
CSE 840: Computational Foundations of Artificial Intelligence October 9, 2023

Differentiation, Riemann Integral, Fundamental Theorem of Calculus
Instructor: Vishnu Boddeti Scribe: Richard Frost

1 Derivatives (one-dimensional case)

Definition 1 U ⊆ R an interval, f : U → R. The function is called differentiable at a∈ U if

f ′(a) := lim
h→0

f(a+ h)− f(a)

h

exists. We often write f ′ = df
dx .

Figure 1: Derivative of a function f as the slope at a

Some intuitions of the definition of a derivative

• The derivative is the slope of a function at a point a

• The derivative is the slope of the linear approximation of a function at a. That is f(x) =
f(a) + (x− a)b, where b is the slope (derivative at a).

Definition 2 A function is called differentiable if it has a derivative for all a ∈ U .

Definition 3 A function is called continuously differentiable if it is differentiable and the function
f ′ : U → R, a 7−→ f ′(a) is continuous.
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1.1 Higher Derivatives

We can repeat the process of taking derivatives:

f ′ =
df

dx
, f ′′ =

df ′

dx

Notation: f (n) denotes the n-th derivative of f (if it exists)

1.2 Important Theorems

Theorem 4 (Differentiable =⇒ Continuous) Let f be differentiable at a. Then there exists a
constant ca such that on a small ball around a we have |f(x)− f(a)| ≤ ca|x− a|. In particular, f is
continuous at a.

Theorem 5 (Intermediate Value Theorem for Derivatives) Let f ∈ C 1([a, b]) (i.e. functions on
[a, b] that are once continuously differentiable), then there exists ζ ∈ [a, b] such that

f(b)− f(a)

b− a
= f ′(ζ)

See Figure 2

Figure 2: Intermediate Value Theorem for Derivatives: There exists a point on the interval with
derivative equal to the slope across the interval

Theorem 6 (Exchanging limits and derivatives) fn : [a, b] → R, fn ∈ C 1([a, b]). If the limit f(x) :=
limn→∞ fn(x) exists ∀x ∈ [a, b] and the derivatives f ′ converge uniformly, then f is continuously
differentiable and we have.

f ′(x) = ( lim
n→∞

)′(x) = (lim(f ′
n))(x)

i.e. first take the limit of fn getting f1, then finding the derivative is the same as fist finding f ′
n,

then taking the limit.
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2 Reimann Integration

Figure 3: The integral is the area under a curve.

Consider a function f : [a, b] → R, assume that f is bounded (∃ℓ, u ∈ R∀x ∈ [a, b] : ℓ ≤ f(x) ≤ u).
Consider x0, x1, . . . xn with a = x0 < x1 < · · · < xn = b. These points introduce a partition of [a, b]
into n intervals. In particular,

Ik := [xk−1, xk]

.

Notice that we can draw more than one rectangle for each of these partitions (Figure 4). In particular
we define the heights:

mk := inf(f(Ik))

Mk := sup(f(Ik))

Figure 4: Rectangle can be drawn using either the min or max of the function on the interval as its
height

Definition 7 For a function f and set of partitions {x0, . . . xn}, the lower sum is:

s(f, {x0 . . . xn}) =
n∑

k=1

|Ik| ·mk
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where |Ik| is the length of Ik = xk − xk+1

Definition 8 For a function f and set of partitions {x0, . . . xn}, the upper sum is:

S(f, {x0 . . . xn}) =
n∑

k=1

|Ik| ·Mk

where |Ik| is the length of Ik = xk − xk+1

Now we define
J∗ := sup

partitions
(s(f, partition))

J∗ := inf
partitions

(S(f, partition))

Figure 5: Three different partitions of the same function
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Definition 9 We call a function f Riemann-Integrable if J∗ = J∗. We then denote

J∗ = J∗ :=

∫ b

a

f(t) dt

Theorem 10 • f : [a, b] → R monotone =⇒ integrable. (i.e. x1 < x2 =⇒ f(x1) < f(x2))

• f : [a, b] → R continuous =⇒ integrable. (This is true even if f is continuous everywhere
except a finite number of points.

