CSE 840: Computational Foundations of Artificial Intelligence

Oct. 4, 2023

Lecture 10

Instructor: Vishnu Boddeti

Scribe: Pilseo Park, Seyeon Park, Ankit Gupta

1 Calculus

<u>Limits</u>: $\lim_{b\to a} \frac{f(b) - f(a)}{b - a}$ <u>Derivatives</u>: -> optimization problems Integrals: -> expectation

2 Sequences

Examples: $(a_n)_{n \in \mathbb{N}} = ((-1)^n)_{n \in \mathbb{N}} = (-1, 1, -1, 1, ...)$

Definition 1 A sequence $(a_n)_{n \in \mathbb{N}}$ is called convergent to $a \in \mathbb{R}$ if $\forall \epsilon > 0 \exists N \in \mathbb{N} \forall n \ge N : |a_n - a| < \epsilon$

If there is no such $a \in \mathbb{R}$, then sequence diverges.

Definition 2 A sequence $(a_n)_{n \in \mathbb{N}}$ is called <u>bounded</u> if $\exists c \in \mathbb{R} \forall n \in \mathbb{N} : |a_n| \leq c$ otherwise, the sequence is unbounded.

Fact 3 $(a_n)_{n \forall \mathbb{N}}$ convergent => $(a_n)_{n \forall \mathbb{N}}$ bounded. $(a_n)_{n \forall \mathbb{N}}$ => There is only one limit ($\lim_{n \to \infty} = a$) $a \in \mathbb{R}$

Definition 4 If $\forall > 0 \exists N \in \mathbb{N} \forall n, m \ge N : |a_n - a_m < \epsilon$ then $(a)_{n \in \mathbb{N}}$ is called a Cauchy Sequence.

Fact 5 For a sequence of real numbers: Cauchy Sequence <==> Convergent Sequence

Proposition 6 If $(a_n)_{n \notin \mathbb{N}}$ is monotonically decreasing $(a_{n+1} \leq a_n \forall n)$ and bounded from below (the set $(a_n)_{n \in \mathbb{N}}$ has a lower bound), then $(a_n)_{n \in \mathbb{N}}$ is convergent.

Example subsequence: $(a_n)_{n \in \mathbb{N}} = (-1)^n$

subsequence: $(a_n)_{n \in \mathbb{N}} = (a_{2k})_{k \in \mathbb{N}} = (1, 1, ...1) - > 1$

subsequence: $(a_n)_{n \in \mathbb{N}} = (a_{2k+1})_{k \in \mathbb{N}} = (-1, -1, ...) - > -1$

Definition 7 $a \in \mathbb{R}$ is called an <u>accumulation value</u> of $(a_n)_{n \in \mathbb{N}}$ if there is a subsequence $(a_{nk})_{k \in \mathbb{N}}$ with $(\lim_{k \to \infty} a_{nk} = a)$.

(cluster point, accumulation point, limit paint, partial limit ...)

Theorem 8 Bolzano-Weierstrass theorem.

 $(a_n)_{n \in \mathbb{N}}$ bounded => $(a_n)_{n \in \mathbb{N}}$ has an accumulation value (has a convergent subsequence)

Observation 9 • A sequence can have many accumulation points (or no accumulation point)

- Even if the sequence has just one accumulation point, it is not necessarily a Cauchy sequence.
- If $(a_n)_{n \in \mathbb{N}}$ converges to a, then a is the only accumulation point and the sequence is Cauchy sequence.

Example: $(a_n)_{n \in \mathbb{N}} = \frac{1}{n}$ on (0, 1]

 $(a_n)_{n \in \mathbb{N}}$ is Cauchy, but does not converge on (0, 1]. It does converge to 0 on [0, 1].

Max, Sup, Min, Inf assume we are on \mathbb{R} (or more generally, on a space that has a total ordering). Let $U \subset \mathbb{R}$ to be a subset.

- $x \in \mathbb{R}$ is called <u>maximum element</u> of *U* if $x \in U$ and $\forall u \in U$: $u \leq x$. (1 is max [0, 1], (0, 1) has no max)
- *x* is called an upper bound of *U* if $\forall u \in U : u \leq x$ (5 is an upper bound of (0, 1) or [0, 1])
- x is called a supremum of U if it is the smallest upper bound. (1 is the supremum of (0, 1))

Analogously define minimum, lower bound and infimum. A give sequence $(a_n)_{n \in \mathbb{N}}$ could have many accumulation values ∞ , $-\infty$ are called improper accumulation points.

