CSE 840: Computational Foundations of Artificial Intelligence October 9, 2023

Differentiation, Riemann Integral, Fundamental Theorem of Calculus
Instructor: Vishnu Boddeti Scribe: Richard Frost

1 Derivatives (one-dimensional case)

Definition 1 U C R an interval, f : U — R. The function is called differentiable at ac U if

f/(a) -— lim f(CL + h) — f(a)

h—0 h

. . ) df
exists. We often write f' = - .
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Figure 1: Derivative of a function f as the slope at a

Some intuitions of the definition of a derivative

e The derivative is the slope of a function at a point a

e The derivative is the slope of the linear approximation of a function at a. That is f(z) =
f(a) + (z — a)b, where b is the slope (derivative at a).

Definition 2 A function is called differentiable if it has a derivative for all a € U.

Definition 3 A function is called continuously differentiable if it is differentiable and the function
/U =R, a— f'(a) is continuous.
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1.1 Higher Derivatives

We can repeat the process of taking derivatives:

_df o df

4 —_— —
/ Cdx’ dz

Notation: f(") denotes the n-th derivative of f (if it exists)

1.2 Important Theorems

Theorem 4 (Differentiable —> Continuous) Let [ be differentiable at a. Then there exists a
constant ¢, such that on a small ball around a we have |f(x) — f(a)| < cq|lx —al. In particular, f is
continuous at a.

Theorem 5 (Intermediate Value Theorem for Derivatives) Let f € €1([a,b]) (i.e. functions on
[a,b] that are once continuously differentiable), then there exists ¢ € [a,b] such that

See Figure[2

Figure 2: Intermediate Value Theorem for Derivatives: There exists a point on the interval with
derivative equal to the slope across the interval

Theorem 6 (Exchanging limits and derivatives) f,, : [a,b] — R, f, € €*([a,b]). If the limit f(z) :=
lim,, 00 fr(x) exists Yz € [a,b] and the derivatives f' converge uniformly, then f is continuously
differentiable and we have.

f'(x) = (lim )'(z) = (lim(f;))()

n—oo

i.e. first take the limit of f, getting f1, then finding the derivative is the same as fist finding f},
then taking the limit.
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2 Reimann Integration
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Figure 3: The integral is the area under a curve.

Consider a function f : [a,b] — R, assume that f is bounded (3¢, u € RVz € [a,b] : £ < f(x) < u).
Consider zg,x1,...2, with a =29 < 21 < --- < &, = b. These points introduce a partition of [a, b]
into n intervals. In particular,

Iy := [rp—1, 4]

Notice that we can draw more than one rectangle for each of these partitions (FigureE[). In particular
we define the heights:
my, := inf(f(Ix))

M = sup(f (Ik))

x:
|

>

U

Figure 4: Rectangle can be drawn using either the min or max of the function on the interval as its
height

Definition 7 For a function f and set of partitions {xg, ...z}, the lower sum is:

s(f{zo. . an}) =D Ikl - my
k=1
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where |Ii| is the length of Iy, = ) — T11

Definition 8 For a function f and set of partitions {xg, ...z}, the upper sum is:

n

S(f{wo. .. axn}) =Y || - My

k=1

where |Ii| is the length of Iy, = x) — T11

Now we define
Jo:= sup (s(f,partition))

partitions

J*:= inf (S(f,partition))

partitions
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Figure 5: Three different partitions of the same function
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Definition 9 We call a function f Riemann-Integrable if J. = J*. We then denote

b
J,=J* ::/ F(t) dt

Theorem 10 e f:[a,b] = R monotone = integrable. (i.e. x1 < xo = f(x1) < f(x2))

o f:a,b] = R continuous = integrable. (This is true even if f is continuous everywhere
except a finite number of points.

2.1 Shortcomings

e Many functions are not integrable. For example the Dirchlet function (figure @:

f(x):{l reQ

0 elsewhere
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Figure 6: Dirchlet function is not integrable

as for any interval I}, = [zk, Tx+1] My = 1 and my, = 0. Meaning J, = [b—a|-0 < J* = |b—a|-1
e One cannot prove theorems about exchanging "integral" with "im": lim, o [ fn dt = [ lim fy, dt

e Hard to extend to "other space" (e.g. spaces with no notion of ordering, higher dimensional)

A more modern interpretation which solves many of these problems is Lebesque Integration which
we will study later in the course
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Figure 7: The relationship between the derivative (left) and integral (right) is not obvious

3 Fundamental Theorem of Calculus

Theorem 11 f : [a,b] — R (Riemann)-integrable and continuous at ¢ € [a,b]. Let ¢ € [a,b]. Then
the function,

F(z):= /"L’ f(t)dt

is differentiable at ¢ and F'(¢) = f(C). If f € €(la,b]) (continuous), then F € €*(|a,b]) (continuous
and once differentiable) and F'(x) = f(x) for all z € [a, b]

Theorem 12 F': [a,b] — R continuously differentiable, then
b
/ F'(t)dt = F(b) — F(a)

Proof of Theorem Need to prove that F'(z) is differentiable at (. Consider

_ ¢+h ¢ (+h
Ah) = w _ % (/ f(t)dt—/ f(t)dt) - fll/C F(t) dt

We want to prove that this converges to f({) as h — 0, which can be expresses as wanting to show
A(h) — f(¢) — 0. Notice that f({) = + CCJrh f(¢)dt as f(¢) is a constant. Thus,

C+h ¢t+h C+h ¢+h
A s =g [ swa s =5 [T swa g [T s0a =g [T uo - o

Intuitively, this should be small as h goes to zero since f is continuous at (.

Formally: Given € > 0 we can find & > 0 such that f(t) — f(¢) < eVt € [(,{ + h]. Then:
1 [¢th 1 [Sth 1 [Sth 1 C+h
i v ruas g [0 —s@las g [ en= e [T a
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Proof of Theorem We know that F is continuous. Then by Theorem 11| the function
xT
G(x) == / F'(z)dt
is differentiable and

(i) G(a) =0 (by def. of G)
(ii) G'(x) = F'(x) on [a,b] (by Theorem

Consider H(x) := F(x) — G(z) By (ii) we know that H'(z) = F'(z) — G'(x) = OVz. Hence, H is a
constant function. We know that H(a) = F(a) — G(a) = F(a) (as G(a) = 0 by (i)) Giving us:

(iii) H(z) = F(a) (constant)

Consider z = b.
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