf{U})}, \underbrace{v_1, v_2, \dots, v_m}_{\operatorname{span}(\mathbf{W})}\}$$
$$\mathbf{W} = span\{v_1, v_2, \dots, v_m\}$$

For non-overlapping subspaces, the direct sum helps to define the notion of space and its complement. Here, the subspace \mathbf{W} is the complement of the subspace \mathbf{U} ; together, they form the vector space \mathbf{V} .