| CSE 840: Computational Foundations of Artificial Intelligence | Oct. 4, 2023 |
| :--- | :---: | ---: |
| Lecture 10 | |
| Instructor: Vishnu Boddeti | Scribe: Pilseo Park, Seyeon Park, Ankit Gupta |

1 Calculus

Limits: $\lim _{b \rightarrow a} \frac{f(b)-f(a)}{b-a}$
Derivatives: -> optimization problems
Integrals: -> expectation

2 Sequences

Examples: $\left(a_{n}\right)_{n \in \mathbb{N}}=\left((-1)^{n}\right)_{n \in \mathbb{N}}=(-1,1,-1,1, \ldots)$

(b) $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(\frac{1}{n}\right)_{n \in \mathbb{N}}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)$
$\left(\lim _{n \rightarrow \infty} a_{n}=0\right)$
(c) $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(2^{b}\right)_{n \in \mathbb{N}}=(2,4,8,16, \ldots)$

Definition 1 A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called convergent to $a \in \mathbb{R}$ if $\forall \epsilon>0 \exists N \in \mathbb{N} \forall n \geq N:\left|a_{n}-a\right|<\epsilon$

If there is no such $a \in \mathbb{R}$, then sequence diverges.

Definition 2 A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called bounded if $\exists c \in \mathbb{R} \forall n \in \mathbb{N}:\left|a_{n}\right| \leqq c$ otherwise, the sequence is unbounded.

Fact $3\left(a_{n}\right)_{n \forall \mathbb{N}}$ convergent $=>\left(a_{n}\right)_{n \forall \mathbb{N}}$ bounded.
$\left(a_{n}\right)_{n \forall \mathbb{N}}=>$ There is only one limit $\left(\lim _{n \rightarrow \infty}=a\right) a \in \mathbb{R}$

Definition 4 If $\forall>0 \exists N \in \mathbb{N} \forall n, m \geqq N: \mid a_{n}-a_{m}<\epsilon$ then $(a)_{n \in \mathbb{N}}$ is called a Cauchy Sequence.

Fact 5 For a sequence of real numbers: Cauchy Sequence $<==>$ Convergent Sequence

Proposition 6 If $\left(a_{n}\right)_{n \forall \mathbb{N}}$ is monotonically decreasing $\left(a_{n+1} \leqq a_{n} \forall n\right)$ and bounded from below (the set $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a lower bound), then $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent.

Example subsequence: $\left(a_{n}\right)_{n \in \mathbb{N}}=(-1)^{n}$
subsequence: $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(a_{2 k}\right)_{k \in \mathbb{N}}=(1,1, \ldots 1)->1$
subsequence: $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(a_{2 k+1}\right)_{k \in \mathbb{N}}=(-1,-1, \ldots)->-1$

Definition $7 a \in \mathbb{R}$ is called an accumulation value of $\left(a_{n}\right)_{n \in \mathbb{N}}$ if there is a subsequence $\left(a_{n k}\right)_{k \in \mathbb{N}}$ with $\left(\lim _{k \rightarrow \infty} a_{n k}=a\right)$.

(cluster point, accumulation point, limit paint, partial limit ...)

Theorem 8 Bolzano-Weierstrass theorem.
$\left(a_{n}\right)_{n \in \mathbb{N}}$ bounded $=>\left(a_{n}\right)_{n \in \mathbb{N}}$ has an accumulation value (has a convergent subsequence)

Observation 9 - A sequence can have many accumulation points (or no accumulation point)

- Even if the sequence has just one accumulation point, it is not necessarily a Cauchy sequence.
- If $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to a, then a is the only accumulation point and the sequence is Cauchy sequence.

Example: $\left(a_{n}\right)_{n \in \mathbb{N}}=\frac{1}{n}$ on $(0,1]$
$\left(a_{n}\right)_{n \in \mathbb{N}}$ is Cauchy, but does not converge on (0,1$]$. It does converge to 0 on $[0,1]$.
Max, Sup, Min, Inf assume we are on \mathbb{R} (or more generally, on a space that has a total ordering). Let $U \subset \mathbb{R}$ to be a subset.

- $x \in \mathbb{R}$ is called maximum element of U if $x \in U$ and $\forall u \in U: u \leqq x$. (1 is max $[0,1],(0,1)$ has no max)
- x is called an upper bound of U if $\forall u \in U: u \leqq x$ (5 is an upper bound of $(0,1)$ or $[0,1]$)
- x is called a supremum of U if it is the smallest upper bound. (1 is the supremum of $(0,1)$)

Analogously define minimum, lower bound and infimum. A give sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ could have many accumulation values $\infty,-\infty$ are called improper accumulation points.

