CSE 840: Computational Foundations of Artificial Intelligence October 9, 2023 Differentiation, Riemann Integral, Fundamental Theorem of Calculus Instructor: Vishnu Boddeti Scribe: Richard Frost

1 Derivatives (one-dimensional case)

Definition 1 $U \subseteq \mathbb{R}$ an interval, $f: U \to \mathbb{R}$. The function is called differentiable at $a \in U$ if

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists. We often write $f' = \frac{df}{dx}$.

Figure 1: Derivative of a function f as the slope at a

Some intuitions of the definition of a derivative

- The derivative is the slope of a function at a point a
- The derivative is the slope of the linear approximation of a function at a. That is f(x) = f(a) + (x a)b, where b is the slope (derivative at a).

Definition 2 A function is called differentiable if it has a derivative for all $a \in U$.

Definition 3 A function is called <u>continuously differentiable</u> if it is differentiable and the function $f': U \to \mathbb{R}, a \mapsto f'(a)$ is continuous.

1.1 Higher Derivatives

We can repeat the process of taking derivatives:

$$f' = \frac{df}{dx}, f'' = \frac{df'}{dx}$$

Notation: $f^{(n)}$ denotes the *n*-th derivative of *f* (if it exists)

1.2 Important Theorems

Theorem 4 (Differentiable \implies Continuous) Let f be differentiable at a. Then there exists a constant c_a such that on a small ball around a we have $|f(x) - f(a)| \le c_a |x - a|$. In particular, f is continuous at a.

Theorem 5 (Intermediate Value Theorem for Derivatives) Let $f \in \mathscr{C}^1([a,b])$ (i.e. functions on [a,b] that are once continuously differentiable), then there exists $\zeta \in [a,b]$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(\zeta)$$

See Figure 2

Figure 2: Intermediate Value Theorem for Derivatives: There exists a point on the interval with derivative equal to the slope across the interval

Theorem 6 (Exchanging limits and derivatives) $f_n : [a, b] \to \mathbb{R}$, $f_n \in \mathscr{C}^1([a, b])$. If the limit $f(x) := \lim_{n\to\infty} f_n(x)$ exists $\forall x \in [a, b]$ and the derivatives f' converge uniformly, then f is continuously differentiable and we have.

$$f'(x) = (\lim_{n \to \infty})'(x) = (\lim(f'_n))(x)$$

i.e. first take the limit of f_n getting f_1 , then finding the derivative is the same as fist finding f'_n , then taking the limit.

2 Reimann Integration

.

Figure 3: The integral is the area under a curve.

Consider a function $f : [a, b] \to \mathbb{R}$, assume that f is bounded $(\exists \ell, u \in \mathbb{R} \forall x \in [a, b] : \ell \leq f(x) \leq u)$. Consider $x_0, x_1, \ldots x_n$ with $a = x_0 < x_1 < \cdots < x_n = b$. These points introduce a partition of [a, b] into n intervals. In particular,

$$I_k := [x_{k-1}, x_k]$$

Notice that we can draw more than one rectangle for each of these partitions (Figure 4). In particular we define the heights:

$$m_k := \inf(f(I_k))$$
$$M_k := \sup(f(I_k))$$

Figure 4: Rectangle can be drawn using either the min or max of the function on the interval as its height

Definition 7 For a function f and set of partitions $\{x_0, \ldots x_n\}$, the <u>lower sum</u> is:

$$s(f, \{x_0 \dots x_n\}) = \sum_{k=1}^n |I_k| \cdot m_k$$

where $|I_k|$ is the length of $I_k = x_k - x_{k+1}$

Definition 8 For a function f and set of partitions $\{x_0, \ldots x_n\}$, the <u>upper sum</u> is:

$$S(f, \{x_0 \dots x_n\}) = \sum_{k=1}^n |I_k| \cdot M_k$$

where $|I_k|$ is the length of $I_k = x_k - x_{k+1}$

Now we define

$$J_* := \sup_{\text{partitions}} (s(f, \text{partition}))$$
$$J^* := \inf_{\text{partitions}} (S(f, \text{partition}))$$

Figure 5: Three different partitions of the same function

Definition 9 We call a function f Riemann-Integrable if $J_* = J^*$. We then denote

$$J_* = J^* := \int_a^b f(t) \, dt$$

Theorem 10 • $f : [a, b] \to \mathbb{R}$ monotone \implies integrable. (i.e. $x_1 < x_2 \implies f(x_1) < f(x_2)$)

• $f:[a,b] \to \mathbb{R}$ continuous \implies integrable. (This is true even if f is continuous everywhere except a finite number of points.

