CSE 840: Computational Foundations of Artificial Intelligence October 9, 2023
Differentiation, Riemann Integral, Fundamental Theorem of Calculus
Instructor: Vishnu Boddeti

1 Derivatives (one-dimensional case)

Definition $1 U \subseteq \mathbb{R}$ an interval, $f: U \rightarrow \mathbb{R}$. The function is called differentiable at a U if

$$
f^{\prime}(a):=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. We often write $f^{\prime}=\frac{d f}{d x}$.

$a_{n}: a+h_{n}, h_{n} \rightarrow 0$
$h_{n}>0$

Figure 1: Derivative of a function f as the slope at a

Some intuitions of the definition of a derivative

- The derivative is the slope of a function at a point a
- The derivative is the slope of the linear approximation of a function at a. That is $f(x)=$ $f(a)+(x-a) b$, where b is the slope (derivative at a).

Definition 2 A function is called differentiable if it has a derivative for all $a \in U$.

Definition 3 A function is called continuously differentiable if it is differentiable and the function $f^{\prime}: U \rightarrow \mathbb{R}, a \longmapsto f^{\prime}(a)$ is continuous.

1.1 Higher Derivatives

We can repeat the process of taking derivatives:

$$
f^{\prime}=\frac{d f}{d x}, f^{\prime \prime}=\frac{d f^{\prime}}{d x}
$$

Notation: $f^{(n)}$ denotes the n-th derivative of f (if it exists)

1.2 Important Theorems

Theorem 4 (Differentiable \Longrightarrow Continuous) Let f be differentiable at a. Then there exists a constant c_{a} such that on a small ball around a we have $|f(x)-f(a)| \leq c_{a}|x-a|$. In particular, f is continuous at a.

Theorem 5 (Intermediate Value Theorem for Derivatives) Let $f \in \mathscr{C}^{1}([a, b])$ (i.e. functions on $[a, b]$ that are once continuously differentiable), then there exists $\zeta \in[a, b]$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(\zeta)
$$

See Figure 2

Figure 2: Intermediate Value Theorem for Derivatives: There exists a point on the interval with derivative equal to the slope across the interval

Theorem 6 (Exchanging limits and derivatives) $f_{n}:[a, b] \rightarrow \mathbb{R}, f_{n} \in \mathscr{C}^{1}([a, b])$. If the limit $f(x):=$ $\lim _{n \rightarrow \infty} f_{n}(x)$ exists $\forall x \in[a, b]$ and the derivatives f^{\prime} converge uniformly, then f is continuously differentiable and we have.

$$
f^{\prime}(x)=\left(\lim _{n \rightarrow \infty}\right)^{\prime}(x)=\left(\lim \left(f_{n}^{\prime}\right)\right)(x)
$$

i.e. first take the limit of f_{n} getting f_{1}, then finding the derivative is the same as fist finding f_{n}^{\prime}, then taking the limit.

2 Reimann Integration

Figure 3: The integral is the area under a curve.

Consider a function $f:[a, b] \rightarrow \mathbb{R}$, assume that f is bounded $(\exists \ell, u \in \mathbb{R} \forall x \in[a, b]: \ell \leq f(x) \leq u)$. Consider $x_{0}, x_{1}, \ldots x_{n}$ with $a=x_{0}<x_{1}<\cdots<x_{n}=b$. These points introduce a partition of $[a, b]$ into n intervals. In particular,

$$
I_{k}:=\left[x_{k-1}, x_{k}\right]
$$

Notice that we can draw more than one rectangle for each of these partitions (Figure 4). In particular we define the heights:

$$
\begin{aligned}
m_{k} & :=\inf \left(f\left(I_{k}\right)\right) \\
M_{k} & :=\sup \left(f\left(I_{k}\right)\right)
\end{aligned}
$$

Figure 4: Rectangle can be drawn using either the min or max of the function on the interval as its height

Definition 7 For a function f and set of partitions $\left\{x_{0}, \ldots x_{n}\right\}$, the lower sum is:

$$
s\left(f,\left\{x_{0} \ldots x_{n}\right\}\right)=\sum_{k=1}^{n}\left|I_{k}\right| \cdot m_{k}
$$

where $\left|I_{k}\right|$ is the length of $I_{k}=x_{k}-x_{k+1}$

Definition 8 For a function f and set of partitions $\left\{x_{0}, \ldots x_{n}\right\}$, the upper sum is:

$$
S\left(f,\left\{x_{0} \ldots x_{n}\right\}\right)=\sum_{k=1}^{n}\left|I_{k}\right| \cdot M_{k}
$$

where $\left|I_{k}\right|$ is the length of $I_{k}=x_{k}-x_{k+1}$

Now we define

$$
\begin{aligned}
J_{*} & :=\sup _{\text {partitions }}(s(f, \text { partition })) \\
J^{*} & :=\inf _{\text {partitions }}(S(f, \text { partition }))
\end{aligned}
$$

coarse partition from below

finer partition from
be low.

partition from
above

Figure 5: Three different partitions of the same function

Definition 9 We call a function f Riemann-Integrable if $J_{*}=J^{*}$. We then denote

$$
J_{*}=J^{*}:=\int_{a}^{b} f(t) d t
$$

Theorem $10 \bullet f:[a, b] \rightarrow \mathbb{R}$ monotone \Longrightarrow integrable. (i.e. $x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$)

- $f:[a, b] \rightarrow \mathbb{R}$ continuous \Longrightarrow integrable. (This is true even if f is continuous everywhere except a finite number of points.

