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1 Vector Spaces

Definition 1 A group is a set of elements G with an operation + : G×G → G that satisfies the
following properties:
(+ is used as a representative symbol for any operation, and does not necessarily mean "addition")

(P1) Associativity: ∀a, b, c ∈ G : (a+ b) + c = a+ (b+ c)

(P2) Identity element: ∃e ∈ G,∀g ∈ G : e+ g = g + e = g
E.g. For the addition operation, the identity element is 0.

(P3) Inverse element: ∀a ∈ G,∃b ∈ G : a+ b = b+ a = e
E.g. For the addition operation, b = −a.

A group is called a commutative group (or abelian group) if it also satisfies the following prop-
erty:

(P4) Commutativity: ∀a, b ∈ G : a+ b = b+ a

Examples:

• (Rn,+) is a group.

• (R+, ·) is a group.

• (R−, ·) is not a group.

• Given the set of permutation matrices

Sn :=
{
π : {1, 2, . . . , n} → {1, 2, . . . , n}

∣∣ π is bijective
}

and the combination operation

◦ : Sn × Sn → Sn

π1 ◦ π2(i) := π1(π2(i))

(Sn, ◦) is a group.
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Definition 2 A field is a set of elements F with two operations +, · : F×F → F that satisfies the
following properties:

(P1) (F,+) is a commutative group with the identity element 0.

(P2) (F \ {0}, ·) is a commutative group with the identity element 1.

(P3) Distributivity: ∀a, b, c ∈ F : a · (b+ c) = a · b+ a · c

Examples:

• (R,+, ·) is a field.

• (C,+, ·) is a field.

• Given n ∈ Z, the set

Zn :=
{
0, 1, . . . , n− 1

}
and the operations

a+n b := (a+ b) mod n
a ·n b := (a · b) mod n

(subscript n denotes that the operations are defined on these n integers)

(Zn,+n, ·n) is a field if and only if n is a prime.

Definition 3 Let F be a field with identity elements 0 and 1. A vector space defined over the field
F is a set V with two mappings

+ : V ×V → V (vector addition)
· : F×V → V (scalar multiplication)

that satisfies the following properties:

(P1) (V,+) is a commutative group.

(P2) Multiplicative identity: ∀v ∈ V : 1 · v = v

(P3) Distributivity: ∀a, b ∈ F,∀u, v ∈ V :

a · (u+ v) = a · u+ a · v
(a+ b) · u = a · u+ b · u

Remark 4 The elements of V are called vectors, and the elements of F are called scalars.
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Examples:

• Rn with the standard operations (+, ·) is a vector space.

• Function spaces:

F(X,R) :=
{
f : X → R

}
is the space of all real-valued function on a set X. Given the operation

+ : F(X,R)×F(X,R) → F(X,R)
(f + g)(x) := f(x) + g(x)

where f, g ∈ F(X,R) and x ∈ X

and the operation

· : R×F(X,R) → F(X,R)
(λ · f)(x) := λ · f(x)
where λ ∈ R, f ∈ F(X,R) and x ∈ X

(F(X,R),+, ·) is a real-vector space.

• C(X) :=
{
f : X → R

∣∣ f is continuous
}

also forms a vector space.

• Cr([a, b]) :=
{
f : [a, b] → R

∣∣ f is r times continuously differentiable
}

also forms a vector
space.

Definition 5 Let V be a vector space over field F, and U ⊂ V be a non-empty set. U is a subspace
of V if it is closed under linear combinations:

∀λ, µ ∈ F, ∀u, v ∈ U : λ · u+ µ · v ∈ U

Examples:

• C(X) is a subspace of F(X,R).

• The sets of symmetric matrices of size n× n is a subspace of Rn×n (all matrices of size n× n;
real valued matrices are assumed).

