CSE 840: Computational Foundations of Artificial Intelligence October 25, 2023
 σ - Algebra, Measure
 Instructor: Vishnu Boddeti Scribe: Amith Reddy, Ayush Dhamija, Shreyas Srinivas Bikumalla

Reimann Integral

$f: \mathbb{R} \rightarrow \mathbb{R}$
$\int_{a}^{b} f d t \approx \sum_{k} \operatorname{vol}\left(I_{k}\right) \cdot f\left(m_{k}\right)$
Here, $\operatorname{vol}\left(I_{k}\right)=x_{k+1}-x_{k}$

Problems of Reimann Integral:

(i) Difficult to extend to higher dimensions.
(ii) Dependence on continuity.
(iii) Limit processes.
$\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n}(x) d x$
Our Goal is to get to Lebesgue Integrals

Lebesgue Integrals

Let X be a set, $\mathrm{P}(\mathrm{X})$ be the power set of X
Example : $X=\{a, b\}, P(X)=\{\phi, X,\{a\},\{b\}\}$

Def: $\mathbb{A} \subseteq \mathrm{P}(\mathrm{X})$ is called σ - Algebra:
(a) $\phi, \mathrm{X} \in \mathbb{A}$
(b) $\mathrm{A} \in \mathbb{A}=>A^{c}:=\mathrm{x} / \mathrm{A} \mathbb{A} \in \mathbb{A}$
(c) $A_{i} \in \mathbb{A}, \mathrm{i} \in \mathbb{N} \Rightarrow \cup_{i=1}^{\infty} A_{i} \in \mathbb{A}$

Def: A Measurable space consists of a set X and a σ - Algebra \mathbb{A} over X . Notation: (X, \mathbb{A}).
The sets $A \in \mathbb{A}$ are called \mathbb{A}-measurable sets.
Examples:
(1) $\mathbb{A}=\{\phi, \mathrm{X}\} \rightarrow$ smallest
(2) $\mathbb{A}=\mathrm{P}(\mathrm{X}) \rightarrow$ largest

Let \mathbb{A}_{i} be a σ - algebra on $\mathrm{X}, \mathrm{i} \in \mathrm{I}$ (index set)
Then $\bigcap_{i \in I} \mathbb{A}_{i}$ is also a σ - algebra on X .
Def : For $\mathrm{M} \subseteq \mathrm{P}(\mathrm{x})$, there is a smallest σ - algebra that contains M :
(a) $\sigma(\mathrm{M}):=\bigcap \mathrm{A}$ denotes the σ-algebra generated by M
(b) $\mathrm{A} \supseteq \mathrm{M}$

Example:

Let $X=\{a, b, c, d\}$
Let $M=\{\{a\},\{b\}\}$
$\sigma(\mathrm{M})=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\}\}$

Def: Let (X, Υ) be a topological space or
(Let X be a metric space) or
(Let X be a subset of \mathbb{R}^{n})
Remark: We need open sets for this.
$\mathrm{B}(\mathrm{X})$ is called the Borel σ - algebra on X
Note: This is the σ-algebra generated by the open sets
$\mathrm{B}(\mathrm{X}):=\sigma(\Upsilon)$

Measures

Def: Let (X, \mathbb{A}) be a measurable space. Consider a map $\mu: \mathbb{A} \rightarrow[0, \infty]$ is called a measure if it satisfies:
(a) $\mu(\phi)=0$

(b) $\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$ with $A_{i} \bigcap A_{j} \neq \phi$

Note : $\mathrm{i} \neq \mathrm{j}$ for all $A_{i} \in \mathbb{A}$

Def : A measurable space (X, \mathbb{A}) endowed with a measure μ is called a measure space (X, \mathbb{A}, μ)

Examples

- For the following examples, lets consider the set X and the $\sigma-$ Algebra A be the power set $\mathrm{P}(\mathrm{X})$.
$\Rightarrow \mathrm{X}, \mathcal{A}=P(X)$
a) Counting measure:

The counting measure is defined as follows:

$$
\mu(A):= \begin{cases}\text { Number of elements in A, } & \text { A has finitely many elements } \\ \infty & \text { else }\end{cases}
$$

$(A \in \mathcal{A})$

Calculation rules in $[0, \infty]$:

- $\mathrm{x}+\infty:=\infty \quad \forall \mathrm{x} \in[0, \infty]$
- $\mathrm{x} . \infty:=\infty \quad \forall \mathrm{x} \in(0, \infty]$
- $0 . \infty:=0 \quad$ (!in most cases of measure theory!)
b) Dirac measure for $\mathrm{p} \in \mathrm{X}$:
$\delta_{p}:= \begin{cases}1, & p \in A \\ 0, & \text { else }\end{cases}$
c) We want to define a measure on $\mathrm{X}=\mathbb{R}^{n}$
- $\mu\left([0,1]^{n}\right)=1$
- $\mu(X+A)=\mu(A) \forall \mathrm{x} \in \mathbb{R}^{n}$
d) A more useful class of measures on \mathbb{R}^{n}.
$\mathrm{X}=\mathbb{R}, \mathcal{A}$ Borel σ-algebra. Let $\mathrm{F}: \mathbb{R} \rightarrow \mathbb{R}$ be a monotonically increasing, continuous function.

We define a measure μ_{F} on $(\mathbb{R}, \mathcal{A})$ by setting $\mu_{F}(\mathrm{~S})=\inf \left\{\sum_{j=1}^{\infty} F\left(b_{j}\right)-F\left(a_{j}\right) \mid S \subset U_{j=1}^{\infty}\left(a_{i}, b_{j}\right]\right\}$

The general procedure to computer this measure is given by:

- Cover S by intervals.
- To each interval we assign 'elementary volume' which is given by $\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$.
- Take best covering which is given by the infimum of all the possible coverings of S .
\rightarrow Need to prove: this is a measure!
A subset $\mathrm{N} \in \mathcal{A}$ is called a null set if $\mu(N)=0$.
- We say a property holds almost everywhere if it holds $\forall \mathrm{x} \in \mathrm{X}$ except for x in a null set N .