2.1 Shortcomings

• Many functions are not integrable. For example the Dirchlet function (figure 6):

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{elsewhere} \end{cases}$$

Figure 6: Dirchlet function is not integrable

as for any interval $I_k = [x_k, x_{k+1}]$ $M_k = 1$ and $m_k = 0$. Meaning $J_* = |b-a| \cdot 0 < J^* = |b-a| \cdot 1$

- One cannot prove theorems about exchanging "integral" with "lim": $\lim_{n\to\infty} \int f_n dt \stackrel{?}{=} \int \lim f_k dt$
- Hard to extend to "other space" (e.g. spaces with no notion of ordering, higher dimensional)

A more modern interpretation which solves many of these problems is **Lebesque Integration** which we will study later in the course

Figure 7: The relationship between the derivative (left) and integral (right) is not obvious

3 Fundamental Theorem of Calculus

Theorem 11 $f : [a, b] \to \mathbb{R}$ (Riemann)-integrable and continuous at $\zeta \in [a, b]$. Let $c \in [a, b]$. Then the function,

$$F(x) := \int_{c}^{x} f(t) \, dt$$

is differentiable at ζ and $F'(\zeta) = f(\zeta)$. If $f \in \mathscr{C}([a, b])$ (continuous), then $F \in \mathscr{C}^1([a, b])$ (continuous and once differentiable) and F'(x) = f(x) for all $x \in [a, b]$

Theorem 12 $F: [a, b] \to \mathbb{R}$ continuously differentiable, then

$$\int_{a}^{b} F'(t) dt = F(b) - F(a)$$

Proof of Theorem 11: Need to prove that F(x) is differentiable at ζ . Consider

$$A(h) := \frac{F(\zeta + h) - F(\zeta)}{h} = \frac{1}{h} \left(\int_{c}^{\zeta + h} f(t) \, dt - \int_{c}^{\zeta} f(t) \, dt \right) = \frac{1}{h} \int_{\zeta}^{\zeta + h} f(t) \, dt$$

We want to prove that this converges to $f(\zeta)$ as $h \to 0$, which can be expresses as wanting to show $A(h) - f(\zeta) \to 0$. Notice that $f(\zeta) = \frac{1}{h} \int_{\zeta}^{\zeta+h} f(\zeta) dt$ as $f(\zeta)$ is a constant. Thus,

$$A(h) - f(\zeta) = \frac{1}{h} \int_{\zeta}^{\zeta+h} f(t) \, dt - f(\zeta) = \frac{1}{h} \int_{\zeta}^{\zeta+h} f(t) \, dt - \frac{1}{h} \int_{\zeta}^{\zeta+h} f(\zeta) \, dt = \frac{1}{h} \int_{\zeta}^{\zeta+h} (f(t) - f(\zeta)) \, dt$$

Intuitively, this should be small as h goes to zero since f is continuous at ζ .

Formally: Given $\epsilon > 0$ we can find h > 0 such that $f(t) - f(\zeta) < \epsilon \forall t \in [\zeta, \zeta + h]$. Then:

$$\frac{1}{h} \int_{\zeta}^{\zeta+h} (f(t) - f(\zeta)) \, dt \le \frac{1}{h} \int_{\zeta}^{\zeta+h} |f(t) - f(\zeta)| \, dt \le \frac{1}{h} \int_{\zeta}^{\zeta+h} \epsilon \, dt = \frac{1}{h} \cdot \epsilon \int_{\zeta}^{\zeta+h} 1 \, dt$$

$$= \frac{1}{h} \cdot \epsilon \cdot h = \epsilon$$
$$\implies A(h) - f(\zeta) \le \epsilon \to 0$$

Proof of Theorem 12: We know that F' is continuous. Then by Theorem 11 the function

$$G(x) := \int_{a}^{x} F'(x)dt$$

is differentiable and

- (i) G(a) = 0 (by def. of G)
- (ii) G'(x) = F'(x) on [a, b] (by Theorem 11)

Consider H(x) := F(x) - G(x) By (ii) we know that $H'(x) = F'(x) - G'(x) = 0 \forall x$. Hence, H is a constant function. We know that H(a) = F(a) - G(a) = F(a) (as G(a) = 0 by (i)) Giving us:

(iii) $H(x) \equiv F(a)$ (constant)

Consider x = b.

$$F(a) \stackrel{\text{(iii)}}{=} H(b) \stackrel{\text{def}}{=} F(b) - G(b) \stackrel{\text{def}}{=} \int_{a}^{b} F'(t) dt$$
$$\implies F(a) = F(b) - \int_{a}^{b} F'(t) dt$$
$$\implies \int_{a}^{b} F'(t) dt = F(b) - F(a)$$

_	_	_	