• The set {u, v} ⊂ V is not a subspace of V; because λ · u + µ · v /∈ {u, v} for an arbitrarily
chosen λ, µ ∈ R, meaning that the set is not closed under linear combinations.
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Definition 6 Let V be a vector space over field F. Given u1, u2, . . . , un ∈ V and λ1, λ2, . . . , λn ∈ F,∑n
i=1 λiui is called a linear combination.

The set of all existing linear combinations of (u1, u2, . . . , un) is the span (or linear hull) of
(u1, u2, . . . , un):

span(u1, u2, . . . , un) :=
{∑n

i=1 λiui

∣∣ λi ∈ F
}

The set U = {u1, u2, . . . , un} is the generator of span(U).

Definition 7 A set of vectors v1, v2, . . . , vn are linearly independent if the following condition
holds:∑n

i=1 λivi ⇒ λ1 = λ2 = · · · = λn = 0

Examples:

• Vectors

 1
0
0

 ,

 1
1
0

 ,

 1
1
1

 ∈ R3 are linearly independent.

• Functions sin(x) and cos(x) are linearly independent.

• Any set of d+ 1 vectors in Rd are linearly dependent.

2 Basis and Dimension

Definition 8 A subset B of a vector space V is called a (Hamel) basis if the following conditions
hold:

(P1) span(B) = V

(P2) B is linearly independent.

The Hamel basis concerns only finite linear combinations, even for infinite dimensional vector
spaces.
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Examples:

• The canonical basis of R3 1
0
0

,

 0
1
0

,

 0
0
1


• Another basis of R3: 1

0
0

,

 1
1
0

,

 1
1
1

 or

 0.5
0.8
0.4

,

 1.8
0.3
0.3

,

 −2.2
−1.3
3.5



Proposition 9 If U = {u1, ..., un} spans a vector space V, then the set U can be reduced to a basis
of V

Proof:

1. If U is already linearly independent, then U = {u1, ...,un} in V is a basis of V.

2. If vectors in U are linearly dependent: ∃a ∈ U that is a linear combination of the other vectors
in U. Remove vector a. Repeat this step until remaining vectors are linearly independent.

□

Definition 10 A vector space is called finite-dimensional if it has at least one finite basis.

Proposition 11 Let U = {u1, ..., un} ⊂ V be a set of linearly independent vectors, and let V be a
finite-dimensional vector space, then U can be extended to a basis of V.

Proof: Let {w1, w2, ..., wm} be a basis of V. Consider the set {u1, u2, ..., un, w1, w2, ..., wm}.

Remove vectors "from the end" until the remaining vectors are linearly independent

• Remaining set spans V

• Remaining set is linearly independent by construction

• Remaining set contains U

As a consequence of this proof, we can extend every independent set to a basis.

This proof only works on finite-dimensional vector spaces. For infinite-dimensional spaces, Zorn’s
Lemma is needed to prove the proposition.

□

1-5



Corollary 12 Let V be a finite-dimensional vector space, then any two bases of V have the same
length.

Definition 13 The length of a basis of a finite dimensional vector space is called the dimension
of V.

3 Sum and Direct Sum

Definition 14 Assume that U1, U2 are subspaces of V. The sum of the two spaces is defined as:

U1 +U2 := {u1 + u2|u1 ∈ U1, u2 ∈ U2}

The sum is called a direct sum, if each element in the sum can be written in exactly one way:

U1

⊕
U2

Proposition 15 Suppose V is a finite-dimensional vector space, and U ⊂ V is a subspace. Then
there exists a subspace W ⊂ V, such that U

⊕
W = V.

Proof: Let the set {u1, u2, ..., un} be a basis of U. Extend it to a basis of V, say the resulting set
is:

{u1, u2, ..., un︸ ︷︷ ︸
span(U)

, v1, v2, ..., vm︸ ︷︷ ︸
span(W)

}

W = span{v1, v2, ..., vm}

For non-overlapping subspaces, the direct sum helps to define the notion of space and its complement.
Here, the subspace W is the complement of the subspace U; together, they form the vector space
V.

□
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