Definition 10 Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers. An element $A \in \mathbb{R} \cup(-\infty,+\infty)$ is called:

- limit superior of $\left(a_{n}\right)_{n \in \mathbb{N}}$ if a is the largest (improper) accumulation value of $\left(a_{n}\right)_{n \in \mathbb{N}}$

$$
\text { write } a=\limsup _{n \rightarrow \infty} a_{n}
$$

- limit inferior of $\left(a_{n}\right)_{n \in \mathbb{N}}$ if a is the smallest (improper) accumulation value of $\left(a_{n}\right)_{n \in \mathbb{N}}$
write $a=\liminf _{n \rightarrow \infty} a_{n}$

$$
\begin{array}{ll}
\limsup _{n \rightarrow \infty} a_{n} & =\limsup _{n \rightarrow \infty}\left\{a_{k} \mid k \geq n\right\} \\
\liminf _{n \rightarrow \infty} a_{n} & =\liminf _{n \rightarrow \infty}\left\{a_{k} \mid k \geq n\right\}
\end{array}
$$

2.1 Continuity

Definition 11 A function $f:(x, d) \rightarrow(y, d)$ between two metric spaces (X, d) and (Y, d) is called continuous at $X_{0} \in X$ if $\forall \epsilon>0, \exists \delta>0, \forall x \in X: d\left(X, X_{0}\right)<\delta \Longrightarrow d\left(f(X), f\left(X_{0}\right)\right)<\epsilon$.

Definition $12 f: X \rightarrow Y$ is called continuous at X_{0} iffor every sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$
we have: $X_{n} \rightarrow X_{0} \Longrightarrow f\left(X_{n}\right) \rightarrow f\left(X_{0}\right)$
A function $f: X \rightarrow Y$ is called continuous if it is continuous for every $X_{0} \in X$:
$\forall x_{0} \in X, \forall \epsilon>0, \exists \delta>0, \forall x \in X: d\left(X, X_{0}\right)<\delta$

$$
\Longrightarrow d\left(f(X), f\left(X_{0}\right)\right)<\epsilon
$$

A function $f: X \rightarrow$ is called Lipschitz continuous with Lipschitz constant L if

$$
\forall x, y \in X: d(f(x), f(y) \leq L \times d(x, y)
$$

Intuition: "bounded derivative"

A function $f: X \rightarrow Y$ is called uniformly continuous if

$$
\begin{gathered}
\forall \epsilon>0, \exists \delta>0, \forall x_{0} \in X: d\left(X, X_{0}\right)<\delta \\
\Longrightarrow d\left(f(X), f\left(X_{0}\right)\right)<\epsilon
\end{gathered}
$$

Given ϵ, I can choose δ that works for all X_{0} Intuition: bounded derivative

Cannot choose δ to be the same for all X_{0} Intuition: unbounded derivative

3 Important theorems for continuous Function

Intermediate Value Theorem:

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f attains all values between $f(a) \& f(b)$:

$$
\forall y \in[f(a), f(b)], \exists x \in[a, b]: f(x)=y
$$

Application: If you want to find X with $f(X)=0$:

$$
\begin{gathered}
\text { find a with } f(a)<0 \\
\text { find } \mathrm{b} \text { with } f(b)>0 \\
\text { then there must exist } x \in[a, b] \text { with } f(x)=0
\end{gathered}
$$

Invertible Functions:

$D \subset R, f: D \rightarrow \mathbb{R}$ continuous, strictly monotone $(a<b \Rightarrow f(a)<f(b)$).

Then f is invertible and the inverse is continuous as well.

- invertible follows from monotonicity.

- Continuity of the inverse follows directly from continuity of f.

A function f between two metric spaces $(x, d),(y, d)$ is continuous iff pre-images of the open sets are open:

$$
B \subset y \text { open (in y) } \Rightarrow f^{-1}(B):=x \in X \mid f(x) \in B \text { open (in } X \text {). }
$$

4 Sequences of Functions

Function: $f: I \rightarrow \mathbb{R}(I \subseteq \mathbb{R})$

Continuous functions : $f: \mathbb{R} \rightarrow \mathbb{R}$

Idea: small changes on x -axis \rightarrow small changes on y -axis.

For any fixed $\tilde{x} \in I$, we can get an ordinary sequence of real-numbers.

$$
\left(f_{1}(\tilde{x}), f_{2}(\tilde{x}), f_{3}(\tilde{x}), f_{4}(\tilde{x}), \ldots\right)
$$

Def: Consider functions : $f_{n}: I \rightarrow \mathbb{R}, I \subseteq \mathbb{R}$

We say that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges prointwise to $f: I \rightarrow \mathbb{R}$ if

$$
\begin{gathered}
\forall x \in I: f_{n}(x) \rightarrow f(x) \\
y_{n}: f_{n}(x), y=f(x) \\
y_{n} \rightarrow y
\end{gathered}
$$

$\underline{\text { Example: }} f_{n}, f:[0,1] \rightarrow \mathbb{R}, f_{n}(x)=x^{1 / n}$

$仓 f_{n} \rightarrow f$ pointwise, all f_{n} continuous, this doesn't imply that f is continuous.

Def: $f_{n_{n \in \mathbb{N}}}$ converges to f uniformly if
$\forall \epsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n>N \quad \forall x \in I:\left|f_{n}(x)-f(x)\right|<\epsilon$

Intuition:
Uniform Convergence: given $\epsilon, \exists N$ such that all $f_{n} \quad n>N$ are contained within ϵ - tube

Close to zero, there will always be points x close to zero such that the $f_{n}(x)$ are not yet in ϵ - tube.
\Rightarrow Not uniformly convergence

Alternative Definition: $f_{n} \rightarrow f$ uniformly iff $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$

Theorem: (uniform convergence preserves continuity)
$f_{n}, f: I \rightarrow \mathbb{R}, \quad I \subset \mathbb{R}$, all f_{n} are continuous, $f_{n} \rightarrow f$ uniformly. Then f is continuous.

