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Power Series
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1 Introduction

This lecture covers Power Series and Taylor Series.

2 Power Series

Definition 1 A series of the form p(x) :
∑∞

n=0 anx
n is called a power series, where "power" is

"power" of x and "series" is an infinite sum.

Theorem 2 For every power series p(x) :
∑∞

n=0 anx
n, there exists a constant r, 0 ≤ r ≤ ∞, called

the radius of convergence, such that:

• The series converges (absolutely) for all x with |x| < r.

• If |x| < r, then the series converges uniformly.

The first point above means that when
∑∞

n=0 an|x|n converges, the sequence of partial sums
PN (x) :=

∑N
n=0 an|x|n converges. However, it is unclear what happens when |x| = r, and when

|x| > r, it is likely to diverge.

The radius of convergence only depends on (an)n and can be computed by various formulas, such
as the two shown below, if the limit exists:

• r = 1
L where L = lim supn→∞(|an|)

1
n

• r = limn→∞ | an

an+1
|

2.1 Example

Find the radius of convergence for: p(x) :
∑∞

n=0 ncxn for some constant c.
r = limn→∞ | an

an+1
| = limn→∞

nc

(n+1)c = limn→∞( nc

n+1 )
c = 1

Now we need to check different values of x, to make sure it converges when |x| < r or, in our case,
|x| < 1. We can also see what happens for other instances of x, since our theorem tells us nothing
about those. We will also need to consider different cases of c.

• Case c = 1 →
∑

1
nx

n has radius of convergence of 1

– For x = 1, the series diverges.∑
1
nx

n =
∑

1
n ∗ 1n =

∑∞
n=0

1
n → ∞
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– For x = -1, it converges.
– For x > 1, it diverges.

• Case c = 0 →
∑

ncxn =
∑

xn

– For x = 1 and -1, the series diverges (|x| = r).

2.2 Exponential Series

This is a very easy Power Series, expressed as

exp(x) =

∞∑
n=0

xn

n!

has r = ∞ since limn→∞ | an

an+1
| =

1
n!
1

(n+1)!

= n+ 1 → ∞ (using the same formula as before). Another

famous Power Series is:
∑∞

n=0 n!x
n, which has a r = 0 since limn→∞ | an

an+1
| = limn→∞

n!
(n+1)! =

limn→∞
1

n+1 → 0

3 From Power Series to Taylor Series

Observation 3 Given power series f(x0 + h) =
∑∞

n=0 anh
n, we can take its derivative:

f ′(x0 + h) = (a0 + a1h+ a2h
2 + ....)′

= a1 + 2a2h+ 3a2h
2 + ...

∞∑
n=1

nanh
n−1

f”(x0 + h) → f (K)(x0 + h) =

∞∑
n=K

an(n ∗ (n− 1) ∗ (n− 2)...(n− k + 1))h(n−k)

In all, we have

f (K)(x0) = aKK! → aK =
f (K)(x0)

K!

We began with a particular definition of a Power Series, and we did not know what the coefficients
were. They were denoted by an, but not actually represented. By taking the derivatives at point x0

we were able to find the coefficients. The next theorem below explains this.

Theorem 4 Let f(x0 + h) =
∑∞

n=0 anh
n with r > 0. Then for h with |h| < r, we have:

f(x0 + h) =

∞∑
n=0

f (n)(x0)

n!
hn

The intuition is that we begin with a Power Series that converges, which gives us a nice formulas
that expresses the coefficients in terms of the derivatives of the function.

The reverse of this theorem (given a function and building a series that converges to it) is possible
under some conditions - leading us to the Taylor Series.
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4 Taylor Series

Taylor Series is used to approximate functions through their derivative. We are approximating a
function at its expansion point with a polynomial, shown in the image below.

There are two ways we can look at this approximation:

1. Linear Approximation (Line)
Consider a new point: (x = x0 + h)

f(x0 + h) = f(x0) + f ′(x0)h+ r(h)h with r(h)
h→0−−−→ 0

2. Quadratic Approximation (Parabola)
f(x0 + h) = f(x0) + f ′(x0)h+ 1

2f”(x0)h
2 + r(h)h2 with r(h)

h→0−−−→ 0

Theorem 5 I ⊂ R open interval, f : I → R. f ∈ Cn+1([a, b]), x0 ∈ I. Define Tn(x0, h) :=∑n
K=0

f(K)(x0)
K! ∗hK where hK is the Taylor Series up to degree n, and the numerator is differentiable.

Rn(x0, h) :=
∫ x0+h

x0

(x+h−t)n

n! f (n+1)(t) dt where f (n+1) is the remainder term. Then f(x0 + h) =

Tn(x0, h) +Rn(xo, h).

Proof: (Sketch)
The proof follows from the fundamental theorem of calculus, by induction on n. To do induction,
we start with a base case, then prove an inductive step.
Base Case n = 0: we need to prove f(x0 + h) = f(x0) +

∫ x0+h

x0
f ′(t) dt. This is similar to the

fundamental theorem of calculus ([
∫ b

a
F ′(x) dx = F (b)− F (a)])

Inductive Step n → n+ 1:

• Consider: F (x0 + h) = (x0+h−t)(n+1)

(n+1)! f (n+1)(t)

• Take its derivative.