Definition 10 Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. An element $A \in \mathbb{R} \cup (-\infty, +\infty)$ is called:

• *limit superior of* $(a_n)_{n \in \mathbb{N}}$ *if a is the largest (improper) accumulation value of* $(a_n)_{n \in \mathbb{N}}$

write $a = \limsup_{n \to \infty} a_n$

• *limit inferior of* $(a_n)_{n \in \mathbb{N}}$ *if a is the smallest (improper) accumulation value of* $(a_n)_{n \in \mathbb{N}}$

 $\limsup_{n \to \infty} a_n = \limsup_{n \to \infty} \{a_k \mid k \ge n\}$ $\liminf_{n \to \infty} a_n = \liminf_{n \to \infty} \{a_k \mid k \ge n\}$

2.1 Continuity

Definition 11 A function $f : (x, d) \to (y, d)$ between two metric spaces (X, d) and (Y, d) is called continuous at $X_0 \in X$ if $\forall \epsilon > 0$, $\exists \delta > 0$, $\forall x \in X : d(X, X_0) < \delta \Longrightarrow d(f(X), f(X_0)) < \epsilon$.

Definition 12 *f*: $X \to Y$ *is called continuous at* X_0 *if for every sequence* $(x_n)_{n \in \mathbb{N}} \subset X$

we have: $X_n \to X_0 \Longrightarrow f(X_n) \to f(X_0)$

A function $f: X \to Y$ is called <u>continuous</u> if it is continuous for every $X_0 \in X$: $\forall x_0 \in X, \forall \epsilon > 0, \exists \delta > 0, \forall x \in X : d(X, X_0) < \delta$

$$\implies$$
 $d(f(X), f(X_0)) < \epsilon$

A function f: $X \rightarrow$ is called Lipschitz continuous with Lipschitz constant L if

 $\forall x, y \in X : d(f(x), f(y) \le L \times d(x, y)$

Intuition: "bounded derivative"

A function $f: X \to Y$ is called uniformly continuous if

 \implies $d(f(X), f(X_0)) < \epsilon$

Cannot choose δ to be the same for all X_0 Intuition: unbounded derivative

3 Important theorems for continuous Function

Intermediate Value Theorem:

If $f : [a, b] \to \mathbb{R}$ is continuous, then f attains all values between f(a) & f(b):

 $\forall y \in [f(a), f(b)], \exists x \in [a, b] : f(x) = y$

Application: If you want to find X with f(X) = 0:

find a with f(a) < 0, find b with f(b) > 0then there must exist $x \in [a, b]$ with f(x) = 0

Invertible Functions:

 $D \subset R, f : D \to \mathbb{R}$ continuous, strictly monotone $(a < b \Rightarrow f(a) < f(b))$.

Then f is invertible and the inverse is continuous as well.

• invertible follows from monotonicity.

• Continuity of the inverse follows directly from continuity of f.

A function f between two metric spaces (x, d), (y, d) is continuous iff pre-images of the open sets are open:

 $B \subset y$ open (in y) $\Rightarrow f^{-1}(B) := x \in X | f(x) \in B$ open (in X).

4 Sequences of Functions

<u>Function</u>: $f : I \to \mathbb{R}(I \subseteq \mathbb{R})$

Idea: small changes on x-axis \rightarrow small changes on y-axis.

For any fixed $\tilde{x} \in I$, we can get an ordinary sequence of real-numbers.

$$\left(f_1(\tilde{x}), f_2(\tilde{x}), f_3(\tilde{x}), f_4(\tilde{x}), \ldots\right)$$

Def: Consider functions : $f_n : I \to \mathbb{R}, I \subseteq \mathbb{R}$

We say that the sequence $(f_n)_{n \in \mathbb{N}}$ converges prointwise to $f: I \to \mathbb{R}$ if

$$\forall x \in I : f_n(x) \to f(x) y_n : f_n(x), y = f(x) y_n \to y$$

Example: $f_n, f: [0, 1] \rightarrow \mathbb{R}, f_n(x) = x^{1/n}$

 $\underline{\wedge} f_n \rightarrow f$ pointwise, all f_n continuous, this doesn't imply that f is continuous.

Def: $f_{n_n \in \mathbb{N}}$ converges to f uniformly if

 $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad \forall x \in I : |f_n(x) - f(x)| < \epsilon$

<u>Intuition</u>: Uniform Convergence: given ϵ , $\exists N$ such that all f_n n > N are contained within ϵ - tube

Close to zero, there will always be points x close to zero such that the $f_n(x)$ are not yet in ϵ – tube.

<u>Alternative Definition</u>: $f_n \to f$ uniformly iff $||f_n - f||_{\infty} \to 0$

Theorem:	(uniform conver-
gence preserves continuity)	
$f_n, f: I \to \mathbb{F}$	R, $I \subset \mathbb{R}$, all f_n are
continuous, $f_n \rightarrow f$ uniformly.	
Then f is continuous.	