2.1 Shortcomings

- Many functions are not integrable. For example the Dirchlet function (figure 6):

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & \text { elsewhere }\end{cases}
$$

Figure 6: Dirchlet function is not integrable
as for any interval $I_{k}=\left[x_{k}, x_{k+1}\right] M_{k}=1$ and $m_{k}=0$. Meaning $J_{*}=|b-a| \cdot 0<J^{*}=|b-a| \cdot 1$

- One cannot prove theorems about exchanging "integral" with " \lim ": $\lim _{n \rightarrow \infty} \int f_{n} d t \stackrel{?}{=} \int \lim f_{k} d t$
- Hard to extend to "other space" (e.g. spaces with no notion of ordering, higher dimensional)

A more modern interpretation which solves many of these problems is Lebesque Integration which we will study later in the course

Figure 7: The relationship between the derivative (left) and integral (right) is not obvious

3 Fundamental Theorem of Calculus

Theorem $11 f:[a, b] \rightarrow \mathbb{R}$ (Riemann)-integrable and continuous at $\zeta \in[a, b]$. Let $c \in[a, b]$. Then the function,

$$
F(x):=\int_{c}^{x} f(t) d t
$$

is differentiable at ζ and $F^{\prime}(\zeta)=f(\zeta)$. If $f \in \mathscr{C}([a, b])$ (continuous), then $F \in \mathscr{C}^{1}([a, b])$ (continuous and once differentiable) and $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$

Theorem $12 F:[a, b] \rightarrow \mathbb{R}$ continuously differentiable, then

$$
\int_{a}^{b} F^{\prime}(t) d t=F(b)-F(a)
$$

Proof of Theorem 11: Need to prove that $F(x)$ is differentiable at ζ. Consider

$$
A(h):=\frac{F(\zeta+h)-F(\zeta)}{h}=\frac{1}{h}\left(\int_{c}^{\zeta+h} f(t) d t-\int_{c}^{\zeta} f(t) d t\right)=\frac{1}{h} \int_{\zeta}^{\zeta+h} f(t) d t
$$

We want to prove that this converges to $f(\zeta)$ as $h \rightarrow 0$, which can be expresses as wanting to show $A(h)-f(\zeta) \rightarrow 0$. Notice that $f(\zeta)=\frac{1}{h} \int_{\zeta}^{\zeta+h} f(\zeta) d t$ as $f(\zeta)$ is a constant. Thus,
$A(h)-f(\zeta)=\frac{1}{h} \int_{\zeta}^{\zeta+h} f(t) d t-f(\zeta)=\frac{1}{h} \int_{\zeta}^{\zeta+h} f(t) d t-\frac{1}{h} \int_{\zeta}^{\zeta+h} f(\zeta) d t=\frac{1}{h} \int_{\zeta}^{\zeta+h}(f(t)-f(\zeta)) d t$
Intuitively, this should be small as h goes to zero since f is continuous at ζ.
Formally: Given $\epsilon>0$ we can find $h>0$ such that $f(t)-f(\zeta)<\epsilon \forall t \in[\zeta, \zeta+h]$. Then:

$$
\frac{1}{h} \int_{\zeta}^{\zeta+h}(f(t)-f(\zeta)) d t \leq \frac{1}{h} \int_{\zeta}^{\zeta+h}|f(t)-f(\zeta)| d t \leq \frac{1}{h} \int_{\zeta}^{\zeta+h} \epsilon d t=\frac{1}{h} \cdot \epsilon \int_{\zeta}^{\zeta+h} 1 d t
$$

$$
\begin{aligned}
& =\frac{1}{h} \cdot \epsilon \cdot h=\epsilon \\
\Longrightarrow & A(h)-f(\zeta) \leq \epsilon \rightarrow 0
\end{aligned}
$$

Proof of Theorem 12; We know that F^{\prime} is continuous. Then by Theorem 11 the function

$$
G(x):=\int_{a}^{x} F^{\prime}(x) d t
$$

is differentiable and
(i) $G(a)=0$ (by def. of G)
(ii) $G^{\prime}(x)=F^{\prime}(x)$ on $[a, b]$ (by Theorem 11)

Consider $H(x):=F(x)-G(x)$ By (ii) we know that $H^{\prime}(x)=F^{\prime}(x)-G^{\prime}(x)=0 \forall x$. Hence, H is a constant function. We know that $H(a)=F(a)-G(a)=F(a)$ (as $G(a)=0$ by (i)) Giving us:
(iii) $H(x) \equiv F(a)$ (constant)

Consider $x=b$.

$$
\begin{aligned}
F(a) & \stackrel{(i i i)}{=} H(b) \stackrel{\text { def }}{=} F(b)-G(b) \stackrel{\text { def }}{=} \int_{a}^{b} F^{\prime}(t) d t \\
& \Longrightarrow F(a)=F(b)-\int_{a}^{b} F^{\prime}(t) d t \\
& \Longrightarrow \int_{a}^{b} F^{\prime}(t) d t=F(b)-F(a)
\end{aligned}
$$