• Integrate and exploit fundamental theorem.

□

The next theorem is the Taylor with Lagrange Remainder Theorem. It is a bit more useful, so we
will show the whole proof.
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Theorem 6 I ⊂ R, f : I → R, f ∈ Cn+1(I), x0 ∈ I. If h ∈ R such that x0 + h ∈ I, then:

f(x0 + h) =

n∑
K=0

f (K)(x0)

K!
∗ hK +Rn(h)

(where the first half of the sum is the n-th order Taylor polynomial and the second is the remainder
term) and there is ξ with ξ ∈ (x0, x0 + h) on ξ ∈ (x0 + h, x0) such that Rn(h) =

f(n+1)ξ
(n+1)! ∗ h(n+1).

Remark 7 We often write f(x0+h) =
∑n

K=0
f(K)(x0)

K! ∗hK +O(h(n+1)) or with x = x0+h we write

f(x) =
∑n

K=0
f(K)(x0)

K! ∗ (x− x0)
K +O((x− x0)

(n+1))

Proof: Define two quantities:

1. Fn,h(t) :=
∑n

K=0
f(K)(t)

K! (h+ x0 − t)K

Note: Fn,h(x0) := Tn(x0, h), Fn,h(x0 + h) = f(x0 + h)

2. Gn,h(t) := (h+ x0 − t)(n+1), G′
n,h(t) = −(n+ 1) ∗ (h+ x0 − t)n

Now we apply the Generalized Mean Value Theorem

Fn,h(x0 + h)− Fn,h(x0)

Gn,h(x0 + h)−Gn,h(x0)
=

F ′
n,h(ξ)

G′
n,h(ξ)

where ξ ∈ (x0, x0 + h).
Putting it all together, we have:

f(x0 + h)− Tn(x0 + h) = (Gn,h(x0 + h)−Gn,h(x0)) ∗
F ′
n,h(ξ)

G′
n,h(ξ)

where Gn,h(x0 + h) is O and Gn,h(x0) is hn+1.

=
hn+1 ∗ F ′

n,h(ξ)

(n+ 1)(h+ x0 − ξ)n

We need to calculate F ′
n,h(t) and plug it back in:

F ′
n,h(t) =

d

dt

n∑
K=0

f (K)(t)

K!
(h+ x0 − t)K

=

n∑
K=0

f (K+1)(t)

K!
(h+ x0 − t)K −

n∑
K=1

f (K)(t)

(K − 1)!
(h+ x0 − t)K−1

=
fn+1(t)

n!
∗ (h+ x0 − t)n

=
hn+1 ∗ fn+1(t)

n! ∗((((((
(h+ x0 − t)n

(n+ 1) ∗((((((
(h+ x0 − t)n
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=
hn+1 ∗ f (n+1)(ξ)

(n+ 1)!

f(x0 + h) = Tn(x0 + h) +
hn+1 ∗ f (n+1)(ξ)

(n+ 1)!

□

If we look back up at the remainder above, that’s what we have here.

Theorem 8 f ∈ C∞(I), x0 ∈ I, h ∈ R such that x0 + h ∈ I. Define:

T (x0, h) := lim
n→∞

Tn(x0, h) =

∞∑
h=0

fn(x0)

n!
∗ hn

Then we have f(x) = T (x) if Rn(x0, h)
n n→∞−−−−→ 0

For example, this is the case if there exists constants α, c > 0 such that |fn(t)| ≤ α∗cn,∀t ∈ I, ∀n ∈,N
where |fn(t)| is a sufficient but not necessary condition (this is not the only way this term may go to
0, but if this condition holds, it goes to 0). The proof for this follows directly from the Lagrangian
remainder theorem that we just did.

Now we have the full set of Taylor Theorems, so we can represent any function f as a sum of the
decomposition of its Taylor polynomial and remainder. If the remainder converges to 0 as n → ∞,
then the function is equal to the Taylor polynomial. For the remainder to converge to 0, the n-th
derivative has to be bounded as less than or equal to α times c to the power of n.

Not all functions have a Taylor Series that converges to the function.

4.1 Examples

• Exponential Series:
exp(x) =

∑∞
n=0

xn

n! is a Power Series with r = ∞. It will always coincide with its Taylor
Series. Other examples include sin, cos, polynomials, Power Series. These are called analytic
functions.

• f(x) = log(x+ 1) Taylor Series around 0, r = 1.
For x outside of (−1, 1), the Taylor series does not make sense.

• Taylor Series Does NOT Coincide with Function

f(x) =

{
exp(− 1

x2 ), if x ̸= 0

0, if x = 0

It has the weird property that ∀n ∈ N: fn(0) = 0. If we consider the Taylor Series of it about
x0 = 0, then all terms will be 0, i.e. ∀n : Tn(0, h) = 0 and r = ∞.

f(x0 + h) = Tn(x0, h) +Rn(x0, h)

We are approximating around the point (small ball), not just at the point.

Tn(x0 = 0, h) = 0 but f(0 + h) = exp(
−1

h2
)
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On the left, we see the Taylor Series around x0 = 0 is 0, but the right side shows that function
values around x0 = 0 are not 0. As an equation:

∀(x0 + h) ̸= 0;Tn(x0, h) ̸= f(x0 + h)
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