CSE 840: Computational Foundations of Artificial Intelligence October 25, 2023

 σ - Algebra, Measure

Instructor: Vishnu Boddeti Scribe: Amith Reddy, Ayush Dhamija, Shreyas Srinivas Bikumalla

Reimann Integral

$$\begin{split} f &: \mathbb{R} \to \mathbb{R} \\ \int_a^b f dt &\approx \sum_k vol(I_k).f(m_k) \\ \text{Here, } vol(I_k) &= x_{k+1} - x_k \end{split}$$

Problems of Reimann Integral:

(i) Difficult to extend to higher dimensions.

- (ii) Dependence on continuity.
- (iii) Limit processes.

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} \lim_{n \to \infty} f_{n}(x) dx$$

Our Goal is to get to Lebesgue Integrals

Lebesgue Integrals

Let X be a set, P(X) be the power set of X Example : $X = \{a, b\}, P(X) = \{\phi, X, \{a\}, \{b\}\}$

Def: $\mathbb{A} \subseteq \mathcal{P}(\mathcal{X})$ is called σ - Algebra: (a) $\phi, \mathcal{X} \in \mathbb{A}$ (b) $\mathcal{A} \in \mathbb{A} => A^c := \mathbf{x}/\mathcal{A} \mathbb{A} \in \mathbb{A}$ (c) $A_i \in \mathbb{A}, i \in \mathbb{N} \Rightarrow \cup_{i=1}^{\infty} A_i \in \mathbb{A}$

Def: A Measurable space consists of a set X and a σ - Algebra A over X. Notation: (X,A). The sets $A \in A$ are called A-measurable sets.

Examples: (1) $\mathbb{A} = \{\phi, X\} \rightarrow \text{smallest}$ (2) $\mathbb{A} = P(X) \rightarrow \text{largest}$

Let \mathbb{A}_i be a σ - algebra on X, $i \in I(\text{index set})$ Then $\bigcap_{i \in I} \mathbb{A}_i$ is also a σ - algebra on X.

Def : For $M \subseteq P(x)$, there is a smallest σ - algebra that contains M : (a) σ (M) := $\bigcap A$ denotes the σ -algebra generated by M (b)A $\supseteq M$

Example:

 $\begin{array}{l} \text{Let } \mathbf{X} = \{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\} \\ \text{Let } \mathbf{M} = \{\{\mathbf{a}\}, \{\mathbf{b}\}\} \\ \sigma \ (\mathbf{M}) = \{\phi, \mathbf{X}, \{\mathbf{a}\}, \{\mathbf{b}\}, \{\mathbf{a}, \mathbf{b}\}, \{\mathbf{b}, \mathbf{c}, \mathbf{d}\}, \{\mathbf{a}, \mathbf{c}, \mathbf{d}\}, \{\mathbf{c}, \mathbf{d}\}\} \end{array}$

Def: Let (X, Υ) be a topological space or (Let X be a metric space) or (Let X be a subset of \mathbb{R}^n)

Remark: We need open sets for this. B(X) is called the Borel σ - algebra on X Note : This is the σ -algebra generated by the open sets B(X) := $\sigma(\Upsilon)$

Measures

Def: Let (X, \mathbb{A}) be a measurable space. Consider a map $\mu : \mathbb{A} \to [0, \infty]$ is called a measure if it satisfies:

(a) $\mu(\phi) = 0$

(b)
$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$
 with $A_i \cap A_j \neq \phi$
Note : $i \neq j$ for all $A_i \in \mathbb{A}$

Def : A measurable space (X, \mathbb{A}) endowed with a measure μ is called a measure space (X, \mathbb{A}, μ)

Examples

• For the following examples, lets consider the set X and the σ – Algebra A be the power set P(X).

 $\Rightarrow X, \mathcal{A} = P(X)$

a) Counting measure: The counting measure is defined as follows:

$$\mu(A) := \begin{cases} \text{Number of elements in A,} & \text{A has finitely many elements} \\ \infty & \text{else} \end{cases}$$
$$(A \in \mathcal{A})$$

Calculation rules in $[0,\infty]$:

- $\mathbf{x} + \infty := \infty$ $\forall \mathbf{x} \in [0,\infty]$
- $\mathbf{x} \cdot \mathbf{\infty} := \mathbf{\infty} \quad \forall \mathbf{x} \in (0, \mathbf{\infty}]$
- 0. $\infty := 0$ (!in most cases of measure theory!)
- b) Dirac measure for $\mathbf{p} \in \mathbf{X}$: $\delta_p := \begin{cases} 1, & p \in A \\ 0, & else \end{cases}$
- c) We want to define a measure on $X = \mathbb{R}^n$
 - $\mu([0,1]^n) = 1$
 - $\mu(X + A) = \mu(A) \ \forall \ \mathbf{x} \in \mathbb{R}^n$
- d) A more useful class of measures on \mathbb{R}^n .

 $X = \mathbb{R}, \mathcal{A}$ Borel σ -algebra. Let $F: \mathbb{R} \to \mathbb{R}$ be a monotonically increasing, continuous function.

We define a measure μ_F on (\mathbb{R},\mathcal{A}) by setting $\mu_F(S) = inf\{\sum_{j=1}^{\infty} F(b_j) - F(a_j) | S \subset U_{j=1}^{\infty}(a_i, b_j)\}$

The general procedure to computer this measure is given by:

- Cover S by intervals.
- To each interval we assign 'elementary volume' which is given by F(b)-F(a).
- Take best covering which is given by the infimum of all the possible coverings of S.

 \rightarrow Need to prove: this is a measure! A subset $N \in \mathcal{A}$ is called a **null set** if $\mu(N) = 0$.

• We say a property holds almost everywhere if it holds $\forall x \in X$ except for x in a null set N.