2.1 Shortcomings

• Many functions are not integrable. For example the Dirchlet function (figure 6):

f(x) =

{
1 x ∈ Q
0 elsewhere

Figure 6: Dirchlet function is not integrable

as for any interval Ik = [xk, xk+1] Mk = 1 and mk = 0. Meaning J∗ = |b−a|·0 < J∗ = |b−a|·1

• One cannot prove theorems about exchanging "integral" with "lim": limn→∞
∫
fn dt

?
=
∫
lim fk dt

• Hard to extend to "other space" (e.g. spaces with no notion of ordering, higher dimensional)

A more modern interpretation which solves many of these problems is Lebesque Integration which
we will study later in the course
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Figure 7: The relationship between the derivative (left) and integral (right) is not obvious

3 Fundamental Theorem of Calculus

Theorem 11 f : [a, b] → R (Riemann)-integrable and continuous at ζ ∈ [a, b]. Let c ∈ [a, b]. Then
the function,

F (x) :=

∫ x

c

f(t) dt

is differentiable at ζ and F ′(ζ) = f(ζ). If f ∈ C ([a, b]) (continuous), then F ∈ C 1([a, b]) (continuous
and once differentiable) and F ′(x) = f(x) for all x ∈ [a, b]

Theorem 12 F : [a, b] → R continuously differentiable, then∫ b

a

F ′(t) dt = F (b)− F (a)

Proof of Theorem 11: Need to prove that F (x) is differentiable at ζ. Consider

A(h) :=
F (ζ + h)− F (ζ)

h
=

1

h

(∫ ζ+h

c

f(t) dt−
∫ ζ

c

f(t) dt

)
=

1

h

∫ ζ+h

ζ

f(t) dt

We want to prove that this converges to f(ζ) as h → 0, which can be expresses as wanting to show
A(h)− f(ζ) → 0. Notice that f(ζ) = 1

h

∫ ζ+h

ζ
f(ζ) dt as f(ζ) is a constant. Thus,

A(h)− f(ζ) =
1

h

∫ ζ+h

ζ

f(t) dt− f(ζ) =
1

h

∫ ζ+h

ζ

f(t) dt− 1

h

∫ ζ+h

ζ

f(ζ) dt =
1

h

∫ ζ+h

ζ

(f(t)− f(ζ)) dt

Intuitively, this should be small as h goes to zero since f is continuous at ζ.

Formally: Given ϵ > 0 we can find h > 0 such that f(t)− f(ζ) < ϵ∀t ∈ [ζ, ζ + h]. Then:

1

h

∫ ζ+h

ζ

(f(t)− f(ζ)) dt ≤ 1

h

∫ ζ+h

ζ

|f(t)− f(ζ)| dt ≤ 1

h

∫ ζ+h

ζ

ϵ dt =
1

h
· ϵ
∫ ζ+h

ζ

1 dt
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=
1

h
· ϵ · h = ϵ

=⇒ A(h)− f(ζ) ≤ ϵ → 0

□

Proof of Theorem 12: We know that F ′ is continuous. Then by Theorem 11 the function

G(x) :=

∫ x

a

F ′(x)dt

is differentiable and

(i) G(a) = 0 (by def. of G)

(ii) G′(x) = F ′(x) on [a, b] (by Theorem 11)

Consider H(x) := F (x)−G(x) By (ii) we know that H ′(x) = F ′(x)−G′(x) = 0∀x. Hence, H is a
constant function. We know that H(a) = F (a)−G(a) = F (a) (as G(a) = 0 by (i)) Giving us:

(iii) H(x) ≡ F (a) (constant)

Consider x = b.

F (a)
(iii)
= H(b)

def
= F (b)−G(b)

def
=

∫ b

a

F ′(t) dt

=⇒ F (a) = F (b)−
∫ b

a

F ′(t) dt

=⇒
∫ b

a

F ′(t) dt = F (b)− F (a)

□
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